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An illumination correction algorithm has been developed to improve the accuracy of forest change detection
from Landsat-derived reflectance data. This algorithm is based on an empirical rotation model and was tested
on Landsat image pairs over the Cherokee National Forest, Tennessee; Uinta–Wasatch–Cache National Forest,
Utah; San Juan National Forest, Colorado; and Sinkyone Wilderness State Park, California. The illumination
correction process successfully eliminated correlation between Landsat reflectance and illumination condi-
tion. Comparison to forest-change maps derived from uncorrected images showed significant disagreement,
ranging from 23% to 45%. Validated against high-resolution (1 m or less) time-serial images, the illumination
correction decreased overestimation of forest gains and losses and improved specificity in detection of major
forest changes. The overall accuracy increases 34% at the Cherokee Forest site and about 10% at the other
three sites. The disagreement rate between change maps from the original and corrected Landsat images in-
creased with increasing terrain inclination angle, with the relationship between illumination condition and
the disagreement rate following a V-shaped curve that varied among sites. The lowest disagreement rate oc-
curred when illumination condition was slightly smaller than that of a horizontal field. The correction for to-
pographic illumination should be considered as a standard pre-processing step for land cover classification
and land use change detection, especially for mountainous areas.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Landsat imagery is widely used to monitor changes in land surface
conditions, including changes in forest cover, which impact Earth's
energy balance, carbon cycle, water cycle and biogeochemical pro-
cesses (Band, 1993; Huang et al., 2008; Pandey, 2002). To quantify
such changes, two Landsat images acquired before and after the forest
change are typically examined by visual interpretation or automated
analysis. With the Landsat archive becoming freely available, the
main challenge for generating continental or global forest change
maps at Landsat resolution (30 m) is an effective and accurate change
detection algorithm (Huang et al., 2008). Various computer based
change-detection algorithms have been developed (Foody & Mathur,
2004; Huang et al., 2010a, 2010b; Masek et al., 2008; Townshend et al.,
eenbelt, MD 20707, United

rights reserved.
2012). The key process in these algorithms is the spectral analysis of a
set of training pixels and discriminating appropriate spectral thresholds
that can be applied to thewhole image scene ormultiple scenes to define
the area of forest change.

One important assumption underlying these algorithms is that the
spectral characteristics of the training pixels represent those of the
forest pixels within the study region. However, topographic illumina-
tion effects (shadow, slope, etc.) negate this assumption. Varying
illumination conditions due to topography lead to significant changes
in the observed spectral characteristics of a group of neighboring
pixels, even in the absence of variations in land cover type or condi-
tion. Therefore, illumination correction, also known as topographic
correction or topographic normalization, is an important step in
pre-processing high-resolution remote sensing data for forest change
detection studies. Illumination correction refers to the compensation
for solar irradiance to minimize the variability of observed reflectance
for similar targets due to topography and Bidirectional Reflectance
Distribution Function (BRDF) effects.
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Fig. 1. A sample Landsat image (a) and the corresponding illumination condition (IC) map (b). The Landsat image is the top-of-atmosphere reflectance. The IC map is calculated
from digital elevation map (DEM), the solar zenith and azimuth angles.
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Fig. 2. A schematic diagram illustrating the empirical rotation model. Z is the sun ze-
nith angle.
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There are several existing illumination correction models for Landsat
images (Ekstrand, 1996; Meyer et al., 1993; Riano et al., 2003; Shephard
& Dymond, 2003; Teillet et al., 1982; Vicente-Serrano et al., 2008). How-
ever, thesemodels tend to over-correct over shallowly illuminated slopes
(Holben & Justice, 1980; Meyer et al., 1993). The goal of this study was to
produce illumination-corrected Landsat-TM datawith the quality needed
for more accurate forest change detection (Masek et al., 2007, 2008) in
the Landsat Ecosystem Disturbance Analysis Adaptive Processing System
(LEDAPS) (Masek et al., 2006; Wolfe et al., 2004). In this paper, we intro-
duce an empirically based rotation-correction model, and apply it to cor-
rect Landsat images in four study sites spanning a range of topographic
and forest-structural conditions. To assess the improvements in
change-detection accuracy, the forest change maps were validated
against high-resolution imagery and their accuracies were compared to
those of change maps derived from uncorrected Landsat data.

2. Methods

2.1. Algorithm

2.1.1. Terrain illumination correction model
The relative solar incidence angle, or illumination condition (IC), is

the basis of all correction models for compensating reflectance. IC is
defined as:

IC ¼ cos Zð Þ cos Sð Þ þ sin Zð Þ sin Sð Þ cos φz−φS

� � ð1Þ

where Z is the solar zenith angle, S is the topographic slope angle (0 =
horizontal). φz is the solar azimuth angle, and φS is the aspect angle of
the topographic surface (0 = north). IC ranges from −1 (minimum
illumination) to 1 (maximum illumination). For a horizontal surface,
IC = cos(Z). A sample Landsat image and the corresponding IC image
are shown in Fig. 1.

Two illumination corrections models are widely used (Teillet et al.,
1982). The first is the cosine model:

LH ¼ LI
cos Zð Þ
IC

� �
ð2Þ

where LH is the corrected reflectance (for a horizontal surface) and LI is
the observed reflectance on the incline surface. This cosine model as-
sumes a Lambertian surface, and is wavelength-independent.
The second common approach is the C model:

LH λð Þ ¼ LI λð Þ cos Zð Þ þ c λð Þ
ICþ c λð Þ ð3Þ

where λ represents a specific wavelength. Any variable followed
by (λ) is a wavelength-dependent variable. The variable c is a
wavelength-dependent adjustment coefficient; c = b / a, where b
and a are the intercept and slope of the linear regression for a specific
wavelength:

LI λð Þ ¼ a λð Þ⋅ICþ b λð Þ: ð4Þ

The C model does not assume a Lambertian surface and is
wavelength-dependent. Several studies have reported that the cosine
model overcorrects surface reflectance, especially in low IC regions
(Duguay & LeDrew, 1992; Meyer et al., 1993; Riano et al., 2003).
Overcorrection here implies that dark slopes with low illumination
can become unnaturally bright following application of the model.
The C model can avoid the overcorrection to some degree, although
it remains a significant issue in some low IC regions. Both methods
perform better in the near-infrared band than the visible bands.
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Fig. 3. Data flow and processes of the illumination correction algorithm.
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Tan et al. (2010) introduced an empirical rotation model that does
not assume a Lambertian surface:

LH λð Þ ¼ LI λð Þ−a λð Þ � IC−ICHð Þ ð5Þ

where a is from Eq. (4), and ICH is the IC for a horizontal surface. ICH
equals the cosine of the solar zenith angle.

This empirical rotation model removes the dependency of the
reflectance on IC according to the linear relationship presented in
Eq. (4) (Fig. 2). Tan et al. (2010) compared this model with cosine
and C models. It was found that the rotation model performance
Sinkyone Site

Uinta Site

San Juan Site

Fig. 4. The locations of four study sites (red rectangles) and the administrative boundaries (o
The three national forests are Cherokee, Uinta–Wasatch–Cache, and San Juan National Fores
four study sites is in Table 1.
consistently well on both top-of-atmosphere and top-of-canopy
Landsat reflectance data. In this study, this model is used as the core
model of the illumination correction algorithm.

2.1.2. Shadow removal through ray tracing algorithm
“Hard shadow” regions are illuminated by diffuse solar radiation

only. The absence of direct solar radiation voids the assumption of
the relationship between reflectance and IC presented by Eq. (4).
Therefore, pure shadow pixels should be excluded (masked) when
calculating the linear relationship. They should also be avoided
when applying illumination correction. There are two types of shadow
pixels: self-shadowed pixels, which have aspect angles oriented away
from the sun (where IC b 0), and cast-shadowed pixels, which are ori-
ented towards the direction of the sun but sunlight is blocked by
other interceding objects such as mountains. The first type of shadow
pixels were excluded by simply examining IC values. For the second
type of shadow pixels, we used a ray-tracing algorithm to identify
them. The track of a ray from the center of a pixel to the sun is calculated
(Whitted, 1979); if any other pixels block this ray, this pixel is marked
as a cast-shadowed pixel. Otherwise, this pixel is considered as a
shadow-free pixel.

2.1.3. Full illumination correction algorithm
The relationship between surface reflectance and IC depends on the

vegetation type (for vegetated landcover) or soil/rock type (for
non-vegetated landcover). However, there are no such fine-resolution
(≤30 m), detailed land cover maps at continental or global extents.
Considering the context of this study is to detect forest and non-
forest, a rough separation of dense and sparse vegetation is sufficient,
which we perform using a threshold of 0.5 Normalized Difference Veg-
etation Index (NDVI). In a 3-km by 3-km moving window, two linear
Cherokee Site

range lines) for the national forests and the state park where the study sites are located.
ts. One state park is the Sinkyone Wildness State Park. The detailed information of the



Table 1
Overview of four study sites. SD is the abbreviation of standard deviation.

Name Site center
location

WRS path/row State Landsat imagery
acquisition date

Primary forest type Orientation
(degrees)

Slope
(degrees)

IC

Mean SD Mean SD Mean SD

Cherokee National Forest 36.057 N, 82.475 W 18/35 Tennessee 1995-10-18 Deciduous broadleaf
forest

191.4 107.1 11.2 6.3 0.55 0.14
2001-10-26 0.59 0.13

Sinkyone Wilderness State Park 39.877 N, 123.898 W 46/32 California 1995-08-19 Evergreen needleleaf
forest

183.2 103.1 12.8 5.8 0.72 0.11
2004-09-04 0.75 0.11
2003-05-13 0.84 0.09

Uinta–Wasatch–Cache National Forest 40.251 N, 111.405 W 37/32 Utah 1989-07-04 Evergreen needleleaf
forest

181.3 102.0 13.0 7.0 0.84 0.10
2000-09-12 0.87 0.08

San Juan National Forest 37.757 N, 108.110 W 35/34 Colorado 1989-07-02 Evergreen needleleaf
forest

198.0 101.8 12.3 7.4 0.84 0.09
2000-06-06 0.75 0.12
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relationships, one for the dense vegetation and the other for the sparse
vegetation, are retrieved.

Fig. 3 presents the data flow of the illumination correction algo-
rithm. There are two major input data sets, Landsat reflectance data
and DEM data, and one ancillary value, the solar geometry when the
Landsat data was acquired. The NDVI map is retrieved from the
Fig. 5. The validation site within Sinkyone Wilderness State Park (WRS path 46 row 32). T
1995-08-19. The panels c and d show original and corrected images acquired on 2004-09
and 1. It should be noted that some minor topographic effects are not corrected due to the
Landsat reflectance data. The average inclination and aspect for each
pixel are calculated from the DEM data. This information, combined
with the solar geometry, is used to produce the shadow mask and
calculate IC. The Landsat reflectance data, the NDVI map, the shadow
mask, and the IC are the inputs to the core model. The NDVI map is
used to separate dense and sparse vegetation pixels. The pixels
he panels a and b are original and corrected Landsat images, respectively, acquired on
-04. The images are true color images, whose RGB combination is Landsat bands 3, 2
limited resolution of the DEM data.



Fig. 6. The validation site within Cherokee National Forest (WRS path 018 row 035). The panels a and b are original and corrected Landsat images respectively acquired on
1995-10-18. The panels c and d, original and corrected Landsat images respectively, were acquired on 2001-10-26. The images are true color images, whose RGB combination is
Landsat bands 3, 2 and 1.
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identified in the shadow mask are excluded from the processing. The
core model then processes the Landsat reflectance data and the IC
map and generates the illumination-corrected Landsat reflectance
data. Ideally this corrected reflectance is equivalent to the reflectance
that would be seen for a horizontal surface and identical vegetation
conditions.

2.2. Study sites

Four study sites within the United States were selected: the Cher-
okee, Uinta–Wasatch–Cache, and San Juan National Forests and the
Sinkyone Wilderness State Park (Fig. 4). The Cherokee National For-
est, located in the southern Appalachian Mountains of east Tennessee,
is forested with a mix of mesic temperate evergreen and deciduous
tree species, with deciduous hardwood species dominating on warm-
er, drier slopes and evergreen conifers dominating at high elevations
and in sheltered coves (Yoke & Rennie, 1996). The Uinta–Wasatch–
Cache and San Juan National Forests, located respectively in the
Rocky Mountains of northern Utah and southwestern Colorado,
span similar gradient from semi-arid shrub lands and annual grass-
lands at low elevations and southerly slopes, through taller shrubs
and semi-arid mixed forests (primary evergreen conifers, but with
large patches of deciduous quaking aspen (Populus tremuloides,
Michx.)) to alpine tundra and bare rock at the highest elevations
(Develice et al., 1986; Floyd-Hanna et al., 1996; Mauk & Henderson,
1984). The Sinkyone Wilderness State Park is located in the King
Range on the northern coast of California. This region is characterized
by steep slopes that are densely forested with evergreen conifers in
sheltered coves and on western slopes influenced by maritime fog
and by sparser evergreen oak woodlands on drier inland slopes. Due
to their greater isolation, flatter terraces are dominated by grasses
and shrubs (Bowcutt, 1996).

All four study sites have steep terrain (Table 1). The sites were se-
lected to represent different forest types and different topographic
situations: whereas terrain has comparatively little effect on forest
cover (and therefore reflectance) in the Cherokee study area, terrain
plays a much greater role in the forest composition of the other
three study areas. Due to their aridity and large elevation gradients,
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Fig. 7. Data density contour of red and NIR reflectance in reflectance-IC space over the Sinkyone site. The left column is from the original Landsat reflectance, and the right column is
from the illumination-corrected Landsat reflectance. The upper four panels are from the Landsat image acquired on 1995-08-19. The lower four panels are from the Landsat image
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the Uinta and San Juan study areas are likely to exhibit an indirect
effect of terrain on reflectance—through forest composition—in addi-
tion to the effect of terrain on reflectance directly. Sinkyone will also
likely exhibit this effect, as well as a longitudinal gradient from west
to east correlating to the maritime influence reflectance through
forest composition. All sites are within the nominal frame of one
Landsat image as defined by the tiling system of the World Reference
System (WRS). Each site spans a 24 km by 24 km region (Fig. 4).

image of Fig.�7


0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.04

0.08

0.12

R
E

D

IC

R2=0.17

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.04

0.08

0.12

R2=3.9E-06

R
E

D

IC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

R2=0.30

N
IR

IC
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

R2=3.4E-04

N
IR

IC

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.04

0.08

0.12

R2=0.13

R
E

D

IC
0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.04

0.08

0.12

R2=2.5E-04

R
E

D

IC

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

R2=1.3E-04R2=0.12

N
IR

IC
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

N
IR

IC

80%50%20%

d

ba

c

hg

fe

Uncorrected Corrected

Fig. 8. Data density contour of red and NIR reflectance in reflectance-IC space over the Cherokee site. The left column is from the original Landsat reflectance, and the right column is
from the illumination corrected Landsat reflectance. The upper four panels are from the Landsat image acquired on 1995-10-18. The lower four panels are from the Landsat image
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respectively.
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2.3. Data

2.3.1. Landsat imagery
Four Landsat image pairs—one pair for each site—were selected and

converted to top-of-canopy reflectance using the 6S model (Vermote
et al., 1997). Images acquired before 2000 were from Thematic Mapper
(TM) and those after 2000 from Enhanced Thematic Mapper Plus
(ETM+) (Table 1). Both images from each pair were acquired during
the growing season andwere as close to the sameday of year as possible.
The growing season images are helpful to distinguish forest from other
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land cover types. The close acquisition times of year are to minimize the
phenology state shift. However, when two imageswere acquired during
periods of rapid phenological change, e.g. greenup or senescence, the
phenological state shift could be significant even though the two acqui-
sition times of year are very close. Such an example is given later in this
paper. The second criterion is to select the images with minimal cloud
cover. The cloud either totally blocks satellite observations to the ground
(thick cloud) or changes observed spectral characters of the ground
(thin cloud). One additional image over Sinkyone site acquired on May
13, 2003 was used to assess the performance of the algorithm when
the incident angles of a pair of images vary significantly.
2.3.2. Digital elevation model (DEM)
DEMdata are the key input to the illumination correction algorithm.

The DEMdataset is used to generate the slope and the illumination con-
dition (IC)map, aswell as the topographic shadowmask. The DEMdata
applied in this study is the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) Global Digital Elevation Model Version
2 (GDEM V2). The spatial resolution of this data set is 30 m. Sadeq
et al. (2012) assessed the accuracy of GDEM-V2 data. They concluded
Uncorrecteda

c

Fig. 9. Forest change maps from original (left) and illumination corrected (right) Landsat im
(h) San Juan.
that the accuracy of ASTER GDEM-V2 is within the accuracy specifica-
tion (17 m) and without any negative bias which was found in ASTER
GDEM-V1 data (Sadeq et al., 2012). Such precision is sufficient for this
study.
2.4. Forest change detection algorithm

The forest change detection algorithm applied in this study was an
automatic multi-temporal classification method, which consists of
Training Data Automation (TDA) procedure and an advanced Support
Vector Machines (SVM) algorithm. The TDA procedure automatically
selects forest pixels in the input Landsat images and then uses these
pixels to train the SVM classifier.

SVM (Burges, 1998; Huang et al., 2002, 2008) is a group of ad-
vanced machine learning algorithms that have been increased use
in land cover studies (Zhu & Blumberg, 2002). The advantage of
SVM algorithm is that it not only simply finds a solution to the land
cover classification problem but also provides an optimal solution.
The TDA-SVM algorithm has been assessed over 19 forest regions
and achieved satisfactory results.
Correctedb

d

age pairs over four study sites: (a) (b) Cherokee, (c) (d) Sinkyone, (e) (f) Uinta, and (g)
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2.5. Algorithm assessment

Weassessed the accuracy of forest change detection results from the
illumination corrected and original Landsat imagery pairs by visual
inspection. For each 24 × 24-km study site, 441 evenly distributed
sample points were selected with a spacing of 1.2 km. For each point,
the original and corrected Landsat image pairs were inspected visually
Table 2
Confusion Matrix for forest change maps on the Cherokee site (WRS p018r035). Results
from original and corrected Landsat data are separated by “\”.

Reference data

SVM result Forest Non-forest Deforest Regrowth n User's acc

Forest 41.6\74.2 0.0\0.0 0.2\0.5 0.0\0.0 180\321 99.4\99.4
Non-forest 7.0\2.3 12.6\13.0 0.7\0.0 0.5\0.0 89\66 60.7\84.9
Deforest 26.3\3.7 1.2\0.9 2.6\3.5 0.0\0.0 129\35 8.5\42.9
Regrowth 6.7\0.9 0.5\0.2 0.0\0.0 0.2\0.7 32\8 3.1\37.5
n 351\351 61\61 15\15 3\3
Producer's
acc

51.0\91.4 88.5\91.8 73.3\88.2 33.3\100 Overall
57.0\91.4
alongside high-resolution, time-serial imagery from Google Earth and
TerraServer (http://terraserver.com). To minimize the impact of possi-
ble sub-pixel misregistration, we moved sample points near patch
edges toward the patch interior at least 1 pixel away from the edge as
determined from the classified map. We also checked the time series
reference maps to avoid errors due to the phenology.
Table 3
Confusion Matrix for forest change maps on the Sinkyone site (WRS p046r032). Results
from original and corrected Landsat data are separated by “\”.

Reference data

SVM result Forest Non-forest Deforest Regrowth n User's acc

Forest 54.7\64.0 0.2\0.0 0.2\0.0 0.0\0.0 231\268 99.1\100.0
Non-forest 4.3\0.5 21.0\20.8 1.2\0.2 0.5\0.0 113\90 77.9\97.8
Deforest 1.4\2.9 0.2\0.2 5.0\5.7 0.0\0.0 28\37 75.0\64.9
Regrowth 7.2\1.0 0.0\0.2 0.0\0.0 4.1\4.8 47\24 36.2\83.3
n 283\286 90\88 27\25 19\20
Producer's
acc

80.9\93.7 97.8\98.9 77.8\96.0 89.5\100 Overall
84.7\95.2

http://terraserver.com


Table 4
Confusion Matrix for forest change maps on the Uinta site (WRS p037r032). Results
from original and corrected Landsat data are separated by “\”.

Reference data

SVM result Forest Non-forest Deforest Regrowth n User's acc

Forest 38.7\46.8 0.2\1.2 0.0\0.0 0.2\0.0 170\208 98.8\97.6
Non-forest 1.6\0.7 43.1\43.3 0.0\0.5 0.0\0.0 194\193 96.4\97.4
Deforest 9.0\1.2 2.1\1.6 1.6\1.6 0.0\0.0 55\17 12.7\41.2
Regrowth 3.2\2.1 0.0\0.9 0.0\0.0 0.2\0.7 15\16 6.7\18.8
n 228\220 197\202 7\9 2\3
Producer's
acc

73.7\92.3 94.9\93.1 100.0\77.8 50.0\100.0 Overall
83.6\92.4
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A confusion matrix was generated for each study site to present the
omission error, commission error, and overall accuracy (Stehman and
Czaplewski, 1998). In addition, the kappa coefficient, which measures
overall agreement between reference data and the forest change
maps relative to random allocation of class labels across the sample,
was used to assess the algorithm performance. Kappa is often consid-
ered as a better indicator because chance agreement is excluded from
its calculation (Congalton & Mead, 1983; Huang et al., 2010a, 2010b).
4. Results and discussion

4.1. Illumination-corrected Landsat maps

When selecting the Landsat imagery pair during the growing season,
one important criterion is that the acquisition times of year should be
very close to minimize the impact of phenology. Fig. 5 shows the origi-
nal Landsat images (panels a and c) and illumination-corrected Landsat
images (panels b and d) over the Sinkyone site (WRS path 46 row 32).
These Landsat images were acquired at the peak of growing season, as
were those for two other study scenes (Uinta and San Juan sites). How-
ever, for the Cherokee site (WRS path 18 row35), the phenological state
shifted significantly despite the small time difference (eight-day)
between acquisitions. We kept both situations presented by Figs. 5
and 6 in this study to examine the sensitivity of forest change detection
results to phenology state shift in the input Landsat imagery pair.

From Figs. 5 and 6, it can be visually verified that the illumination
correction algorithm removed the topographic illumination effect.
Figs. 7 and 8 show the data density contour of red and near-infrared
(NIR) reflectance in reflectance-IC space over imagery pairs of the
Sinkyone and Cherokee sites (imagery pairs shown in Figs. 5 and 6).
In the original Landsat images, the uncorrected NIR band generally
had the strongest correlationwith IC. The strength of the linear relation-
ship (R2) between red reflectance and IC ranged from 0.1 to 0.2 and
from 0.3 to 0.6 for NIR reflectance and IC. An exception is Fig. 8g,
which is derived from Fig. 6c, in which the tree leaves were starting to
senesce. The correlation between IC and NIR reflectance was only
0.12. The lower correlation for the red band is due to smaller reflectance
rate and a more significant atmospheric scattering effect on red than
Table 5
Confusion Matrix for forest change maps on the San Juan site (WRS p035r034). Results
from original and corrected Landsat data are separated by “\”.

Reference data

SVM
result

Forest Non-forest Deforest Regrowth n User's acc

Forest 53.2\64.8 0.0\0.0 0.0\0.0 0.0\0.0 210\256 100.0\100.0
Non-forest 2.0\0.0 30.1\29.6 0.0\0.0 0.0\0.0 127\117 93.7\100.0
Deforest 11.9\2.3 0.3\0.3 1.5\2.0 0.0\0.0 54\18 11.1\44.4
Regrowth 0.8\0.3 0.0\0.3 0.0\0.0 0.3\0.5 4\4 25.0\50.0
n 268\266 120\119 6\8 1\2
Producer's
acc

78.4\
96.2

99.2\98.3 100.0\
100.0

100.0\
100.0

Overall
85.1\97.0
NIR reflectance. In the corrected images, the correlations between the
red/NIR band and IC are eliminated, where R2 were smaller than 0.001.

4.2. Improvement on change detection results

Large differences were evident between change maps from
uncorrected and corrected reflectances (Fig. 9). There are 45% (29%,
34%, and 23%) area of the Cherokee (San Juan, Uinta, Sinkyone) site
has different change detection results after applying illumination
correction. Less forest loss was mapped over the Cherokee, Uinta,
and San Juan sites and less regrowth over the Sinkyone site when
topographically corrected Landsat data were used.

The confusion matrices for the four sites are given in Tables 2–5.
Overall accuracy increased the most in the Cherokee site, from 57%
to 91%, whereas for the Uinta, San Juan, and Sinkyone sites overall
accuracies increased from 84%, 85%, and 85% to 92%, 97%, and 95%
respectively. The kappa coefficients of the change detection maps
from the original Landsat data were 0.30, 0.72, 0.72, and 0.73 for the
Cherokee, Uinta, San Juan and Sinkyone sites. After illumination
correction, the kappa coefficients increased to 0.77, 0.86, 0.94, and
0.91 respectively.

A large amount of persistent (no-change) forest wasmisclassified
as non-forest, forest loss, or regrowth. In the change maps from orig-
inal Landsat imagery pairs, misclassified forest pixels ranged from
18% (Sinkyone) to 49% (Cherokee). After illumination correction,
this range dropped to 4% (San Juan) to 9% (Cherokee). The accuracy
of forest-loss and regrowth classes regrowth increased especially
after illumination correction. The average user's accuracy of forest
loss (regrowth) increased from 27% (18%) to 48% (47%). The average
producer's accuracy of forest loss (regrowth) increased from 88% (68%)
to 91% (100%). The high producer's accuracy indicates that the classifi-
cation results captured almost all actual forest changes. However,
the relatively low user's accuracy suggests that some of the changes
presented by the change detection results were actually false
detections.

Re-examination of the misclassified change pixels revealed that the
topographic effect, the primary reason of misclassification on the origi-
nal Landsat images, was significantly reduced (Figs. 5–8). However, the
minor changes over the sparsely treed areas may be the reason for low
user's accuracy in post-correction change maps. For some changes
pixels/patches, SVM assessed these areas as forest loss or regrowth.
However, they appeared to be persisting sparse forest in the high reso-
lution reference data. On the other hand, the Landsat reflectance values
showed increased or decreased reflectance, indicating possible minor
forest change. Thus the situation is ambiguous and depends in large
part on the analyst. In this study, we treated such possible minor forest
changes, which cannot be validated visually using the high resolution
images, as a false detection. This potentially leads to a lower user's accu-
racy for the change classes (forest loss and regrowth). It is very difficult
to validate such minor changes without examining ground records.

4.3. The impact of the terrain effect on change detection

Although the study sites were selected in mountainous areas, there
are only a few steeply sloped regions (slopes > 30°), and the majority
of the slopes were mild (5° b slope b 20°) (Fig. 10). The average angle
of inclination ranged from11° (Cherokee) to 13° (Uinta). Themaximum
angle of inclination ranged from 45° (Cherokee) to 55° (San Juan).
Fig. 10 shows that the topographic effect on the Cherokee site is compa-
rable to (or even slightly better than) other three study sites. This again
verified our previous discussion that the Cherokee site represents the
worst-case scenario among four study sites due to the combined effects
of topography and phenology. However, the change detection result
improved significantly after removing the topographic effect (Fig. 9b).

Fig. 11 shows the scatterplot of disagreement rate against angle of
inclination. Disagreement rate here refers to the fraction of pixels
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Fig. 10. Histogram of angle of inclination for four study sites. The quartiles are marked as three dashed lines.
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Fig. 11. Scatterplots of the disagreement rate against inclination angle over four study sites. The disagreement rate was calculated as the ratio of pixels in an inclination-angle in-
terval (0.5° here), whose change-detection result changes after illumination correction.
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Fig. 12. Histogram of IC for four study sites.
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Fig. 13. Disagreement rate as a function of illumination condition (IC) over the four study sites. The definition of the disagreement rate is similar to that in Fig. 11. The only differ-
ence is that the IC interval is 0.005 here.
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Fig. 14. The Landsat image acquired on May 13, 2003 over Sinkyone Wilderness State Park (WRS path 46 row 32). The panels a and b are original and corrected Landsat images,
respectively. The images are true color images, whose RGB combination is Landsat bands 3, 2 and 1.
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whose change detection result changed after the illumination correc-
tion. In each 0.5° bin, the pixels separated into two groups: those for
which the change detection result changed after the illumination cor-
rection, and those for which illumination correction had no effect. The
general tendency in all four study sites was for disagreement rate to
increase with angle of inclination until the angle reaches 20 to 25°,
after which the rate stays stable or decreases slightly. However, the
rate of change varied among sites. The highest rate was observed on
Cherokee site and the lowest rate on the Sinkyone site. For the
Uinta and San Juan sites, the disagreement rate decreased slightly
when the angle of inclination increased beyond about 22°. The lowest
disagreement rate appeared at 1.5-, 1-, and 2-degree angles on Cher-
okee, Sinkyone, Uinta and San Juan site respectively.
Fig. 15. Forest change maps from original (left) and illumination corrected (right) Landsa
(Fig. 5a) and 2003-05-13 (Fig. 14a).
Fig. 12 shows the histogram of IC for the Landsat image pairs for
each site. There is a slightly mismatch, ranges from 0.01 to 0.03,
between the peak value of the histogram and ICH. Such a mismatch
is corresponding to the peak, ranges from 7.5 to 11.4°, in the slope
histograms (Fig. 10). For each study site, the shift between two IC
histograms is primarily due to the different solar zenith angle from
two acquisition dates. The difference of solar azimuth angles from
two dates contributes marginally to the IC variance as shown in
Eq. (4). The maximum histogram shift happens at San Juan site,
from 0.85 to 0.75, corresponding to the longest time period between
two acquisition dates of the year, July 4th–September 12th, among
the four sites. Normally, longer intervals between acquisitions results
in larger solar zenith angle changes, leading to larger variation in IC.
t image pairs over Sinkyone site. The Landsat images were acquired on 1995-08-19

image of Fig.�15
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One exception is the Uinta site, whose acquisition dates were 26 days
apart but showed a minimum IC peak shift, only 0.03. The acquisition
dates for this site fell on two sides of the summer solstice (Jun 21), be-
fore which the solar zenith angle increases and decreases afterward.
One acquisition date was 15 days before Jun 21, and the other was
11 days after Jun 21, comparable to a four-day interval in the normal
situation. Fig. 13 shows the relationship between disagreement rate
and IC. There are two curves in each plot, corresponding to the IC
maps for the Landsat imagery pair on each study site. For all eight
curves over four study sites, the disagreement rate decreased with in-
creasing IC and reached the lowest rate as IC approached ICH. It is in-
teresting that the lowest rate did not coincide exactly with ICH; this
was because the training data were re-selected through TDA
procedure after illumination correction. With a new training set, the
classification result on a horizontal surface might change although
the reflectance does not change after illumination correction. Beyond
this value the disagreement rate increased with increasing IC. The
curves within each study site were similar, but the curves from differ-
ent sites vary significantly. On the Cherokee and Sinkyone sites, the
highest disagreement rate occurred at the end of the right tail of the
curve, where IC > ICH. This means the most significant disagreement
happened at the slopes that became brighter due to the topographic
effect. In contrast, the highest disagreement on the Uinta site hap-
pened at the end of the left tail of the curve, where IC b ICH. This in-
dicates that the most significant disagreement happened at the
slopes that became darker due to the topographic effect. For the San
Juan site, the right and left tail of the curve reach a similar level of
disagreement rate. The relationship between disagreement rate and
IC is the result of a combination effect of terrain conditions, sun loca-
tions and the forest BRDF.

It is not always possible to find images with close acquisition date
of year due to clouds and/or data availability. When the images are
from different season, will the different incident angle, longer
shadows and different shadow angles compromise the performance
of the illumination correction algorithm? In addition to the studies
on same season image pairs, we applied the illumination correction
and change detection algorithms on a pair of Landsat images from dif-
ferent season over Sinkyone site. A Landsat image acquired on May
13, 2003 in spring (Fig. 14) is used together with the image acquired
on Aug 19, 1995 in summer (Fig. 5 upper panels) to retrieve the forest
changes. The mean IC of the spring image is 0.84, while the mean IC
for summer image is 0.72. The IC difference of these two images is
much greater than it between two summer images, which are 0.72
and 0.75 respectively (Table 1). In such a situation, the performance
of the illumination correction algorithm plays a greater role on the
change detection accuracy. Fig. 15 shows the forest change detection
result from spring and summer images. The change detection on the
uncorrected Landsat data overestimates the regrowth (Fig. 15a), sim-
ilar to the result from two summer images (Fig. 9c). After illumination
correction, the change detection accuracy got significantly improved
(Fig. 15b). This improvement, again, is comparable to the improve-
ment achieved from two corrected summer images (Fig. 9d).

4.4. Future research

Correction for topographic illumination should be considered in
forest change detection algorithms as a standard pre-processing
step, especially in mountainous areas. In order to assess IC on classifi-
cation of non-forest land cover types, it would be useful to assess the
performance of this new algorithm on more study sites and, if need-
ed, refine it to suit different land cover types. One interesting topic
to investigate is the relationship between the disagreement rate and
IC. Research in this area could help to better understand the implica-
tions of the topographic effect for product accuracy, which is actually
a combined effect from multiple factors. Another research topic is to
compare the improvements on atmospheric corrected and uncorrected
Landsat images. It will be useful to quantitatively assess the product
accuracy improvements due to the combination of atmospheric correc-
tion and IC over different land cover types and terrain conditions. Final-
ly, it is desired to examine the dependence of the improvement in
change detection on classification methodology. All topics eventually
will contribute to more accurate illumination correction models and
image classification algorithms.

5. Conclusions

Although Landsat data arewidely used formonitoring forest change,
the accuracy of change detection results drops greatly in mountainous
areas because of topographic illumination artifacts. We developed an il-
lumination correction algorithm and produced a set forest changemaps
from both original and corrected Landsat images. Validation over four
study sites indicated a significant overall accuracy improvement, over
10%, for the change detection results after the illumination correction.
In the Cherokee site, whichwas affected by phenology aswell as topog-
raphy, overall accuracy improved 24%.

It was found that the disagreement rates between the original and
corrected Landsat based changemaps increases as the ground inclination
angle increasing. With IC increasing, the disagreement rate decreases
first then increases. The lowest disagreement rate occurred when IC is
close to ICH, but not exactly at ICH in our study cases.
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