Rachel Lamb, George Hurtt, Ralph Dubayah, Lei Ma, along with co-authors and representatives of state government from 11 states, published a review article entitled “Context and future directions for integrating forest carbon into sub-national climate mitigation planning in the RGGI region of the U.S.” in Environmental Research Letters.
Here, the authors reviewed several components of climate mitigation planning across the 11-states in the Regional Greenhouse Gas Initiative region of the Northeast U.S., including greenhouse gas (GHG) reduction goals, inclusion of forest activities relative to these GHG goals, and the type of science used to estimate forest carbon. They found large differences between states in all of these categories. In addition, nearly three quarters of states in the region do not currently account for forest carbon when planning greenhouse gas reductions, and those that do use a variety of science approaches. They suggest a common, efficient, standardized forest carbon monitoring system would provide important benefits to states and the region as a whole. Major components for such a system have been recently developed for the region by GEOG team members as part of the NASA Carbon Monitoring System. This article completes a collection of 3 related articles on the topic of forest carbon monitoring for climate mitigation in the RGGI region:
“High-resolution forest carbon modelling for climate mitigation planning over the RGGI region, USA” led by Dr. Lei Ma.
“High-resolution forest carbon mapping for climate mitigation baselines over the RGGI region, USA” led by Dr. Hao Tang.
Full abstracts for all articles can be found below:
Context and future directions for integrating forest carbon into sub-national climate mitigation planning in the RGGI region of the U.S.
International frameworks for climate mitigation that build from national actions have been developed under the United National Framework Convention on Climate Change and advanced most recently through the Paris Climate Agreement. In parallel, sub-national actors have set greenhouse gas (GHG) reduction goals and developed corresponding climate mitigation plans. Within the U.S., multi-state coalitions have formed to facilitate coordination of related science and policy. Here, utilizing the forum of the NASA Carbon Monitoring System's Multi-State Working Group, we collected and reviewed climate mitigation plans for 11 states in the Regional Greenhouse Gas Initiative region of the Eastern U.S. For each state we reviewed the (a) policy framework for climate mitigation, (b) GHG reduction goals, (c) inclusion of forest activities in the state's climate action plan, (d) existing science used to quantify forest carbon estimates, and (e) stated needs for forest carbon monitoring science. Across the region, we found important differences across all categories. While all states have GHG reduction goals and framework documents, nearly three-quarters of all states do not account for forest carbon when planning GHG reductions; those that do account for forest carbon use a variety of scientific methods with various levels of planning detail and guidance. We suggest that a common, efficient, standardized forest carbon monitoring system would provide important benefits to states and the geographic region as a whole. In addition, such a system would allow for more effective transparency and progress tracking to support state, national, and international efforts to increase ambition and implementation of climate goals.
High-resolution forest carbon modelling for climate mitigation planning over the RGGI region, USA
The inclusion of forest carbon in climate change mitigation planning requires the development of models able to project potential future carbon stocks—a step beyond traditional monitoring, reporting and verification frameworks. Here, we updated and expanded a high-resolution forest carbon modelling approach previously developed for the state of Maryland to 11 states in the Regional Greenhouse Gas Initiative (RGGI) domain, which includes Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, and Vermont. In this study, we employ an updated version of the Ecosystem Demography (ED) model, an improved lidar initialization strategy, and an expanded calibration/validation approach. High resolution (90 m) wall-to-wall maps of present aboveground carbon, aboveground carbon sequestration potential, aboveground carbon sequestration potential gap (CSPG), and time to reach sequestration potential were produced over the RGGI domain where airborne lidar data were available, including 100% of eight states, 62% of Maine, 12% of New Jersey, and 0.65% of New York. For the eight states with complete data, an area of 228 552 km2, the contemporary forest aboveground carbon stock is estimated to be 1134 Tg C, and the forest aboveground CSPG is estimated to be larger at >1770 Tg C. Importantly, these estimates of the potential for added aboveground carbon sequestration in forests are spatially resolved, are further partitioned between continued growth of existing trees and new afforested/reforested areas, and include time estimates for realization. They are also assessed for sensitivity to potential changes in vegetation productivity and disturbance rate in response to climate change. The results from this study are intended as input into regional, state, and local planning efforts that consider future climate mitigation in forests along with other land-use considerations.
High-resolution forest carbon mapping for climate mitigation baselines over the RGGI region, USA
Large-scale airborne lidar data collections can be used to generate high-resolution forest aboveground biomass maps at the state level and beyond as demonstrated in early phases of NASA's Carbon Monitoring System program. While products like aboveground biomass maps derived from these leaf-off lidar datasets each can meet state- or substate-level measurement requirements individually, combining them over multiple jurisdictions does not guarantee the consistency required in forest carbon planning, trading and reporting schemes. In this study, we refine a multi-state level forest carbon monitoring framework that addresses these spatial inconsistencies caused by variability in data quality and modeling techniques. This work is built upon our long term efforts to link airborne lidar, National Agricultural Imagery Program imagery and USDA Forest Service Forest Inventory and Analysis plot measurements for high-resolution forest aboveground biomass mapping. Compared with machine learning algorithms (r2 = 0.38, bias = −2.3, RMSE = 45.2 Mg ha−1), the use of a linear model is not only able to maintain a good prediction accuracy of aboveground biomass density (r2 = 0.32, bias = 4.0, RMSE = 49.4 Mg ha−1) but largely mitigates problems related to variability in data quality. Our latest effort has led to the generation of a consistent 30 m pixel forest aboveground carbon map covering 11 states in the Regional Greenhouse Gas Initiative region of the USA. Such an approach can directly contribute to the formation of a cohesive forest carbon accounting system at national and even international levels, especially via future integrations with NASA's spaceborne lidar missions.
