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Radiometric normalization is a vital stage in any change detection study due to the
complex interactions of radiance and irradiance between the Earth’s surface and atmo-
sphere. Compensation for variables such as sun’s angle, surface profile, atmospheric
conditions, and sensor calibration coefficients are essential in achieving a radiometri-
cally stable data base of multi-temporal, multi-spectral imagery for a change detection
study. In this study, five Landsat Enhanced Thematic Mapper Plus (ETM+) images
taken over the east coast of Ireland in 2001 were geometrically corrected and topo-
graphically normalized for further processing and analysis. Assessment of various
vegetation indices showed that the enhanced vegetation index 2 (EVI2) gave the high-
est accuracy in identifying the various vegetation types and habitats in the Wicklow
Mountains National Park. The initial analysis of radiometric normalization with tem-
poral invariant clusters (TICs) gave poor results due to the spectral heterogeneity of
urban pixels within each image. A revised TIC subset normalized method was developed
using regional growth parameters in urban environments to limit the spatial and spec-
tral extent of pixels used in the TIC scene normalization process. Correlation analysis
between the TIC-subset-normalized ETM+ data and Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) absolute corrected data produced coefficient
of determination (R2) values between 0.88 and 0.98. Such results demonstrated the
robustness of the TIC subset normalization procedure when correcting for atmospheric
variability between images while maintaining spectral integrity. Statistical analysis on
master slave and TIC-subset-normalized slave data using cumulative distribution curves
derived from image histograms showed an 86.93% reduction in the maximum differ-
ence between master and slave data due to the TIC subset normalization process. This
procedure of radiometric normalization is suitable in landscapes with a low density of
spectrally stable targets.

1. Introduction

Peatlands contain approximately one-third of the global terrestrial soil carbon stock (547 ×
109 tonnes) on only 4–6% of the terrestrial land area (Yu et al. 2010). Living biomass is
fundamental to the carbon (C) cycle in peatlands as it is the main source of C input to peat
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soil. Extensive anthropogenic disturbance, such as drainage of unspoiled peatland habitats,
can have negative impacts on C sequestration rates, and in extreme cases, can convert such
habitats from net sinks to a net sources of C emissions through oxidization of C stock (Tallis
1998; Bragg and Tallis 2001). Soil organic carbon (SOC) can be regarded as a biosphere
sink under the Kyoto Protocol/Marrakech Accords (Articles 3.3 and 3.4) (Kyoto Protocol
1997). In Ireland, approximately 20% of the land area is covered by peatlands (Connolly,
Holden, and Ward 2006). This accounts for between 53% (1071 × 106 tonnes C) and 62%
(1503 × 106 tonnes C) of the country’s national soil carbon stock (Tomlinson 2005; Eaton
et al. 2008). Ireland has a commitment to reducing net carbon emissions by 20%, cur-
rently specified at 66.216 × 106 tonnes yearly, averaged over the period of 2008–2012
(Brennan and Curtin 2008). Given that the Irish peatland resource is subject to significant
anthropogenic disturbance (Tallis 1998), quantification of the effect of disturbance on the
peatland carbon pool will be an important part of climate change management policy in the
future.

Remote-sensing technology can be used to monitor, assess, and quantify changes in
peatland vegetation over time. It is particularly suitable for this task due to the remote-
ness and extent of many peatland areas (Ozesmi and Bauer 2002; Connolly et al. 2011).
Significant variation in spectral signature can be indicative of some form of anthropogenic
disturbance (O Connell 2012) in peatland vegetation. Remote sensing can potentially pro-
vide spatially extensive, temporally frequent quantification of vegetation disturbance on
peatland.

Remote-sensing technology can be used to monitor, assess, and quantify changes in
peatland vegetation over time. (Ozesmi and Bauer 2002; Connolly et al. 2011). Significant
variation in spectral signature can be indicative of some form of anthropogenic disturbance
(O Connell 2012) in peatland vegetation. Remote sensing can potentially provide spa-
tially extensive, temporally frequent quantification of vegetation disturbance on peatland.
Radiometric normalization is an essential part of any change detection study using remotely
sensed imagery (Lillesand, Kiefer, and Chipman 2004). Radiance measured by satellite
sensors is a result of a complex interaction between target surface condition, sun’s angle,
Earth–Sun distance, sensor calibration, atmospheric properties, and Sun–target–sensor
geometry (McGovern et al. 2002). These radiometric properties vary with time, there-
fore change detection studies must quantify and account for these differences in order to
produce accurate change detection measurements. There are two radiometric correction
options available: absolute and relative.

Absolute correction is an image-specific procedure that estimates at-surface reflectance
for target objects by compensating for atmospheric absorption by gases and scattering by
aerosols and water vapour (Vicente-Serrano, Perez-Cabello, and Lasanta 2008). Radiative
transfer models are used to quantify atmospheric and electromagnetic properties at the time
of image acquisition. In situ atmospheric information is usually required to apply these
methods. However, some approaches, such as ‘Second Simulation of the Satellite Signal
in the Solar Spectrum’ (6s) (Vermote et al. 1997), can use pre-defined atmospheric models
and reduce the need for radiosonde data. While aerosol optical properties are an important
constituent in atmospheric correction, some authors have shown that it can be constrained to
a few modes that have shown acceptable performance over land (Levy, Remer, and Dubovik
2007).

Absolute correction can have poor radiometric consistency between images when com-
pared to some relative normalization procedures (Schroeder et al. 2006) and a lack of in
situ atmospheric data such as aerosol optical depth can produce uncertain results (Song
et al. 2001; Schroeder et al. 2006). This uncertainty can lead to problems of low accuracy
in change detection studies.
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Relative normalization corrects images to the same radiometric scale as a pre-defined
master or reference image, thereby eliminating the need for radiosonde data by assuming
a linear relationship between images based on invariant or radiometrically stable targets
(Song et al. 2001). This procedure reduces the radiometric variability between images, and
is often preferred to absolute correction for change detection studies (Janzen, Fredeen,
and Wheate 2006; Vicente-Serrano, Perez-Cabello, and Lasanta 2008). Schroeder et al.
(2006) examined a variety of different absolute and relative correction methods on a multi-
temporal data base of Landsat data in the forests of Western Oregon, USA. They found
that absolute normalization (i.e. at surface reflectance data normalized to a master image)
using invariant pixels selected by multivariate alteration detection (MAD) and manually
selected pseudo-invariant features (PIF) produced the best results. Many of the methods
used in relative normalization can be region or habitat specific (Lillesand, Kiefer, and
Chipman 2004) and the selection of invariant targets is important (Chen, Vierling, and
Deering 2005; Paolini et al. 2006) as they need to be radiometrically stable in relation
to the temporal scale of the imagery in order to allow vegetation change to be detected
accurately. Invariant targets typically consist of man-made structures (e.g. large buildings,
motorways, or car parks), deep waterbodies (e.g. lakes or reservoirs), and vegetation with
little phenological activity (e.g. mature conifer forest). Peatlands typically have few such
targets, so radiometric normalization has to be undertaken at a scene scale large enough to
encompass features peripheral to the area of interest. Du, Teillet, and Cihlar (2002) used a
fully automated principal component analysis (PCA) with pre-defined thresholds. Hajj et al.
(2008) settled on a 7% standard deviation threshold to select invariant pixels from a multi-
band difference image (MDI). The Irish landscape also lacks large-scale spectrally stable
urban environments due to the low population density (60 persons per km2 in 2006), and the
ribbon-like development of many towns and villages (CSO 2006). McGovern et al. (2002)
indicated the difficulty of selecting urban invariant targets in the midlands of Ireland due
to the scale of the urban environments in relation the resolution of the satellite imagery.
Targets can be selected manually (Eckhardt, Verdin, and Lyford 1990), or automatically
using statistical analysis (Hajj et al. 2008). McGovern et al. (2002) used a digital number
(DN) threshold-based method for extraction of urban pixels in a Landsat Thematic Mapper
(TM) image of the midlands of Ireland where few consistent targets could be manually
identified.

To achieve an accurate radiometric normalization of satellite imagery in Ireland
requires a spatially sensitive extraction procedure for invariant urban and deep-water envi-
ronments. Chen, Vierling, and Deering (2005) proposed the use of point density maps in
the selection of temporal invariant clusters (TICs) in the boreal forests of Krasnoyarsk Kay,
Russia. Vegetation index (VI) images from two Landsat Enhanced Thematic Mapper Plus
(ETM+) scenes were plotted on a 2D scatter plot that was used to create a point density
map to identify clusters of pixels of similar values. The linear regression of the TICs was
used to create a no-change axis, the slope and intercept of which were then used for rela-
tive radiometric normalization of slave to master images. For radiometric normalization of
peatland scenes in Ireland, the approach of Chen, Vierling, and Deering (2005) (referred to
hereafter as TIC scene normalization) has several advantages: only two invariant clusters
need to be identified for the regression; the density of pixels within the TICs is not critical
to the overall accuracy of the process; a large spatial expanse of invariant objects is not nec-
essary in every image; and the TIC scene normalization can be applied to uncorrected VI
images thus reducing data storage requirements and processing time when dealing with a
large data base of multi-spectral imagery (Chen, Vierling, and Deering 2005). For these
reasons, the TIC approach was adopted for this study.
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The specific objective of this article is to present and assess a radiometric normaliza-
tion procedure to correct a multi-spectral, multi-temporal data base of satellite imagery
for Ireland that can be semi-automated and is suitable for vegetation change detection
in the peatland environment. There are vast tracts of peatland around the northern polar
arc that have similar characteristics of limited atmospheric data for absolute correction
and few radiometrically invariant features suited to standard relative normalization proce-
dures. Therefore, the procedure developed for peatland in Ireland will have a wide global
relevance.

2. Method

2.1. Study site

Validation of the radiometric normalization procedure was conducted for images of the
Wicklow Mountains National Park, which contains approximately 130 km2 of Montane
blanket bog on the east coast of Ireland (53◦ 09′ N, 6◦ 18′ W) (Figure 1). Annual rainfall is
between 1300 and 2400 mm, with low evapotranspiration for most of the year due to high
altitude and low temperatures (Tallis 1998; Connolly et al. 2011). Much of the Wicklow
Mountains is protected by Irish and EU habitat directives; however, anthropogenic distur-
bance of peatland vegetation is prominent throughout the area. Peat harvesting, drainage
and land reclamation, afforestation, burning, and over–grazing – all threaten the ecology of
this environment, and may have implications for the current and future soil organic carbon
stock.

2.2. Data

In 2001, Landsat ETM+ was able to capture five cloud-free images over the east coast
of Ireland, which were suitable for this study (Table 1). The data were acquired from
the US Geological Surveys Global Visualization Viewer with standard terrain correction
(Level 1T) applied (USGS 2010). A detailed habitat map of the Wicklow Mountains was
obtained from the National Parks and Wildlife Service (NPWS 2007) to assist with the
interpretation of spectral data and vegetation indices (Figure 1). This map was derived
from 5 m resolution Quickbird and 20 m resolution Système Pour l’Observation de la Terre
(SPOT) multi-spectral imagery acquired in the summer of 2006, with the classification
scheme based on Fossitt (2000). A Landsat TM image also acquired in the summer of 2006
(Table 1) was used in conjunction with habitat map in the analysis of vegetation indices.
Shadowing effects had to be taken into account due to the latitude (53◦N) of the study area
and low sun elevation (<25◦) in the period of November to March. A 20 m digital eleva-
tion model (DEM) was obtained from the Irish Environmental Protection Agency (EPA) to
provide necessary data on the relief in the study area.

2.3. Data pre-processing

Several pre-processing procedures were applied to the imagery throughout the normaliza-
tion process (Figure 2). These are outlined in the following sections.

2.3.1. Georectification

First, all images were geo-registered to a pre-defined master image using the AutoSync tool
in Erdas Imagine 9.3. The master image (image 4 in Table 1) was selected because it was
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Figure 1. Map of The Wicklow Mountains National Park with Quickbird-/SPOT-derived habitat
map (NPWS 2007).

in the middle of the temporal sequence and had a good radiometric quality. A projective
transform model was used in conjunction with the 20 m DEM and a root mean squared
error (RMSE) threshold of 0.3 with cubic convolution resampling to achieve sub-pixel-level
accuracy ≤10% as required for change detection studies (Coppin et al. 2004).
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Table 1. Metadata for Landsat ETM+ and TM images used in the TIC subset normalization
process.

Image
no. Platform Date Path Row

Solar
elevation

(◦)

Solar
azimuth

(◦)

Solar
distance

(au)

1 ETM+ 17 February 2001 206 23 22.388 156.811 0.98814
2 ETM+ 8 May 2001 206 23 51.527 152.323 1.00928
3 ETM+ 24 May 2001 206 23 54.966 150.268 1.01267
4 ETM+ 28 August 2001 206 23 43.840 153.414 1.01015*
5 ETM+ 31 October 2001 206 23 21.504 164.620 0.99279
6 ETM+ 24 February 2001 207 23 24.888 156.340 0.98966
7 ETM+ 2 July 2001 207 23 56.415 145.988 1.01670
8 TM 17 July 2006 206 23 54.891 147.834 1.01635

Notes: Image 4 (highlighted in bold) was selected as the pre-defined master image for radiometric normalization.
Image 8 was used in the analysis of vegetation indices. Solar distance, expressed in astronomical units (au), refers
to the mean sun to earth distance (149, 597, 870, 700 m).

2.4. Vegetation index

VIs are an established method of monitoring vegetation from space (Rondeaux, Steven,
and Baret 1996). Vegetation indices can also be highly correlated to vegetation health,
abundance, and vigour, as well as physical measurements such as leaf area index (LAI) and
gross primary production (GPP) (Huete et al. 1997; Jiang et al. 2008). In this study it was
deemed necessary to assess various VIs in detecting the various vegetation communities
of the Wicklow Mountains. Four different indices were tested by calculating the VI for a
Landsat TM image recorded over the east coast of Ireland on 17 July 2006. This image
was acquired within 25 days of an NPWS 2006 habitat map (NPWS 2007), therefore the
variation in vegetation and habitat distribution was minimal. Band 5 from Landsat TM was
used for the shortwave infrared (SWIR) reflectance necessary for the normalized difference
moisture index (NDMI). The VIs tested were as follows.

• Normalized difference vegetation index (NDVI):

NDVI = (NIR) − R

(NIR) + R
(Sellers 1985).

• Normalized difference moisture index (NDMI):

NDMI = (NIR) − (SWIR)

(NIR) + (SWIR)
(Wilson and Sader 2002).

• Modified soil adjusted vegetation index (MSAVI):

MSAVI = 2 × (NIR) + 1−√
(2 × (NIR) + 1) − 8 ((NIR) − (R))

2
(Qi et al. 1994).

• Enhanced vegetation index 2 (EVI2):

EVI2 = 2.5
(NIR) − R

(NIR) + 2.4R + 1
(Jiang et al. 2008),

where NIR refers to near-infrared reflectance and R refers to red reflectance.
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Figure 2. Conceptual model of TIC subset normalization and validation process.
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Each index was assessed based on its ability to depict the various vegetation and habitat
types of the Wicklow Mountains National Park using the NPWS 2006 habitat map as a
baseline data set. The index that best encapsulated the vegetation of this area would then
be selected for further analysis in the area of radiometric normalization. Stratified ran-
dom sample points were taken within the boundaries of Wicklow Mountains National Park
(Figure 1, note that individual sampling points are not shown due to the map scale) based on
the NPWS 2006 habitat map. The criterion for the sampling procedure was a minimum of
40 sample points per habitat class, thereby ensuring good coverage of spectral data across
all vegetation types within the study area. The sample points were then used to interpolate
spectral data from the various VIs to assess the ability of each index to depict the various
vegetation communities within the Wicklow Mountains National Park.

2.5. Radiometric normalization

Chen, Vierling, and Deering (2005) outlined the procedure for performing TIC analysis
on complete Landsat images. The procedure involved the use of point-density plots and
the identification of two or more invariant clusters in the delineation of a regression line.
Initially it was found that TIC analysis of complete images (i.e. TIC scene normalization)
was not suitable in our study site due to the diversity of spectral signatures within the image
and the lack of spatially extensive invariant targets making it difficult to identify TIC cen-
tres resulting in poor regression fits. A preliminary evaluation also showed that vegetation
and soil pixels were contaminating the urban clusters due to the dispersed nature of Irish
settlements. Instead, homogeneous areas of urban and water pixels were manually identi-
fied in each image using density slices, and plotted to create TICs with reduced spectral
diversity. The process (Figure 2) began with all imagery being converted from DN scale
to at-sensor radiance (units: W m−2 sr−1), using the LMAX LMIN equations in the Landsat
7 Users Handbook (NASA 1998). These data were then converted to top-of-atmosphere
reflectance using Equation (1) to reduce radiometric variability between images (Richards
and Jia 2006):

ρASR = (πLsat)

Eo cos φ
, (1)

where ρASR is unitless top-of-atmosphere reflectance, Lsat is pixel radiance, Eo is exo-
atmospheric solar constant (W m−2 sr−1), and φ is solar zenith angle. Dark object
subtraction (DOS) was then implemented to all imagery in the data base to reduce
radiometric variability between images due to atmospheric scattering (Chen, Vierling, and
Deering 2005). DOS was applied by calculating the mean of the lowest 5% of pixel values
in the image histogram.

The location of the urban and water pixels for the TIC subset normalization method
was established by density slicing master and slave images. A regional growth function (in
Erdas Imagine 9.3) was used to create area of interest (AOI) files of homogeneous pixels
from each region. The size and shape of the AOI file was limited by area and spectral
distance, typically 200 ha and ± 0.04 EVI2. Once the AOI files were delineated, pix-
els from the master and slave images were extracted and plotted on an x–y scatter plot
(Figure 2). Data were then transferred to ArcMap (ESRI 2010) and the centres for both
clusters were established with the mean centre function in spatial analyst method. By using
this method of delineating the cluster centres, we avoided the subjectivity of the manual
selection proposed by Chen, Vierling, and Deering (2005). The issue of outliers in the data
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due to mis-registration or cloud cover was eliminated by applying a threshold function to
the data, e.g. ‘if x – y > 0.25’ then delete the point.

2.5.1. Radiometric validation

Radiometric variation between images can occur due to changes in sensor response and
calibration, illumination angles, atmospheric effects, reflectance anisotropy, and topogra-
phy (Paolini et al. 2006). These variables can often be affected by the temporal distance
between the master and slave images in a normalized data base, therefore it is important to
quantify their effect on normalization accuracy. Correlation analysis between the TIC rel-
ative normalization and at-surface absolute correction was used to assess the influence of
temporal distance between master and slave images in the TIC subset normalization method
(Figure 2). Absolute correction was achieved using the Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) (Masek et al. 2006). This software achieves
at-surface reflectance for full Landsat ETM +/TM scenes by applying the MODAPS soft-
ware architecture (Justice et al. 2002) with 6s radiative transfer code (Vermote et al. 1997).
The Erdas Imagine AutoSync tool was then used to register the LEDAPS data to the cor-
responding TIC subset normalization images, ensuring sub-pixel-level spatial correlation
between the two data sets.

2.6. Topographical normalization

The combination of low sun angle and rugged terrain can lead to irregularities in sun’s illu-
mination between north- and south-facing slopes. This means that uniform vegetation may
display radiance variations due to illumination effects caused by slope, aspect, and time of
image acquisition. Change detection studies require that this issue be resolved (Civco 1989;
Riaño al. 2003; Gao and Zhang 2009). The correction procedure outlined by Nichol, Hang,
and Sing (2006) was applied to the data in this study to reduce the effect of shadowing on
north-facing slopes in the 17 February and 31 October images (Table 1).

3. Results and discussion

3.1. Vegetation indices

In this study the specific dynamics of VIs for peatland habitats was investigated. The scatter
plot of EVI2 versus NDVI (Figure 3(a)) for the various habitats in the Wicklow Mountains
shows a curvilinear relationship, with NDVI producing higher index values throughout.
As the graph approaches 1.0 in both axes, the trajectory of the NDVI data tends to flat-
ten out. NDVI is prone to ‘saturation’ in highly vegetated habitats (Rondeaux, Steven,
and Baret 1996; Teillet, Staenz, and William 1997) due to sensitivity to the ‘red shoul-
der of vegetation’ (i.e. red–NIR). This is illustrated by the relatively high values for Upland
Blanket bog when compared to EVI2 (Figure 3(a)). In summer this habitat tends to have
a low NIR-to-red ratio, giving a high NDVI value. Soil contamination of NDVI can also
be problematic (Huete et al. 1997), with pixels classified as ‘Burnt’ (Figure 3(a)) hav-
ing much higher NDVI than EVI2 values. EVI2 overcomes the issue of soil background
contamination by placing additional weighting on red reflectance data (Rocha and Shaver
2009).

In previous studies; NDMI has shown sensitivity to leaf structure, moisture content,
and vegetation disturbance (Jin and Sader 2005). The range of NDMI for the Wicklow
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Figure 3. Scatter plots of (a) EVI2 versus NDVI and (b) EVI2 versus NDMI using stratified random
samples from a Landsat TM image taken on 17 July 2006, over the Wicklow Mountains.

Mountains was much smaller than for all other indices (Figure 3(b)), with ‘Burnt’ vegeta-
tion producing the lowest value (–0.38) and ‘Freshwater’/‘Conifer Plantation’ producing
the highest (0.6). The correlation between EVI2 and NDMI was generally high except for
‘Freshwater’ and ‘Conifer Plantation’. The inclusion of SWIR data in the NDMI index
means it is especially sensitive to moisture. The structure of the EVI2 and MSAVI equa-
tions puts emphases on NIR reflectance (Rocha and Shaver 2009) and, despite variations
in scale, both VIs show correlation to NIR, in both frequency and profile (Figure 4). The
low spectral resolution of NDVI is illustrated by poor data dispersion across the VI range
as well as the sudden drop in frequency on approaching 1.0, indicating index saturation
(Figure 4). NDMI depicts high pixel frequency and, as a result, has relatively low spectral
resolution with most pixels located in the 0.56–0.78 range.

Overall, the best VI for this study was selected based on its ability to detect the
various vegetation communities within the Wicklow Mountains National Park. Previous
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Figure 4. Image histograms of NIR and four vegetation indices derived from a Landsat TM image
taken on 17 July 2006 over the Wicklow Mountains.

studies have shown that peatland habitats exhibit unique trends in relation to VI dynam-
ics (McMorrow et al. 2004; Dabrowska-Zielinska et al. 2009; Hassan and Charles 2010).
In this study NDVI produced the greatest index values throughout; however the saturation
of the index in summer months, as well as effects of soil and atmospheric contamination,
meant the index was unsuitable. NDMI, while showing good divergence between habitats,
was judged to be erratic and patterns expected to be related to moisture content were not
obvious, therefore NDMI was also deemed unsuitable. EVI2 and MSAVI worked well for
the upland blanket bog habitat as the chlorophyll content of much of the vegetation was rel-
atively low for much of the year. Indices that rely on high absorption in the red part of the
electromagnetic spectrum (e.g. NDVI) will, as a result, have a low dynamic range of index
values. NIR reflectance was generally high in these peatlands, mainly due to the variability
in leaf structure within the various vegetation types. As a result, both EVI2 and MSAVI
have showed a good dynamic range across most vegetation types. EVI2 has shown high
correlation with LAI (Huete et al. 2002; Jiang et al. 2008; Rocha and Shaver 2009), which
is an important parameter in the context of this study. It is for this reason that EVI2 was
chosen over MSAVI as the preferred VI for further application to peatlands in Ireland.

3.2. Radiometric normalization

In this study, a new subset method of TIC scene normalization was developed and validated
against the original method as well as absolute corrected LEDAPS data. Figure 5(a) shows
the density plot for TIC subset normalization with the mean centre points for the urban
and water clusters (marked red) in two Landsat ETM+ images recorded in February and
July of 2001 (Table 1) over Limerick City (52◦ 39′ 45′′ N, 8◦ 36′ 8′′ W). Figure 5(b) shows
the density plots for the original TIC scene normalization method, using the same images
as Figure 5(a), but with all pixels included. The density plots were created by calculating
the density of point features around each output raster cell (ESRI 2010). There is a slight
change in location between the TIC scene normalization water cluster (Figure 5(b)) and
the centre of the TIC subset normalization water cluster (Figure 5(a)). This is most likely
due to the change in the population density of water pixels between the two plots, with the
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Figure 5. Density plots for two Landsat ETM+ images (2 July 2001 (master) and 24 February
2001 (slave)) over Limerick City with regression lines for TIC subset normalization: (a) TIC scene
normalization, (b) and accompanying linear regression equations. Red dots show mean centres for
urban and water for TIC subset normalization.

TIC scene normalization plot having a significantly larger group of water pixels present,
with varying degrees of reflectance. In terms of the urban clusters, the mean centre func-
tion used in the TIC subset normalization method implies that its location is statistically
and spectrally accurate, resulting in a true representation of the radiometric relationship
between the master and slave images. The urban cluster for the TIC scene normalization
plot (Figure 5(b)), however, is more difficult to identify due to the inclusion of all pixels
in both images, resulting in a large population of heterogeneous data. This was reflected in
the uncertainty in the regression equation.

52° 38′ 30″ N

8° 41′ 27″ W

52° 41′ 16″ N

8° 41′ 27″ W

52° 41′ 16″ N

8° 34′ 09″ W

52° 38′ 30″ N

8° 34′ 09″ W

Figure 6. The variation between TIC scene normalization selected urban cluster pixels (red dots)
and the TIC subset normalization selected urban cluster pixels (blue dots) in Limerick City using two
Landsat ETM+ images acquired on 24 February (slave) and 2 July (master) 2001.
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The effect of using the subset method of urban pixel selection compared to the TIC
scene normalization revealed a clear variation in urban pixel selection (Figure 6). The TIC
scene normalization method resulted in pixels that were spectrally variable, with the inclu-
sion of vegetation, silted water, and bare soil (Figure 6), while the subset method produced
good spatial and spectral correlation with areas of urban development that could be used
as invariant targets in the correction process. The TIC scene normalization density plot
(Figure 5(b)) is condensed in a large cloud of pixel values constituting much of the spectra
of both images. Successful selection of TIC centres depends on such observation of the
point density map and evaluation of the master and slave images as to confirm that the
pixels located in the TIC centres are true invariant features (Chen, Vierling, and Deering
2005). In our study area, using the scene point density map (Figure 5(b)) to identify clus-
ter centres was difficult because of the lack of spatially extensive invariant targets such
as urban environments or large waterbodies. Thus for non-expert TIC users, delineating
the regression line from the TIC scene normalization plot is subjective and prone to uncer-
tainty. The degree of uncertainty in the regression equation [y = (0.2113± 0.1)x – 0.1625 ±
0.08] would lead to potentially large errors in the radiometric normalization process. The
homogeneity of the clusters, coupled with the systematic approach to calculating cluster
centres, means that the TIC subset normalized method developed in this study is superior
to the TIC scene normalization when dealing with the landscape of Ireland.

3.2.1. Validation

Validation of any radiometric normalization procedure is essential for ensuring spectral
accuracy and radiometric continuity throughout the data base. In this study, TIC normalized
data were correlated to at-surface absolutely corrected LEDAPS data so as to quantify the
deviation of the normalized data from its original state. Summary statistics were calcu-
lated on the five ETM+ images, with regard to the original EVI2 data (Orig in Table 2),
TIC-subset-normalized EVI2 data (TIC in Table 2), and absolute corrected data (LEDAPS
in Table 2). The mean EVI2 for the TIC normalized data stays within the range of
0.38–0.33 throughout all images, demonstrating the effect that the normalization process
has on reducing the radiometric variability between the imagery. While no ground truth
data were available as part of this study to verify that actually vegetation change had been
unaffected by the TIC subset normalization process, work completed in conjunction with
this study supports the robustness of this method (O Connell, Connolly, and Holden in
review-b). The original data have a decreasing fluctuating mean trend, and show a far more
dynamic profile when compared to the TIC-subset-normalized data set. The LEDAPS data
exhibited a more heterogeneous trend in mean EVI2, with values ranging from 0.19 to
0.29. Standard deviation for the TIC-subset-normalized data set was relatively high, but
consistent throughout the data set, signifying a high spectral dispersion across each image
histogram, but with a low deviation due to the subset normalization process.

Linear regression analysis showed a high correlation between the TIC-subset-
normalized and LEDAPS-corrected images across the five main land-use types within
the study area (Figure 7). The general trend was an increased correlation with decreasing
temporal distance from the master image (28 August). Pixels exhibited a greater spectral
heterogeneity in the two winter images (Figures 7(a) and (e)), with a greater number of
outliers, which resulted in lower coefficient of determination (R2) values. However, the
effect of increased temporal distance between master and slave images did not result in
a considerable de-correlation of the TIC-subset-normalized data when compared to the
LEDAPS images. The LEDAPS data produced lower EVI2 values throughout all images
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Figure 7. Scatter plots of absolute corrected (via LEDAPS) versus TIC subset normalization for
the five ETM+ images over the Wicklow Mountains. (a) 17 February, (b) 8 May, (c) 28 August, (d)
24 May, and (e) 31 October. Original EVI2 indicates master data with no normalization applied.

in comparison to TIC subset normalization, illustrating the difference in atmospheric cor-
rection between simple DOS and the more complex absolute correction of the LEDAPS
data.

The trend in overall mean EVI2 projects a gradual development in growth patterns for
TIC-subset-normalized data base (Figure 8(a)). The original data set (i.e. no normalization)
indicated a typical phenological distribution, with low values at the start and end of the
growing season, and peak values around July and August. The normalized data set on the
other hand, indicated a narrow range, with small variation throughout the growing season.
The reduced range of the normalized images has a clear advantage for change detection
analysis because the scale and threshold level of change will be significantly reduced,
resulting in a more sensitive and accurate set of change detection results. The LEDAPS
data showed a minimum value for early May with an increasing trend for the remainder
of the season. This trend, despite not following the typical phenological pattern of a natu-
ral habitat (i.e. low winter followed by high summer growth), has been exhibited in other
peatland sites in Ireland in terms of satellite-derived EVI2 data and ground-based LAI
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Figure 8. (a) Line graph showing overall EVI2 means for Wicklow Mountains ETM+ subset
images based on original, TIC subset normalization, and LEDAPS pre-processing. (b) Graph of mean
difference between master and slave images for part (a) (and order as for part (a)) data sets. The ends
of the error bars represent +1 or –1 standard deviation from the mean.

data (O Connell, Connolly, and Holden in review-a). Further investigations are needed to
establish the cause of this trend in the absolute corrected EVI2 data over peatland, but it
is likely that the vegetation dynamics of Heather (Calluna) and Sphagnum species in such
habitats is different to that of other vegetation types with a higher chlorophyll content (i.e.
woodlands and natural grassland).

An analysis of the variability in radiometric characteristics between master and slave
images for the three data sets shows a far more gradual trend across the temporal scale
of the data base for the TIC-subset-normalized data (Figure 8(b)). The difference statis-
tics were calculated from pixel-to-pixel subtraction, with mean values representing the
complete study area outlined in Figure 1. Again, the TIC-subset-normalized data indi-
cated a more gradual trend when compared to the original data, with mean difference
between master and slave not exceeding 0.03 EVI2. The trend in the TIC subset data,
unlike the Original data, did not show a significant increase in difference values for the
February and October images. This illustrates the robustness of the TIC subset normaliza-
tion process, as increasing the temporal distance between master and slave images does
not reduce the effectiveness of the normalization procedure. The LEDAPS data showed
an irregular pattern, which oscillated between 0 and 0.05 EVI2. This demonstrates the
radiometric inconsistency associated with in situ absolute correction, and the effect these
inconsistencies may have on a change detection study (Song et al. 2001; Schroeder et al.
2006).

Image histograms (Figure 9) for master, slave, and TIC-normalized data showed a
clear increase in radiometric correlation due to the TIC subset normalization process. The
17 February slave image showed a notable deviation in its histogram profile when plot-
ted against the 28 August master image (Figure 9(a)). The effectiveness of the TIC subset
normalization process was evident by the re-scaling of the slave data (TIC Norm) to a pro-
file similar to that of the master image (Figure 9(a)). Cumulative distribution (CD) curves
were also calculated for master, slave, and TIC-subset-normalized data by first calculating
the frequency proportions at all bin values in the histogram. Cumulative proportions were
then calculated by continuously adding proportion values from the previous bin number.
Cumulative proportions were then subtracted from each image, with the maximum value
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Figure 9. EVI2 image histograms (a) and cumulative distribution (CD) curves (b) and (c), with
accompanying D values, for 17 February 2001 slave image (Orig), 17 February 2001 normalized
image (TIC Norm), and 28 August master image (Master).

(D in Figures 9(b) and (c)) representing the maximum difference between the two images
in question. The effect of the TIC subset normalization can be seen by the significantly
increased correlation of the master versus normalized data (Figure 9(c)) when compared to
the master versus slave data (Figure 9(b)). This increased correlation was quantified by an
86.93% decrease in the maximum difference due to the TIC subset normalization process.

4. Conclusions

This study has shown that radiometric normalization is a critical stage in a change detec-
tion study. If ignored, variations in atmospheric conditions, sun’s elevation, and sensor
view angle reduce the accuracy of any change detection analysis due to variations in
spectral response between images. Previous studies have demonstrated the value of pseudo-
invariant features in the normalization of multi-temporal multi-spectral data. This study
has demonstrated the value of a revised TIC subset normalization method for the extrac-
tion and dissemination of invariant clusters from satellite imagery. The use of density
slices and regional growth functions to locate and delineate urban and water pixels has
resulted in a spectrally homogeneous scatter plot in which spatial statistics can be readily
applied to accurately define cluster centres and resulting regression function coefficients.
This focused approach has advantages over other more holistic methods of invariant clus-
ter normalization, especially in landscapes with a low distribution of radiometrically stable
targets.

Validation results indicated a high correlation between the TIC-subset-normalized and
LEDAPS-corrected imagery. The stable trends in mean EVI2, both in terms of overall mean
and land-use-specific means, indicated the viability of the TIC subset normalization proce-
dure for the radiometric correction of a multi-temporal data base of multi-spectral imagery.
The effect of increased temporal distance between master and slave images had a minimal
effect on correlation with the equivalent absolute corrected data, demonstrating that the
TIC subset normalization procedure was ideal for its application when dealing with a data
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base of high temporal resolution. Statistical analysis on the correlation between master,
slave and normalized slave data showed an 86.93% reduction in the maximum difference
in CD curves between master and slave data due to the TIC subset normalization process.

The revised TIC subset normalization method developed in this study is semi-
automated and easy to apply. The normalized images can be readily utilized in a change
detection system for further analysis. The normalization procedure is especially suitable
for studying landscapes with a low density of spectrally stable targets.
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