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Abstract
In this study,we explored the relationships between the satellite-retrievedfire counts (FC),fire radiative
power (FRP) andaerosol indicesusingmulti-satellite datasets at a daily time-step covering tendifferent
biomassburning regions inAsia.Wefirst assessed the variations inMODIS-retrieved aerosol optical depths
(AOD’s) in agriculture, forests, plantationandpeat landburning regions and thenusedMODISFCandFRP
(hereafter FC/FRP) to explain the variations inAODcharacteristics.Results suggest that tropical broadleaf
forests inLaosburnmore intensively than theother vegetationfires. FC/FRP-AODcorrelations indifferent
agricultural residueburning regionsdidnot exceed20%whereas in forest regions they reached40%.To
specifically account for absorbing aerosols,weusedOzoneMonitoring Instrument-derived aerosol
absorptionoptical depth (AAOD) andUVaerosol index (UVAI). Results suggest relatively highAAODand
UVAIvalues in forestfires comparedwithpeat andagriculturefires. Further, FC/FRPcould explain a
maximumof29%and53%ofAAODvariations,whereasFC/FRPcould explain atmost 33%and51%of
the variation in agricultural and forest biomass burning regions, respectively. Relatively,UVAIwas found to
be abetter indicator thanAODandAAODinboth agriculture and forest biomass burningplumes.Cloud–
Aerosol Lidar and InfraredPathfinderSatelliteObservationsdata showedvertically elevated aerosol profiles
greater than3.2–5.3 kmaltitude in the forestfire plumes compared to2.2–3.9 kmand less than1 kmin
agriculture andpeat-landfires, respectively.We infer theneed to assimilate smokeplumeheight
information for effective characterizationof pollutants fromdifferent sources.

1. Introduction

Biomass burning is an important source of aerosols
and greenhouse gas emissions in several regions of the
world including Asia (Seiler and Crutzen 1980). The
causative factors of biomass burning vary by region.
For example, in northeast India, Eastern Ghats, north-
east Myanmar, Laos and Cambodia, biomass burning
has beenmainly attributed to slash andburn agriculture
(Toky and Ramakrishnan 1983, Prasad et al 2002, 2008,
Palm et al2013). InnorthwesternThailand, theMekong
Delta in southern Vietnam, and the Punjab region of
India, most of the biomass burning is attributed to
agricultural residues. Farmers burn crop residues after
harvest to control pests andweeds, improve soil fertility
through ash and to facilitate planting of new crops
(Gadde et al 2009, Taylor 2010, Vadrevu et al 2011,
Kharol et al 2012, Sahu and Sheel 2014). In contrast,
forests in the peat land burning for oil palm plantations

is most common in Indonesia, Malaysia and Papau

New Guinea (Carlson et al 2013). Also, vegetation and

peatland fires in Southeast Asia have been attributed to

a combination of El Nino-induced droughts and

anthropogenic land-use changes (Langner et al 2007,
Gaveau et al 2014). Several studies have shown that

aerosols and pollutants from biomass burning can be

transported long distances and persist for weeks to

months, impacting not only air quality but also

biogeochemical cycles, atmospheric chemistry,

weather, and climate (Radojevic 2003, Cristofanelli

et al 2014, Reddington et al 2014). In addition, biomass

burning pollutants can have significant health impacts

with increased respiratory ailments, eye irrigation,

medication use and exacerbated asthma (Laumbach

and Kipen 2012). It is therefore important to character-

ize the emissions from biomass burning sources more

accurately.
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One of the important indicators of aerosol amounts
in the atmospheric column is aerosol optical depth
(AOD), which is a measure of atmospheric extinction
through a vertical column of atmosphere (Carmichael
et al 2009). The aerosol components contributing to
AOD include soot, sulfates, organics, dust, etc., and
include both natural and anthropogenic sources (Bar-
naba and Gobbi 2004). A number of ground-basedmea-
surement stations of the AErosol RObotic NETwork
(AERONET) exist in the world (Holben et al 1998). The
AERONET consists of CIMEL sun/sky radiometers cap-
able of retrieving aerosol optical products at discrete
wavelengths ranging from 440nm (visible) to 1020 nm
(near IR) (Eck et al 1999, Schuster et al 2006). The mea-
surements from AERONET includes AOD, precipitable
water, fine and coarse mode AOD including fine mode
fraction, sky and surface radiance for bi-directional reflec-
tance distribution functionDue to the large temporal and
spatial variability in aerosol composition and abundance,
satellite retrievals of AOD became more useful for char-
acterizing aerosols in diverse regions of the world
(Myhre 2009). For example, MODIS AOD is retrieved
using multiple channels onboard the Terra and Aqua
satellites beginning in 2000 and 2002, with separate algo-
rithms for oceans (Tanré et al 1997) and land (Kaufman
et al 1997). The AOD’s are derived by the inversion of the
MODIS-observed reflectance using pre-computed radia-
tive transfer look-up tables based on aerosol models
(Remer et al2002).

Satellite observations such as AOD can be a powerful
tool for monitoring of atmospheric pollution if they can
be related to theunderlying emission sources, especially in
real-time. Specific to biomass burning emissions, active
fire detection and radiative power products are beingused
in emissions estimation in real-time such as through the
Global Fire Assimilation System. The system is con-
tinuously refined to account for fire-emission amounts
(Kaiser et al 2012). To make such operational systems
robust, there is a need to evaluate and refine fire–aerosol
relationships inmultiple regions. Specific to Asia, most of
the biomass burning aerosols are often mixed from fossil
fuel combustion and dust emissions (Kaskaoutis
et al 2009, Bucci et al 2014, Mishra et al 2014). In such a
context, an important question to address is ‘how much
of the AOD increase is due to biomass burning and how
well do satellitefire retrievals explainAODvariation?’

In this study,wecharacterizefire–aerosol relationships
inAsia.Wefirst assessed thevariation inMODIS-retrieved
AOD’s in diverse biomass burning regions pertaining to
agriculture, forests andplantationburning. In addition,we
addressed the following questions: How well do satellite-
derived fire products (fire counts (FC) and fire radiative
power (FRP) (hereafter FC/FRP) correlate with different
aerosol indices such as AOD, UV aerosol index (UVAI)
and aerosol absorption optical depth (AAOD)? Is FRP a
better indicator than FC in relating to AOD, AAOD and
UVAI? What are the typical smoke plume heights in the
biomass burning regions of Asia? How do smoke plume
heights influence fire-AOD, AAOD, UVAI relationships?

How do the correlations vary over different burning
regions (i.e. agriculture versus forest versus peatland) dur-
ing the peak biomass burning months? We addressed
these questions usingMODIS, OzoneMonitoring Instru-
ment (OMI) andCloud–Aerosol Lidar and Infrared Path-
finderSatelliteObservation (CALIPSO)datasets.

2.Datasets andmethods

We selected ten different biomass-burning windows in
Asia to characterize fire–aerosol relationships (figure 1).
Each window was comprised of 3×3 one-degree
resolution cells (each cell with 111.3 sq.km). The domi-
nant vegetation typeburned in eachwindowand thepeak
months of biomass burning are given in table 1 and
figure 1. Punjab located in the northwestern region of
India is dominated by rice–wheat crop rotations where
agricultural residue burning is prevalent (Vadrevu
et al 2011, 2013). Eastern Ghats are a range of discontin-
uous mountains situated on the east coast of India. They
run fromWest Bengal state in the north, throughOdisha
and Andhra Pradesh to Tamil Nadu in the south passing
some parts of Karnataka State. Biomass burning in
Eastern Ghats is mostly due to slash and burn. Northeast
India comprises of seven-different states in India which
includes Assam, Arunachal Pradesh, Manipur, Megha-
laya, Mizoram, Tripura and Nagaland. Slash and burn
agriculture ismost common innortheast India.Theother
regions include north-western Thailand with dominant
rice–maize crop burning, Laos and Eastern Myanmar
with tropical broadleaf forest burning, southern Vietnam
(Mekong delta) with rice residue burning and Indonesia
with forest/peat landfires.

We used the MERIS Globcover land cover dataset
(version 2.3) for inferring the land cover types. The data
set contains 22 separate land cover classes created from
cloud-freemosaics ofMERIS surface reflectance data and
vegetation indices at a 300m spatial resolution (Bicheron
et al2008). For characterizing thefire activity andFRP, the
dominant land cover category was inferred to each bio-
mass burning window based on a majority filter and the
dominant vegetation typeburntbasedon the literature.

For characterizing fires and FRP, we used daily active
fire detections from a combination of theMODIS instru-
ments onboard the Aqua and Terra satellites. The two
MODIS sun-synchronous, polar-orbiting satellites pass
over the Equator at approximately 10:30 a.m./p.m.
(Terra) and 1:30 p.m./a.m. (Aqua)with a revisit time of 1
to 2 days. TheMODIS Advanced Processing System pro-
cesses the resulting data using the enhanced contextual
fire detection algorithm (Giglio et al 2003) combined into
the Collection 5 Active Fire product. For this study, we
analyzed the daily FC and FRP data for the peak biomass
burning periods from 2005 to 2012 and data with more
than 95% confidence level (Giglio 2009). Corresponding
to the similar time-period, we used daily MODIS AOD
products (MOD08_D3.005 and MYD08_D3.005) at
550 nm. To assess the statistical nature of AOD data
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during the peak biomass burning months in different
regions of Asia, we performed a frequency analysis. The
MODIS AOD data were fitted to a Gaussian distribution
to infer location and scale parameters as
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where A is the amplitude, xc is the center of the
peak amplitude, and s (sigma) is the width at half peak
amplitude.

The AAOD is a columnar measure of concentra-
tion of near-UV absorbing aerosol particles such as
smoke andmineral dust and is retrieved from theOMI
(Bucsela et al 2008). We used the AAOD daily product
at 500 nm (OMAERUVd.003). In addition, we also
used UV aerosol index (UVAI) that detects the pre-
sence of UV-absorbing aerosols such as dust and soot.

UVAI is based on a spectral contrast method in a UV
region where the ozone absorption is very small. It is
the difference between the observations and model
calculations of absorbing and non-absorbing spectral
radiance ratios. ForOMI, AI is defined as

I I

I I

AI 100 log

log .

10 360 331
measured

10 360 331
calculated

( )
( )

⎡⎣
⎤⎦

=

-

Positive values of AI generally represent absorbing
aerosols (dust and smoke) while small or negative
values represent non-absorbing aerosols (sulfate, sea-
salt) and clouds (Torres et al 2007). We specifically
used the daily product (OMTO3d.003) to infer UVAI
variations. Both the AAOD and UVAI variations were
assessed using histograms with mean and standard
deviation. To address fire-AOD, AAOD and UVAI

Figure 1. Study area locationmapwith biomass burning regional windows.

Table 1.Biomass burning regionswith peak biomass burningmonths and the type of biomass burnt.

Site Peak biomass burningmonths Dominant vegetation burnt

Thailand February–April Rice–maize crop residues

SouthernVietnam February–April Rice residues

Punjab, India-summer March–May Wheat residues

Punjab, India-winter October–December Rice residues

Riau, Indonesia July–September Forest/peat landfiremix

Kalimantan, Indonesia July–September Peat landfiremix

EasternGhats, India February-April Tropicalmixed deciduous forest

Northeast India March–May Tropical evergreen forest

EasternMyanmar February–April Broad leaf deciduous forest

Laos February–April Broadleaf forest
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relationships, we used linear regression with 95% con-
fidence interval bands.

To attribute thedifferences infire-AODrelationships,
we used the CALIPSO data. The vertical distribution of
aerosol information is inferred through the analysis of
backscatter measurements provided by the Cloud–Aero-
sol Lidar with Orthogonal Polarization (CALIOP) instru-
ment onboard the CALIPSO satellite of the NASA
A-Train (Winker 2007, Hunt et al 2009). The CALIPSO
product is highly useful in discriminating aerosol layers
from clouds (Liu et al 2009), categorizing aerosol layers as
one of six subtypes (dust, marine, smoke, polluted dust,
polluted continental, and clean continental; Omar
et al 2009), and for estimating the optical depth of each
layer detected (Vaughan et al 2004). In this study, we spe-
cifically used theCAL_LID_L1-ValStage1-V3-30datasets;
averaged three to fourmostlynight-timepasses during the
peak biomass burning periods for each window as the
CALIPSO provides information every 16 days (Win-
ker 2007).Weused the total attenuated backscatter coeffi-
cient at 532 nm and smoke altitude information for
characterizing aerosol concentrations during the biomass
burningmonths fordifferent regionalwindows (figure1).

3. Results

3.1. FC variations (2005–2012)
The sumof FC for the peak biomass burningmonths in a
typical 3×3 one degree resolution window for different
biomass burning regions are shown in box and whisker

plotswith thebottomand topof thebox representingfirst
and third quartiles, the band inside the box with median
values, and the tails representing the minimum to the
maximum FC (figures 2(a) and (b)). In agricultural
biomass burning regions, highest FC were found during
the Punjabwinter season (1350FC) followed byThailand,
Punjab summer and Southern Vietnam. The median FC
values were higher for Punjab winter data compared to
the others (figure 2(a)). Of the different regions, Laoswith
the broadleaf forest burning had the highest FC (2596)
and lowest FC in Riau, Indonesia including the median
values (figure2(b)).

3.2. FRP variations
Amongst the agricultural biomass burning regions,
maximum FRP was found for Thailand (318.3 MW)
followed by Punjab during summer (figure 2(c)).
Among the forest, plantation and peat land fires, Laos
had the highest FRP (630.7 MW) and lowest for
Kalimantan peat land fires (338.8 MW) (figure 2(d)).
These results clearly suggest more intense biomass
burning from tropical broadleaf forests (Laos) than
fromagriculture and peat land fires.

3.3. AODvariations
Biomass burning activities are expected to increase AOD’s
compared to the background (Badarinath et al 2007, 2009,
Eck et al 2009). Figures 3(a)–(j) summarizes the MODIS-
retrieved AODs based on the fitted Gaussian model. For
the normal distribution, the location and scale parameters

Figure 2. (a)–(d)Variations infire counts (FC) (a), (b) and FRP (c), (d) in different biomass burning regions. The box andwhisker
plots showminimum tomaximumvalues in FC and FRP, respectively. Figures 2(a) and (b) refer to agricultural burning regions;
whereas except for Riau andKalimantan (forest/peat landmix fires), the other regions in (b) and (d) refer to forest biomass burning
regions. Refer to table 1 for the peak biomass burningmonths and dominant vegetation type burned.
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correspond to the mean (μ) (given as Mu in figures) and
standard deviation (sigma). For example, in the entire
dataset, the mean AOD was relatively high for Laos
(μ=0.75) broadleaf forest burning (figure 3(h))

compared to the other vegetation types including agricul-
ture categories 3(a)–(d). Similarly, Riau province, Indone-
sia with the forest/peat landmix fires (figure 3(i)) had the
highest sigma values (0.592) compared to the other forest

Figure 3. (a)–(i)AODFrequency plotswith normal distribution for different biomass burningwindows.Mean and sigma values are
also shown in the plots. (a)Punjab, summer, India; (b)Punjab, winter, India; (c) SouthernVietnam; (d)Thailand; (e)EasternGhats,
India; (f)Northeast India; (g)EasternMyanmar; (h) Laos; (i)Riau, Indonesia; (j)Kalimantan, Indonesia.
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burning regions. Among the forest types, tropical mixed
deciduous forest in Eastern Ghats (figure 3(e)) had the
lowest mean AOD (0.361) and sigma (0.178). Further,
among the crop residue burning regions, Punjab, India
had the highestmean both in summer (figure 3(a)) aswell
aswinter (figure 3(b)) (μ=0.621 and 0.633, respectively),
whereas, southern Vietnam with rice residue burning
(figure 3(c)) had the lowest mean AOD (0.441). We also
note that forest/peat land mix biomass burning regions
had relatively higher standard deviations indicating higher
variability inAODcompared to the agricultural regions.

3.4. AAODvariations
AAOD variations for different sites are shown as
histograms with mean and standard deviation
(figures 4(a) and (b)). Among the agricultural biomass
burning regions, Punjab during the summer season had
the highest mean AAOD (0.075) and lowest in Southern
Vietnam (0.038) (figure 4(a)). The standard deviation in
AAOD values was similar (0.044) for Punjab, Southern
Vietnam, and Thailand and lowest during the Punjab
winter season (0.036) (figure 4(b)). Among the forest,
plantation and peat land fires, Laos and Myanmar with
forest biomass burning had the highest AAOD (0.117)
andEasternGhats the lowest (figure4(b)).

3.5. UVAI variations
Similar to AAOD, Punjab during the summer season
showed highest mean UVAI (1.83) (figure 4(c)).
Among the forested biomass burning regions, Laos
had the highest mean UVAI (1.58) and the lowest for
the peat-landfires inKalimantan (0.87) (figure 4(d)).

3.6. FC-AODandFRP-AODcorrelations
FC-AOD correlations (figures A1(a)–(i) in appendix)
in different agricultural regions did not exceed 20%
(figures A1(a)–(d) in appendix). Highest FC-AOD
correlations were found for Thailand and Punjab
winter burning (both with r2=0.20 (figures A1(d),
(b)) and lowest for Punjab-summer burning
(r2=0.08) (figure A1(a)). With the exception in
southern Vietnam, FRP-AOD correlations were con-
sistently weak in different agricultural systems and less
than FC-AOD relationships. FC-AOD correlations in
forest, plantation and peat land fires were relatively
higher than the agricultural systems with highest
correlation (r2=0.34) in Myanmar A1(g) and lowest
in Riau province (r2=0.02) (figure A1(i)). FRP-AOD
correlations were relatively higher for Myanmar
(r2=0.40) (figure A3(g)) compared to the others.

3.7. FC-AAODand FRP-AAODCorrelations
Our results indicate comparatively lower correlations
between FC-AAOD and FRP-AAOD in agricultural
systems than in forest systems (figures A1–A2(a)–(i),
appendix). In agricultural systems, the highest FC-
AAOD correlation was found for Thailand (r2=0.29)
(figure A1(d)) and lowest for southern Vietnam
(r2=0.078) (figure A1(c)). Further, FC-AAOD and
FRP-AAOD correlations were almost similar in agri-
cultural systems. Among the forest biomass burning
regions, the highest FC-AAOD correlation was in Laos
(r2=0.53) (figure A1(h)) and lowest in Riau province
(r2=0.18) (figure A1(i)).

Figure 4. (a)–(d)Variations inAAOD (a), (b) andUVAI (c), (d) in different biomass burning regions. The column bar graphs show
meanwith standard deviation.
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3.8. FC-UVAI and FRP-UVAI correlations
These correlations in agricultural systems were much
stronger than FC-AOD and FC-AAOD correlations
(figures A1–A4(a)–(j), appendix). Amongst the agricul-
tural systems, FC-UVAI correlation was highest in Thai-
land (0.33) (figures A2(d)) and lowest during the Punjab-
summer season (r2=0.14) (figure A2(a)). FRP-UVAI
correlations were similar to FC-UVAI correlations in
agricultural systems. Further, FC-UVAI correlations in
forest, plantation andpeat landfireswere relatively higher
than the agricultural systems with the highest correlation
in Laos (r2=0.51) (figure A2(h)) and lowest in Riau

province (r2=0.20) (figure A2(i)). Also, FRP-UVAI
correlations were relatively stronger for forests than
agriculture andpeatlandfires.

In summary, the correlation analysis suggested the fol-
lowing: (a) The FC/FRP versus AOD, AAOD and UVAI
correlations were stronger for forest, plantation and peat
land fires than the agriculturalfires; (b)Among the aerosol
indices, UVAI was more strongly correlated with FC or
FRP followedbyAAODandAODinboth forest, peat land
and plantation/peat land mix fires than the agricultural
fires; (c)Our results indicate that that the sum of FRP was
better correlatedwithUVAI thanAODorAAOD in forest

Figure 5. (a)–(c) Smoke plume characteristics in different biomass burning regions retrieved fromCALIPSOdata. Specific biomass
burning regions are highlighted in blue elliptic circles. (a) Laos with smoke plume altitude (∼5.3 km) representing broad leaf forest
burning; (b)Kalimantan, Indonesia with smoke plume altitude (800 m) representing peat-land fires; (c)Punjab, India, smoke plume
heights (2.3 km) during summer agricultural residue burning. Polluted dust aerosols above 5 km can also be seen in the blue elliptic
circle in orange color (in contrast to smoke in black color).

7

Environ. Res. Lett. 10 (2015) 105003 KPVadrevu et al



biomass burning regions. Further, we found UVAI as bet-
ter indicator thanAODorAAODandcorrelatingwellwith
FRPthanFCin forest, plantationandpeat landfires.

3.9. CALIPSOobservations
In table 2, CALIPSO-derived 532 nm backscatter values
as well as smoke plume heights for different biomass
burningregionsandaerosol sub-typeswithplumeheights
for sample regions in figures 5(a)–(c). Vertical profiles of
aerosol concentrations showed maximum concentra-
tions over the forested regions compared to the agricul-
tural biomass burning sites (table 2). Specific to the
agricultural residueburning sites, aerosol loading is found
tobe highest forThailand (3×10−2/sr/km) followedby
Punjab-winter season (4.5×10−3/sr/km) and lowest
for southern Vietnam. Aerosols reaching the highest
altitudehavebeennoted forThailand (3.9 km) and lowest
for southern Vietnam (2.2 km). Eastern Ghats, India as
well as Kalimantan and Riau province, Indonesia had
relatively low smoke plume altitudes than other forest
biomassburning sites.

4.Discussion

The above results suggest that a broad distinction can be
made between the aerosol properties and smoke plume
heights of agricultural versus forest biomass burning
regions. Most of the forest biomass burning regions had
relatively higher median FC and FRP. Results clearly
suggest that tropical broadleaf forests in Laos burn more
intensively (higher FRP) than the other forest types, peat
lands as well as agricultural regions. Higher FRP from
forests may be attributed to relatively higher biomass per
unit area compared to agriculture and peatlands. How-
ever, more verification is needed to delineate FRP
variations in the field. As in several other studies
(Ramanathan et al 2001, Eck et al 2009, Lin et al 2014), we
noted increase in AOD during the biomass burning
months. The mean AOD during the peak biomass
burning periods in the Laos exceeded 0.75. Similarly in
the agricultural biomass burning regionsmean AODwas
greater than 0.60 in Punjab summer as well as during

winter residue burning. Although AOD is a good
indicator of overall air pollution, increase inAODmay be
attributed to a variety of other such as dust aerosols (Kim
et al2007,Vadrevu et al2011). Further,MODISAODcan
only be retrieved under clear-sky conditions and under
partially cloudy skies the probability of subpixel cloud
contamination canbe larger (Xia et al2013).

The main aerosol released from biomass burning that
causes large variations in the atmospheric chemistry and
radiation budget is black carbon, which is the optically
absorbing part of the carbonaceous aerosols (Saha and
Despiau2009). Inparticular,OMIAAODis an indicatorof
absorbing carbonaceous aerosols resulting from biomass
burning activity (Torres et al 2010). The AAOD values for
agriculturalfires varied from0.03–0.07 to 0.08–0.11 for the
forest/plantation and peat land mixed fires. These values
clearly suggest biomass burning from forest fires release
much more absorbing aerosols than the agricultural fires.
The AAOD values reported for forest biomass burning in
our studywere comparatively lower than theAAODvalues
reported for fire plumes in South America and Central
Africa. For example,Torres et al (2010)during thefive-year
analysis period reported thepeakmonthlyAAODvalues in
the range of 0.08–0.15 during September in the South
America. They also reported peak monthly AAOD values
between 0.08 and 0.12 during August in Central Africa.
Although we observed relatively higher FC-AAOD and
FRP-AAOD correlations for the forest/plantation peat
land mix fires than the agricultural fires, the correlation
within the sites betweenFC andFRPwithAAODwere not
much different. Further the higher correlations observed
between FC/FRP-AAOD compared to FC/FRP-AOD
suggests AAOD as a better indicator of absorbing aerosols
for forest andplantationpeat landmixfires.

Specific to the OMI-UVAI, earlier, Torres et al
(1998, 2007, 2010), Hsu et al (1999), and Ginoux and
Torres (2003) noted an important sensitivity of OMI to
UV absorbing aerosols as a function of smoke plume
heights. Also, Torres et al (1998, 2012) showed that the
magnitude of the positive AI depends on the AAOD and
height of the aerosol layers. They also showed that AI sig-
nal is meaningful above 0.5 and AI signal is amplified
when the absorbing layer lies above the clouds. In essence,

Table 2. SmokeplumeandPolluteddust altitudes fordifferentbiomassburning regions retrievedusingCALIOPdata.Highest smoke
plumealtitudes (5.3 km) canbe seen for Laos tropical broad-leaf forest biomass burning and lowest forKalimantan, Indonesiapeat
landfires (800 m). Relativelyhigherbackscatter valueswerenoted for forest biomass burning sites compared to the agriculture andpeat landfires.

Site Smoke altitude (Km)
Polluted dust alti-

tude (Km)
CALIPSO 532 nm total attenuated backscatter,

km−1 sr−1

Thailand 3.9 2.8 3×10−2

SouthernVietnam 1.3 2.2 4×10−3

Punjab, India-summer 2.3 5.2 2.5×10−3

Punjab, India-winter 2.5 2.9 4.5×10−3

Riau, Indonesia 3.2 3 5.0×10−3

Kalimantan, Indonesia 800 m 1 4.5×10−3

EasternGhats, India 3.2 3.6 5.0×10−3

Northeast India 4.8 4.9 7.0×10−2

EasternMyanmar 4.9 2.5 5.5×10−3

Laos 5.3 3.5 6.5×10−2
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OMI AI can be retrieved whenmixed with clouds but its
sensitivity increases significantly when the absorbing
aerosol layers are located above clouds (Xia et al 2013). In
addition, Badarinath et al (2009) and Guan et al (2010)
have shown increasing AI greater than 1.5 in biomass
burning plumes. Similar to these studies, we foundUVAI
to be a good indicator of enhanced aerosols frombiomass
burning, as the values were significantly high varying
from 1.0 to 1.8 in agricultural biomass burning plumes
and 0.8–1.58 UVAI in forest and plantation/peat land
mix fires. Consistently strong correlations (0.40–0.51)
between FC-UVAI and (0.40–0.52) between FC-FRP
were observed among the forest fires in Eastern Ghats,
Northeast India, Myanmar and Laos compared to FC/
FRP-AOD and may be attributed to release of smoke
plumes above clouds that could be effectively detected by
OMI data (Torres et al 2010) compared to MODIS. In
contrast, the relatively weak FC/FRP-UVAI correlations
in peat and agricultural biomass burning regions may be
attributed to low smoke plumes heights. To test the rela-
tive differences in smoke plume heights in agricultural
and forest and plantation peat land mix fires, we eval-
uated theCALIPSOdata.

Large amounts of smoke aerosol can be injected into
the atmosphere as a result of biomass burning. Literature
review suggest that, unlike clouds, thin smoke plumes
have a weak 532 nm total attenuated backscatter signal
and dense plumes may have a 532 nm backscatter signal
similar to clouds (Winker 2007, Omar et al 2009). In our
case, the overall CALIPSO backscatter values at 532 nm
were considerably higher for the forest biomass burning
sites than the agricultural sites (figures 5(a)–(c)).

For example, Mishra et al (2014) reported
2.32–3.58×10−3 sr km−1 for the Indo-Ganges region
close to our reported values of 2.5×10−3 sr km−1 for
Punjab during the summer biomass burning region.
In the Punjab winter biomass burning season, we
observed higher backscatter values compared to the
summer. This may be due to relatively low dust signal
during winter compared to the summer. High smoke
plume altitudes for the dust aerosols can be seen in
figure 5(c) for the Punjab summer season. We also
note comparable smoke plumeheights for Punjab during
both summer and winter. Overall, the smoke plume
heights for agricultural regions were considerably lower
than the forest biomass burning sites. Further, in Kali-
mantan, Indonesia lowest smoke plume heights were
observed with less than 1 km. Similar results were repor-
ted by Tosca et al in the range of 709±14m on Borneo
and749±24monSumatra and attribute it to low fire
intensities from smoldering peat-land fires compared
to the large boreal crown fire plumes of Alaska, or the
higher-intensity grass fires of Australia (Kahn et al
2008, Mims et al 2010). Further, in our study, UVAI
values varied from 0.87 to 1.87 in the Kalimantan
region compared to 1–02–4.2 UVAI values observed
for other forest biomass burning regions. These dif-
ferences clearly suggest increased pyro-convection of
aerosols over the forest biomass burning regions than

the agriculture as well as peat-land fires thus impacting
FC/FRP-AOD, AAOD andUVAI correlations. As UVAI
is sensitive to aerosols that aloft above the clouds, it can be
used effectively in conjunction with AAOD and FC/FRP
to relate to biomass burning aerosols in forest biomass
burning regions.Wealso found smoke altitudes as key for
relating FC or FRPwith AOD, AAOD, UVAI in different
biomass burning regions of Asia. More specifically, relat-
ing FC/FRP to UVAI may be more justified than using
AODalone as theUVAI is a robust indicator of absorbing
aerosols mainly from biomass burning compared to
AOD which is mixed signal from several other aerosols
apart from biomass burning. For resolving inter-annual
differences in FC/FRP and aerosol indices, more in-
depth studies are needed. Variations in FC/FRP and cor-
relations with the other atmospheric satellite data pro-
ducts suggested distinct patterns among different
biomass burning regions and the significance of UV
based aerosol index. We also infer the need to assimilate
smoke plume height data such as from CALIPSO for
operationalmonitoring of pollutants fromdifferent sour-
ces includingbiomassburning to reduceuncertainties.

5. Conclusions

Fire–aerosol characteristics were studied using daily
multi-satellite data during the peak biomass burning
periods in different regions of Asia. MODIS FC as well as
FRPproductswere useful in characterizingfire events and
intensities. We found relatively lower FRP’s over the
agricultural and peat land fire regions compared to forest
biomass burning regions. In the study, we also tested the
relationship between FC/FRP and various aerosol pro-
ducts suchasAOD,AAODandUVAI inbiomassburning
regions. Of the different products, we found UVAI as a
better indicatorofbiomassburningpollutionandstrongly
relating to FC/FRP in forest biomass burning than the
agricultural biomass burning regions. We used the
CALIPSO data to infer poor/strong correlations of FC/
FRP in agriculture and forest biomass burning regions.
Results suggested significantly higher CALIPSO back-
scatter as well as smoke plume heights for forest biomass
burning regions than agriculture and peat-land fires. The
results highlight FC/FRP-AOD, AAOD and UVAI rela-
tionships in different biomass burning regions in addition
to smoke plume characteristics useful to address biomass
burningpollutiononatmosphere andclimate.
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Figure A1–A2. (a)–(j) Scatterplots between sumof FC-AOD, Sumof FC-AAODA1(a)–(j) and sumof FC-UVAI relationships A2(a)–
(j). R-square linearfit and regression bands at 95% confidence interval are also shown. A1–A2(a)Punjab, summer, India; A1–A2(b)
Punjab, winter, India; A1–A2(c) SouthernVietnam; A1–A2(d)Thailand; A1–A2(e)EasternGhats, India; A1–A2(f)Northeast India;
A1–A2(g)EasternMyanmar; A1–A2(h) Laos; A1–A2(i)Riau, Indonesia; A1–A2(a), (j)Kalimantan, Indonesia.
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Figure A1–A2. (Continued.)
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Figure A3–A4. (a)–(j) Scatterplots between sumof FRP-AOD, sumof FRP-AAODA3(a)–(j) and sumof FRP-UVAI relationships
A4(a)–(j). R-square linearfit and regression bands at 95% confidence interval are also shown. A3–A4(a)Punjab, summer, India; A3–
A4(b)Punjab, winter, India; A3–A4(c) SouthernVietnam; A3–A4(d)Thailand; A3–A4(e)EasternGhats, India; A3–A4(f)Northeast
India; A3–A4(g)EasternMyanmar; A3–A4(h).Laos; A3–A4(i)Riau, Indonesia; A3–A4(j)Kalimantan, Indonesia.
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Figure A3–A4. (Continued.)
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