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This study aims at validating Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR) products derived fromMODIS surface reflectance (MOD09CMG) at coarse resolution (0.05°) over crops.
These Essential Climate Variables (ECVs) are estimated by using the inversion of the PROSAIL radiative transfer
(BV-NNET tool) applied on MODIS BRDF (Bidirectional Reflectance Distribution Function) corrected surface
reflectances and non-corrected. ECV estimates and the corresponding MCD15A3 Collection 5 and GEOLAND-2
(GEOv1) products are compared with ECV reference maps derived from BV-NNET applied on 105 high spatial
resolution images (Formosat-2, 8 m) which were acquired from 2006 to 2010 in Southwest France. These latter
are comparedwith local scale in situ measurements. The validation shows an uncertainty of 0.35 and 0.07 for LAI
and FAPAR, respectively.
The comparison shows that the ECV estimates from the three products properly capture the crops phenology in
agreement with reference maps. Results indicate that MCD15A3 uncertainties (0.23 and 0.07 for LAI and FAPAR,
respectively) are similar to previous intercomparison studies. GEOv1 shows a systemic positive bias for both LAI
and FAPAR. The best agreement with the reference maps is found for MODIS BV-NNET products with r2 higher
than 0.9 and relative uncertainties lower than 17%. The use of BRDF-corrected surface reflectances as input of
BV-NNET tool improves the uncertainty of LAI estimates (0.11, compared to 0.17when directional surface reflec-
tances are used as input) but not the uncertainty of FAPAR estimates. The deviation between FAPAR products
which mostly affects low winter FAPAR, is related to the discrepancy of the soil directional assumption in
PROSAIL model and BRDF correction method. The temporal stability of the daily MODIS BV-NNET products is
better than the 4-day composite MCD15A3 products. Finally, BV-NNET tool applied at finer resolutions demon-
strates that the increase of the resolution results in a decrease of the LAI and FAPAR uncertainties and a conser-
vation of the biases.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically
Active Radiation (FAPAR) are known as key vegetation biophysical vari-
ables. LAI corresponds to one half the total green (i.e., photosynthetically
active) leaf area per unit horizontal ground surface (GCOS, 2011). FAPAR
quantifies the photosynthetic capacity of vegetation. These two biophys-
ical variables were assigned by the Global Climate Observing System
(GCOS) as Essential Climate Variables (ECVs). ECVs were defined as
measurements of atmosphere, oceans, or land that are technically and
economically feasible for systematic observation and have a high impact
on the requirements of the United Nations Framework Convention on
Climate Change (UNFCCC) and the Intergovernmental Panel on Climate
ciences, University ofMaryland,

).

ghts reserved.
Change (IPCC). The concept of ECV includes a wide panel of terrestrial
variables. However, ECV refers in this paper to the two biophysical vari-
ables of concern: LAI and FAPAR. Vegetation processes (photosynthesis,
transpiration, carbon assimilation and respiration) are strongly driven
by the surface of the plant in contact with atmosphere. In land surface
models, which are used to evaluate the role of vegetation in the context
of global climate change andvariability (Runninget al., 1999), LAI and/or
FAPAR play a key role, specifically with respect to the carbon and water
cycles (GCOS, 2011). Hence, the GCOS and the Food and Agriculture
Organization (FAO) highlighted the need of accurate LAI and FAPAR
measurements from in situ and earth observation systems (GCOS,
2010; Gobron & Verstraete, 2009a, 2009b).

In this context, efforts have been achieved by the scientific commu-
nity to provide rapid and reliable ECV estimates. Since the 80s, a variety
of methods have been developed to retrieve ECVs from earth observa-
tion data using Radiative Transfer Models (RTM). RTM summarize our
understanding of the physical laws governing the interaction between

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.rse.2013.07.027&domain=pdf
http://dx.doi.org/10.1016/j.rse.2013.07.027
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solar radiation and the canopy. RTM allow simulating canopy reflec-
tances from the leaf and canopy characteristics, aswell as the background
reflectance. Their complexity ranges from simple 1-D (i.e. turbid and
homogenousmedium) to 3-D representations (Ray-tracing) of the vege-
tation (Widlowski et al., 2008). Among them, the PROSAIL model, a 1-D
RTM resulting from the combination of PROSPECT and SAIL (Scattering
by Arbitrarily Inclined Leaves) models, has become one of the most
popular and used RTM due to general robustness, consistent validation,
as well as ease of use (Jacquemoud et al., 2009). However, retrieving
ECVs implies using RTM in the inverse mode. Among the large number
of existing retrieving inversion techniques (see Baret & Buis, 2008 for a
complete review), Artificial Neural Networks (ANN) have received
much attention since they canmodel complex non-linear andmultivar-
iate systems (e.g., Duveiller, Weiss, Baret, & Defourny, 2011; Sedano,
Lavergne, Ibaňez, & Gong, 2008; Verger, Baret, & Camacho, 2011;
Vohland, Mader, & Dorigo, 2010; Walthall et al., 2004).

Taking benefit of the available earth observation data and the
existing retrieval methods, the scientific community achieved an oper-
ational production of medium resolution ECV global maps. Among
them, the MODIS LAI and FAPAR Collection 5 (MOD15, Myneni et al.,
2002) products are derived from a 3-D RTM inversion (main algorithm)
and a calibrated NDVI relationship (backup algorithm). ECVs are pro-
duced at 1 km spatial resolution daily and composited over an 8-day
period based on the maximum FAPAR value. To account for more
rapid change, a 4-day composite product has recently been released
(MCD15A3). Products derived from other sensors and based on differ-
ent inversion and compositing techniques, are also made available:
GEOLAND-2 (GEOv1, Baret et al., accepted for publication), CYCLOPES
(Baret et al., 2007) products are derived from the SPOT/VEGETATION
reflectances, while the JRC-FAPAR (Gobron et al., 2006) uses MERIS
data and GLOBCARBON (Deng, Chen, Plummer, Chen, & Pisek, 2006), a
combination of VEGETATION and AATSR data.

Existing LAI and FAPAR products are all based on temporal compos-
ite (4 to 30-day windows period), while most of ECV algorithms
(e.g. MOD15, CYCLOPES, JRC-FAPAR) are able to provide multiple
instantaneous estimates rather than a unique composite estimate
during thewindows period. Over the years, climatemodelers promoted
using composite in order: (i) to fill potential gaps due for instance to
cloud coverage, (ii) to reduce the residual noise associated to the data,
and (iii) to reduce data volume. Composite gap-filled time series are
particularly suitable for climatemodelers, since LAI is generally not sim-
ulated by the models and used directly as an input variable, with no
change of the model parameters. However, LAI is used in other model
categories for which assimilation approaches could be different. As an
example, LAI crop model assimilation is regularly based on parameteri-
zation approach (Rembold, Atzberger, Savin, & Rojas, 2013). This
approach requires a maximum of input observation to estimate the
parameters set which best describes the LAI dynamic, including sharp
changes of surface, such as vegetation green-up or crop harvest. The
parameterization approach does not required gap-filled time series as
only valid data are used. The time series noise can be assessed by calcu-
lating the data assimilation residual (e.g., Fisher & Courtier, 1995) or by
using statistical metrics (e.g., Vermote, Justice, & Breon, 2009). Finally,
storage capacities have significantly improved within the past
10 years and are not a limit anymore for medium resolution data
volume. It therefore appears adequate to provide, aside from existing
compositing data, instantaneous products to users, which means daily
data for most of the medium resolution sensors.

There is also a critical need to understand and quantify the uncer-
tainties associated to these products (Morisette et al., 2006). In 2006,
the GCOS identified target requirement uncertainties of 0.5 for LAI and
0.05 for FAPAR (GCOS, 2006). In 2011, they were updated to max(0.5,
20%) for LAI and max(0.05, 10%) for FAPAR (GCOS, 2011). The Land
Product Validation (LPV) of the Committee on Earth Observation
Satellites (CEOS) designed a hierarchical four-stage validation approach.
Globalmedium resolution products (250 m–1 km) are considered to be
validated on Stage 2 (“Spatial and temporal consistency of the product
and with similar products has been evaluated over globally representa-
tive locations and time periods”). It has been performed over MODIS-15
(8-day composite), CYCLOPES, GLOBCARBON and ECOCLIMAP LAI and
FAPAR by Weiss, Baret, Garrigues, and Lacaze (2007), Garrigues et al.
(2008) and more recently by McCallum et al. (2010) and Camacho,
Cernicharo, Lacaze, Baret, and Weiss (accepted for publication) who
includes GEOv1. To perform an inter-comparison at global scale, some
of these studies used the same CEOS LAI inter-comparison dataset
(Morisette et al., 2006). Since performing ground measurement at
medium spatial resolution is challenging, the product absolute uncer-
tainty was assessed using a reduced number of sites (between 50 and
100). For each of these sites, a dedicated methodology was based on
the combination of a High Spatial Resolution (HSR) image, such as
SPOT or Landsat, and ground measurements achieved with a stratified
sampling strategy (Cohen & Justice, 1999). Best global LAI uncertainties
(Root Mean Square Deviation, RMSD) were found between 0.75
(GEOv1, Camacho et al., accepted for publication) and1.4 (GLOBCARBON,
Garrigues et al., 2008), depending on the study. Even if cropland in situ
measurements were under-represented in the database, their associated
uncertainty is the lowest as compared to other vegetation types.
Concerning FAPAR, the RMSD was around 0.07 for GEOv1, and up to
0.22 for JRC-FAPAR (Camacho et al., accepted for publication). Conse-
quently, these uncertainties did not match the GCOS specifications
requirement (±0.5 for LAI and ±0.05 for FAPAR). Moreover, Weiss
et al. (2007) and Garrigues et al. (2008) concluded to the lack of in
situ measurements and satellite imageries to evaluate the “temporal
consistency” as set out in Stage 2 definition. Indeed, due to the low
temporal resolution of HSR sensors, only 1 or 2 reference maps were
derived per year and sites (except 4 for one site), which is not enough
to evaluate the consistency of the LAI and FAPAR temporal trajectory.
The recent availability of high spatial and temporal resolution
Formosat-2 (F2, launched in 2004) sensor provides a good opportunity
to evaluate coarse resolution products over time. Indeed, F2 is able to
deliver daily 8 m spatial resolution data using a constant viewing
angle thanks to an orbit with a 1-day repeat cycle.

This study evaluated the uncertainty of coarse resolution LAI and
FAPAR products over cropland as well as their consistency over time.
The study was thus achieved at the Climate Modeling Grid (CMG,
0.05 degree resolution in the geographic projection). The data processing
and the validation strategy are summarized in the diagram of Fig. 1.
First, we developed two products based on Artificial Neural Networks
learned on PROSAIL simulations using the BV-NNET tool: ECVNET_MOD09

is estimated from MODIS directional surface reflectance (SR) data
(MOD09CMG), while ECVNET_MODN uses nadir-corrected SR data as
inputs. The correction of the SR directional effects was performed
with the VJB model (Bréon & Vermote, 2012; Vermote et al., 2009).
Then, reference maps were generated by using BV-NNET applied on
the high spatial and temporal resolutions sensor F2, and validated
through direct comparison with in situ measurements performed
throughout the season over three major crops of the area. Finally,
these 8 m reference maps were upscaled to CMG and used for a direct
comparison with coarse resolution ECV products previously introduced
(ECVNET_MODN and ECVNET_MOD09) and two existing products: ECVMOD15

(referring to the MODIS-15 LAI and FAPAR Collection 5 products) and
ECVGEOv1 (referring to the GEOv1 LAI and FAPAR products).

2. Study site and data description

The study area is located near Toulouse, in the Southwest of France
(1°20′ E, 43°45′ N, Fig. 2). Croplands cover 50% of the study area. The
remaining 50% corresponds to urban area (city of Toulouse in the north-
east), forest, natural vegetation, and water bodies. The southeastern
and the western parts of the study area are hilly landscapes with
small fields (approximately 10 ha) and covered by non-irrigated crops
(mainly wheat, rapeseed and sunflower). The center of the study area,



Fig. 1. Data processing and validation strategy diagram. SR stands for surface reflectance and ECV relate to the two biophysical variables of interest: LAI and FAPAR.
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near the Garonne River, is generally flat with larger fields (approxi-
mately 25 ha) and covered by amix of irrigated (mainlymaize and soy-
bean) and non-irrigated crops (mainly sunflower,wheat and rapeseed).
Fig. 2.Map of the study area, delimited by the Formosat-2 footprint. The displayed image corre
Maize, sunflower and soybean fields where in situ measurements were performed in 2008 ar
station used to compute diffuse fraction of incoming radiation. Yellow boxes display the ext
Fig. 10. (For interpretation of the references to color in this figure legend, the reader is referred
Field data were collected over 7 fields (3 maize, 2 sunflower and 2
soybean) land sampled 6 to 10 times (52measurements in total) during
summer of 2008. Among the variety of in situ measurement techniques
sponds to a color composite (bands 4–3–2) of Formosat-2 image acquired on 31-Jul-2008.
e represented in the upper-right frame. The blue circle is centered on the meteorological
ent of Climate Modeling Grid (CMG) pixels. A, B and C letters refer to selected pixels of
to the web version of this article.)
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(see review of Weiss, Baret, Smith, & Jonckheere, 2004), Digital Hemi-
spherical Photographs (DHPs, Demarez, Duthoit, Baret, Weiss, &
Dedieu, 2008) were used to estimate LAI and FAPAR. Thirteen DHPs
were sampled over an Elementary Sampling Unit (ESU), which corre-
sponds to a 20 m × 20 m area located in a homogenous zone within
the field. Each ESU was sampled with 13 DHPs by applying the VALERI
spatial sampling protocol (http://w3.avignon.inra.fr/valeri). In our
study, the DHPs were acquired with a calibrated Nikon CoolPix 8400
camera equipped with a FC-E8 fisheye lens. The camera was put at the
top of a pole to keep the viewing direction (looking downward) and
the canopy-to-sensor distance constant (~1.5 m) throughout the grow-
ing season (Demarez et al., 2008). The DHPswere processed using CAN-
EYE V6.2 (http://www4.paca.inra.fr/can-eye), which provides esti-
mates of the effective LAI, the true LAI, the daily direct and diffuse
FAPAR (Baret, de Solan, Lopez-Lozano, Ma, & Weiss, 2010; Demarez
et al., 2008). Comparison with destructive LAI over cropland provided
mean differences of 0.63 and 0.56 for effective and true LAI, respectively
(Demarez et al., 2008). The effective LAI was used for this study as it is
highly correlated with remote sensing observations (Claverie et al.,
2012). The daily FAPAR was computed from direct and diffuse compo-
nents and diffuse fraction of incoming PAR (Photosynthetically Active
Radiation) measured with a BF2 (Delta-T, Cambridge, UK, Béziat et al.
2009) located in an instrumented field (blue circle in Fig. 2).

The in situ measurements were combined with the acquisition of
optical remote sensing data from Formosat-2 (F2, Chern & Wu, 2004).
F2 is a high spatial (8 m) and temporal (daily revisit time) resolution
satellite with four spectral bands (488, 555, 650 and 830 nm) and a
field of view of 24 km. For a given site, F2 data may be acquired every
day under a constant viewing angle. This characteristic was used to
perform accurate atmospheric corrections by estimating the aerosol
optical thickness using a multi-temporal method (Hagolle et al.,
2008). All F2 imageswere first pre-processed for geometric, radiometric
and atmospheric corrections (Hagolle et al., 2008) as well as cloud and
cloud-shadow filtering (Hagolle, Huc, Pascual, & Dedieu, 2010). The
final output product provides SR images and contains cloud and cloud/
shadow masks. The absolute location accuracy is better than 0.4 pixel,
i.e. 3.2 m (Baillarin, Gigord, & Hagolle, 2008), which is quite satisfactory
with respect to the ESU size. A total amount of 105 images were
acquired on the study area from 2006 to 2010, with different temporal
distribution over the years: in 2006, 27 cloud and shadow-free (N85%)
images out of 51 were available, while from 2007 to 2010, only 11 to
19 images per year with more than 80% of cloud and shadow-free
were acquired.

From 2006 to 2010, we also used coarse resolution SR data over
the study area from the MODIS sensor on board the Aqua and Terra
platforms. The MOD09CMG (called hereafter MOD09, lpdaac.usgs.
gov/products/modis_products_table/mod09cmg) product provides
SR images, in 7 channels from 450 nm to 2100 nm at a resampled
spatial resolution of 0.05°, corresponding to the Climate Modeling
Grid. We used collection 6 version. In the studied area, 0.05° is equal
to approximately 5.5 km in latitude and 4 km in longitude.We also pro-
duced a nadir-corrected (zenith view angle is null, θv = 0°) product,
called hereafterMODN, by applying theVJBmodel, a BRDF (Bidirectional
Reflectance Distribution Function) correction method from Vermote
et al. (2009). Solar zenith angles (θs) effects were not corrected, and
we kept the value of the originalMODIS data.MODIS acquisition,flagged
in the MOD09 SR product with cloud and cloud/shadow cover, aerosol
optical thickness higher than 0.6 or view zenith angle higher than 60°,
were eliminated.

Existing LAI/FAPAR products, used for inter-comparison, were
derived from the Aqua and Terra MODIS-15 LAI and FAPAR Collection 5
products (MCD15A3, lpdaac.usgs.gov/products/modis_products_table/
mcd15a3, Myneni et al., 2002) and LAI and FAPAR GEOLAND-2 version
1 products (GEOv1, www.geoland2.eu/index.jsp, Baret et al., accepted
for publication). MCD15A3 data are available at a 4-day time step
based on a 4-day period at a 1 km resolution. MCD15A3main algorithm
is based on LUTs simulated with a three-dimensional RTM (Knyazikhin,
Martonchik, Myneni, Diner, & Running, 1998). Red and NIR atmo-
spherically corrected products (MOD09GA) and the corresponding
illumination-view geometry are used as LUT inputs. The output is the
mean LAI and FAPAR values computed over the set of acceptable LUT
elements for which simulated and MODIS SR agree within a specific
level of uncertainties. A back-up algorithm is used when the main
algorithm fails. However, only the main algorithm retrieval is consid-
ered in this study. This product refers to LAIMOD15 and FAPARMOD15

in this paper. GEOv1 data are derived from the SPOT/VEGETATION
SR data (1 km, daily), corrected from the view angle, at about 1 km
resolution every 10 days using a 30-day temporal window. GEOv1
algorithm is based on a fusing approach between MODIS-15 and
CYCLOPES products. CYCLOPES is a PROSAIL inversion algorithm using
ANN, similar to the one applied on F2 and MODIS SR through this
study.More description of the algorithm is provided in the next section.
MODIS-15 and GEOv1 data were then averaged over the CMG (Climate
Model Grid, 0.05°) based on the location of center of the 1 km pixel.
Moreover, aggregated CMG pixels computed with a missing pixel
were discarded.

3. Methodology

In this study, we used the BV-NNET (Biophysical Variables Neural
NETwork) tool developed by Baret et al. (2007) to derive the global
CYCLOPES LAI and FAPAR products. It is based on the calibration of
Artificial NeuralNetworks learned onPROSAIL simulations. Thismethod
was applied to retrieve LAI and FAPAR from three input SR types: (i) F2
SR (to generate the reference maps), (ii) MODIS SR (estimates refer
hereafter to NET_MOD09) and (iii) MODIS normalized SR at nadir
(NET_MODN). The term NET_MOD refers to the two products. The
inversion was performed at the native resolution for F2 SR data
(i.e. 8 m), while the 0.05° CMG was used for MODIS SR data. F2 LAI
and FAPAR were then aggregated at CMG resolution.

3.1. LAI and FAPAR estimation from BV-NNET

LAI and FAPAR were estimated from BV-NNET tool applied to F2
SR, and MOD09 and MODN SR from MODIS sensors on board of Aqua
and Terra. It was necessary to build three single neural networks for
the three SR sources because the number and nature of input data
were not constant (depending on the spectral bands and the angular
configurations). BV-NNET is divided in three core steps: learning data-
base creation, neural network training, and trained neural network
application.

The learning database used to train the Artificial Neural Networks
(ANN) was made of bi-directional SR (ANN inputs) and corresponding
LAI and FAPAR variables (ANN outputs). A wide range of cases were
simulated using the PROSAIL radiative transfer model (Jacquemoud,
Bacour, Poilve, & Frangi, 2000). PROSAIL results from the coupling
between the PROSPECT leaf optical properties model (Jacquemoud &
Baret, 1990) and the SAIL (Verhoef, 1984) models. PROSPECT was
used to simulate leaf reflectance and transmittance (ρleaf, tleaf) for a
large range of leaf characteristics described by 5 parameters: the meso-
phyll structure parameter (N), chlorophyll (Cab), dry matter (Cdm),
relative water (Cw) and brown pigment (Cbp) contents. Cab comprises
chlorophylls a and b as well as carotenoids. Water content is linked to
the dry-matter content in the form of green leaf relative water content
which is assumed to vary within a relatively small range. Cbp corre-
sponds to the brown pigments observed during leaf senescence. SAIL
is used for the computation of the canopy bi-directional reflectance
from ρleaf, tleaf, the variables describing canopy structure (LAI, Average
Leaf Angle — ALA and hot-spot parameter — HsD), fraction of pure
vegetation (vCover, Baret et al., 2007), the angular characteristics s
(solar zenith angle), v (view zenith angle), ΔΦ (relative azimuth
angle between view and solar angle) and the background reflectance

http://w3.avignon.inra.fr/valeri
http://www4.paca.inra.fr/can-eye
http://www.geoland2.eu/index.jsp


Table 1
Distribution characteristics of the input variables of the PROSAIL radiative transfer models used to generate the training database.

Variable Variable distribution Co-distribution with LAI Class

Law Min Max Mode Std Min
(LAI = 0)

Max
(LAI = 0)

Min
(LAI = 8)

Max
(LAI = 8)

Canopy LAI Gaussian 0 8 2 2 – – – – 6
ALA (°) Gaussian 30 80 60 20 30 80 55 65 4
HsD Gaussian 0.1 0.5 0.2 0.2 - - - - 1
vCover Gaussian 0.05 1 1 0.2 0 1 1 1 2

Leaf N Gaussian 1.2 2.2 1.5 0.3 1.2 2.2 1.3 1.8 4
Cab (μg.m−2) Gaussian 20 90 45 30 20 90 45 90 4
Cdm (g.m−2) Gaussian 0.003 0.011 0.005 0.005 0.003 0.011 0.005 0.011 4
Cw Uniform 0.6 0.85 - - 0.6 0.85 0.7 0.8 4
Cbp Gaussian 0 2 0 0.3 0 2 0 0.2 4

Soil Bs Log-Gaussian 0.16 1.3 0.586 0.14 0.5 3.5 0.5 1.2 4
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spectrum. The latter is described by the spectral soil reflectances (ρsoil)
combined with a brightness coefficient (bs, Baret et al., 2007).

All of these variables, except ρsoil, were randomly selected following
pre-defined distributions (Table 1) and co-distributions with LAI.
The type of distributions (uniform, Gaussian or log-Gaussian) and the
associated parameters (minimum, maximum,mode and standard devi-
ation) were equivalent to the original CYCLOPES parameterization
(Baret et al., 2007). Similar parameterizations were also successfully
applied on high resolution sensors by Bsaibes et al. (2009) with F2
data and Duveiller et al. (2011) with SPOT-HRV data. The sampling
scheme is based on a full orthogonal experimental plan (Bacour,
Jacquemoud, Tourbier, Dechambre, & Frangi, 2002) to account for all
the interactions between variables, while keeping a range of variation
for each variable densely and near randomly populated. Each distribu-
tion was thus divided into a number of classes which increases with
the role of the variable in the radiative transfer process. The product of
all classes determines the size of the LUT (i.e. 196,608 cases). Cases
with unrealistic combinations between LAI and all other variables
except HsD were excluded based on an empirically designed trapeze
shapewhich delimited the valid interval of the co-distribution between
LAI and the other variable. The trapeze is defined by four edges in the
2-dimensional LAI/other variable space: minimum and maximum of
LAI and the other variable. Note that: (i) no view zenith and relative
azimuth angles variation are used for NET_MODN simulations as SR
were normalized to a constant nadir viewing angle; (ii) vCover is
equal to 1 for F2 simulations as the pixel is considered as pure;
(iii) the lower limit of ALA distribution was modified to 5° for F2 simu-
lations to be consistent with in situmeasurement of ALA from CAN-EYE
software (not shown in this paper).

The spectral soil reflectances (ρsoil) of a selection of 7 soil spectrums
(Fig. 3)were extracted from theWorld Soil Database of the International
Soil Reference Information Centre (ICRAF-ISRIC, 2010). The selected
spectrums refer to spectrum sample in western European countries
Fig. 3.Relative Spectral Response (RSR) ofMODIS (red) and Formosat-2 (black) bands used in th
reflectance spectra simulated by PROSAIL (green) are also displayed. (For interpretation of the
article.)
and are radiometrically close to bare soil reflectances observed in the
study areawith F2 bands (Claverie, 2012). The log-Gaussian distribution
of the brightness coefficient (bs, see last row of Table 1) was adjusted in
order to ensure a good matching between: (i) the range of bare soil
spectrum observed with F2 bands and (ii) the range of bare soil spec-
trum simulated using the combination of the 7 previously selected spec-
trums and bs.

Conversely to LAI, FAPAR is not an input variable of PROSAIL. FAPAR
was simulated for each case as the instantaneous black-sky value at
10:00 local solar time that corresponds to a good approximation of the
daily integrated value under black-sky assumption (Baret et al., 2004).

Each neural network (one per ECV) consisted in a back-propagation
network, following the configuration of CYCLOPES (Baret et al., 2007),
with one sigmoid hidden layers and one output neuron. Nevertheless,
the numbers of input data (Ninput) were different from CYCLOPES, and
between the three simulations:

(i) F2 includes 3 spectral bands (centered at 555, 650 and 830 nm)
and 3 angular configuration parameters (θs, θv, ΔΦ). Due to
residual errors after atmospheric correction, the blue band
(488 nm) was not used as recommended by Baret et al. (2007)
for SPOT-VGT or Bsaibes et al. (2009) for F2.

(ii) ECVNET_MODN includes 4 spectral bands: 657, 863, 550, 1240 nm
plus the solar zenith angle. Instead of using MODIS band 6
(1640 nm), similar to the SWIR band of SPOT-VGT (1640 nm)
used in CYCLOPES, we used band 5 (1240 nm) which provided
better results (results not shown for the sake of brevity). The
blue band is not used for the same reasons as above.

(iii) ECVNET_MOD09 includes the same 4 spectral bands used forMODN,
plus the 3 angular configuration parameters (θs, θv, ΔΦ).

As a result, the number of neurons of the hidden layer is slightly
different. Mather and Koch (2010) have recommended using twice
the number of neurons of the hidden layer as the number of the input
is study. The reflectance spectra of the 7 soil spectrums used (brown) and a typical canopy
references to color in this figure legend, the reader is referred to the web version of this
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variables. However, as input spectral reflectances data are not totally
uncorrelated, we found that increasing the number of neurons
(e.g., up to 2 × 7 = 14 for ECVNET_MOD09) did not improve perfor-
mances. Consequently we applied a purely empirical rule by using
Ninput + 1 neurons in the hidden layer. The output layer included one
linear neuron, as recommended by Weiss (1998) and Verger et al.
(2011).

3.2. Direct comparison: spatial aggregation and temporal interpolation

Formosat-2 reference maps were validated through direct compari-
son with in situ measurements. LAI and FAPARwere extracted from the
image using a 3 × 3 pixels window centered on the ESU. Solar and
viewing geometry angles (θv, θs, and Δϕ) were calculated for the F2
image center. The mean and standard deviation were calculated from
the 9 LAI/FAPAR F2 pixels. Despite the high frequency of satellite
image acquisitions, the ground measurements did not necessarily coin-
cide in time with the remote sensing observations. In situ measure-
ments were interpolated at the dates of F2 using a cubic interpolation
method which reflected a smooth and consistent temporal shape
because of high measurements frequency. The interpolated values
separated by more than 7 days of a measurement were excluded from
the analysis.

CMG reference maps were computed through the aggregation of F2
reference maps. LAI and FAPAR 8-meter pixels, included in each CMG
pixel, were averaged. A flag was added to exclude aggregated CMG
pixel computed including cloud or cloud shadow contaminated F2
pixels.

Concerning the direct comparison against coarse resolution products,
MOD15 (4-day, CMG) and GEOv1 (10-day, CMG) products were com-
pared to F2 data included in the 4-day and 10-day periods, respectively.
Only coincident (same day) data between F2 and ECVNET_MOD09 and
ECVNET_MODN products (1-day) were maintained for the analysis.

3.3. Statistical metrics

At each stage of the validation, four statistical metrics were used to
quantify the deviation between two datasets:

– the Accuracy (A) and the relative Accuracy (rA),

A ¼ 1
N
�
XN
i¼1

εi ; rA ¼ 100� A

M
ð1Þ

– the Precision (P) and the relative Precision (rP),

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N−1
�
XN
i¼1

εi−Að Þ2
vuut ; rP ¼ 100� P

M
ð2Þ

– the Uncertainty (U) and the relative Uncertainty (rU),

U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
�
XN
i¼1

εi
2

vuut ; rU ¼ 100� U

M
ð3Þ

– the correlation coefficient,

r2 ¼ cov x; yð Þ
std xð Þ � std yð Þ

� �2
ð4Þ

where N is the number of valid samples used for the comparison, εi is
the difference between two simultaneous data xi and yi that are
compared and M is the mean value of the reference observation. cov
and std relate to the covariance and the standard deviation, respectively.
The three first metrics were used to quantify the mean bias (A), the
repeatability (P) and the actual statistical deviation (U, also called
RMSD) of the estimates (Vermote & Kotchenova, 2008).

To quantify the smoothness of the products through time, we
computed an estimate of the time series noise based on the method
developed by Vermote et al. (2009, Eq. (4)). Given three successive
measurements, a triplet i, i + 1, and i + 2, the statistical difference
between the center measurement and the linear interpolation between
the two extremes quantifies the “noise” of y variable. This estimate
assumes thus a local linear variation between three dates, which can
be regarded as true throughout the time series except for sharp transi-
tions. Relative noise (Eq. (6)) was computed by dividing the noise by
the mean of the time series (M) to facilitate comparison across SR, LAI
and FAPAR. We considered a maximum period of 20 days between
dayi and dayi + 2, corresponding to 3 consecutive GEOv1 data.

Noise yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN−2

i¼1

yiþ1 �
yiþ2−yi

dayiþ2−dayi
� dayiþ1−dayi
� �

−yi

� �2

N−2

vuuuut ð5Þ

RelativeNoise yð Þ ¼ 100� Noise yð Þ
M

ð6Þ

4. Results

4.1. Evaluation of the surface reflectance

To ensure proper comparison of ECV products, we first verified that
MODIS Terra or Aqua and F2 surface reflectances (SR) are consistent at
CMG spatial resolution. Fig. 4a–h shows the direct comparison of SR
derived from F2 (aggregated over CMG) and MODIS on board the
Terra satellite (analysis with data from Aqua satellite leads to similar
results) acquired on simultaneous days. Overpass time of MODIS Terra
and F2 are around 10:30 and 09:30 local solar time at the equator,
respectively. In Fig. 4a–d, MODIS SR are compared directly without
any BRDF corrections (original MODIS geometric conditions referring
to θMODIS), while in Fig. 4e–h, they were normalized at F2 geometric
conditions (referring to θF2 and including both F2 view and solar angles)
using the VJB model. Without considering BRDF correction, the scatter-
ing between both sensors is significant, especially in the visible bands
(r2 are 0.33, 0.22 and 0.29 for red, green and blue bands, respectively).
The two dark stripes (red and green bands mainly) correspond to two
main angular configurations of MODIS sensor. The scattering is signifi-
cantly reduced after BRDF correction (precisions are 3 times lower
except for the blue band). This agreement shows the good performance
of: (i) both instruments radiometric calibration, (ii) the VJB model and
(iii) the two atmospheric correction methods applied to F2 data
(Hagolle et al., 2008) and to MODIS data (Vermote & Kotchenova,
2008; Vermote, El Saleous, & Justice, 2002) for green, red and NIR
bands. The blue band displays lower correlation (0.54), due mainly to
a high influence of aerosol content in these wavelengths. Nevertheless,
biases remain between the two SR factors: +3.10−2 for NIR, −3.10−3

for red and +3.10−3 for green. These residual biases are due to signifi-
cant differences in termof sensor spectral response (Fig. 3). Indeed, they
are consistent with the biases deducted from the comparison of syn-
thetic SR factors simulatedwith PROSAILmodel (Fig. 4j–m). By applying
the linearfits of Fig. 4j–mas a band-pass correction to theMODIS data of
Fig. 4e–h, the absolute biases are reduced to less than 1.10−3 for red and
green bands and 2.10−3 for NIR band (results not shown for the sake of
brevity).

The same analysis was performed using statisticalmetrics computed
per bins as suggested by Vermote and Kotchenova (2008). Fig. 5 dis-
plays the repartition of the statistical metrics through the variation of
F2 SR compared to suggested specification for MODIS SR introduced
by these authors (0.005 + 0.05ρ). After BRDF correction (Fig. 5e–h),



Fig. 4. Comparison of aggregated Formosat-2 (F2) and MODIS Terra Surface Reflectances (SR) with (subplots e–h) and without (subplots a-d) BRDF-correction. BRDF corrections were
performed with the VJB model method using for each individual MODIS acquisition, the angular configuration (denoted as θF2) of Formosat-2 data acquired the same day. Subplots j-m
show the comparison of synthetic F2 andMODIS SR simulatedwith PROSAILmodel. The simulated dataset is the same as the one described in Section 3.1. The limits of the axis are cropped
to the same limits as subplots a–f. Plots are represented through density function from light gray (minimum) to black (maximum);whitemeans no data. Red lines correspond to the linear
fits. r2, A, P and U refer to the statistical metrics given in Section 3.3. Relatives A, P andU are reported under bracket. N is the number of points. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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the metrics stay under the specifications except for some extreme
values. The variations of the metrics of Fig. 5e–h along the F2 SR bins
are weak compared to those of Fig. 5a–b. They are consistent with the
metrics computed on simulated data (Fig. 5j–i) except for the precisions
which are bigger, as expected since observed data are compared with
simulated data.

4.2. Validation of Formosat-2 reference maps

The retrieved biophysical variables are presented in Fig. 6 against a
total of 40 interpolated in situ measurements over 7 ESU sites. The F2
estimates of the two biophysical variables are in good agreement with
the ground measurements since it yields to an overall uncertainty of
0.35 for LAI, and 0.07 for FAPAR. Positive LAI biases (+0.07) reflect a
small overestimate, mainly for the highest value observed on soybean,
while small negative biases were associated with FAPAR estimations
(−0.04). Inter-crop disparities are, nonetheless, significant. Best perfor-
mances are retrieved with maize and soybean (Uncertainty = 0.24–
0.37). Greatest errors are retrieved for sunflower (LAI and FAPAR
Uncertainty: 0.5 and 0.12) which displayed the biggest heterogeneity
(see vertical standard deviation bars), known as a significant source of
error of DHP in situ measurements (Demarez et al., 2008; Jonckheere
et al., 2004). This level of error remains in agreement with previous
studies based on the same tool (Bsaibes et al., 2009; Duveiller et al.,
2011; Verger et al., 2011). 90% of LAI estimates and 78% of FAPAR
estimates fit within the required range of accuracy identified by GCOS
(2011). Overall accuracies remain acceptable except for sunflower
FAPAR.
4.3. Aqua and Terra ECV estimates comparison

Fig. 7 shows the comparison between Terra and Aqua daily ECV
estimates derived from both MOD09 and MODN SR. Both estimations
are highly correlated (r2 N 0.93), U remains small (~0.12 for LAI and
~0.027 for FAPAR) and Accuracy are almost null. The use of MODN
instead of MOD09 SR as inputs improves the consistency of LAI
estimates below 0.5. Higher LAI values are very similar. Considering
the important observational geometry differences between Terra and
Aqua acquisition, these results highlight the impact of the BRDF correc-
tion VJBmodel (Fig. 7c, d) and the PROSAILmodel (Fig. 7a, b).Moreover,
the use of the solar zenith angle as a BV-NNET input limits residual
effects on ECV value from solar geometry differences between the two
sensors. Due to the overall agreement between Aqua and Terra
estimates, we decided to merge the 2 estimates by producing daily
averaged LAI and FAPAR, corresponding to the average of Aqua and
Terra estimates or only one of them when both were not available
(due mainly to cloud cover).



Fig. 5. Accuracy (A, red), Precision (P, green) and Uncertainty (U, blue) of the MODIS Terra SR with (subplots e–h) and without (subplots a-d) BRDF-correction over 25 F2 aggregated SR
bins. Notice that A corresponds to the absolute value of the accuracy described in Eq. (1). Also shown are the number of points per bin (cyan bars) with the value on the left and the error
budget of suggested uncertainties (magenta line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. LAI (a) and FAPAR (b) referencemaps validation scatterplots. In situmeasurements are derived fromDHPs acquired on ESUs overmaize (Ma, red), soybean (So, blue) and sunflower
(Su, green)fields. Estimates (mean— dots- and±standarddeviation— vertical bars) are derived froma 3 × 3 pixelwindowof Formosat-2 data. Black dashed line represents the overallfit
and magenta lines the GCOS specifications boundaries (max(0.5, 20%) for LAI and max(0.05, 10%) for FAPAR).
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Fig. 7. LAI and FAPAR comparison of estimates derived from Aqua and Terra surface reflectances corrected (NET_MODN, subplots c-d) or not (NET_MOD09, subplots a–b) from BRDF
effects. Refer to Fig. 4 legend.
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4.4. Evaluation against ECV reference maps

The direct comparisons between coarse resolution reference maps
and ECV products are shown in Fig. 8 for LAI and Fig. 9 for FAPAR.
Concerning LAI, the best estimation is observed with NET_MODN prod-
ucts and all retrievalsfit the GCOS uncertainty requirement (±0.5). Low
Fig. 8. LAI coarse resolution validation. Subplots a–d: direct comparison between LAI coarse reso
difference between coarse resolution and reference map LAI displayed through boxplot: 1st a
Precision (P, green) and the Uncertainty (U, blue) are computed per bins. The number of data
correspond to ±max(0.5, 20%) GCOS (2011) specifications (S) boundaries and magenta perce
20%), 0 and +max(0.5, 20%). (For interpretation of the references to color in this figure legend
LAI are unbiased whereas values greater than 1.5 are slightly over-
estimated. Estimation of LAINET_MOD09 shows a higher precision (0.15)
with a negative accuracy of −0.07 and an uncertainty of 0.17. In
Fig. 8e, 70% of the errors are mainly negative. However, greatest values
(LAI N 1.5) are slightly overestimated. The rU calculated for LAIMOD15

(23%) is above the reference map rU but 98% of the retrievals fit the
lution (y-axis) and LAI referencemap (x-axis). Refer to Fig. 4 legend. Subplots e–h: absolute
nd 99th percentiles (line), 1st and 3rd quartiles (black box). The Accuracy (A, red), the
included in each of the 0.3 bins is shown in the bottom of the boxplot. The magenta lines
ntages correspond to the amount of data included in 2 sections delimited by −max(0.5,
, the reader is referred to the web version of this article.)



Fig. 9. Idem Fig. 8 but for FAPAR coarse resolution validation. Magenta lines on e–h correspond to the GCOS (2011) specifications boundaries (±max(0.05, 10%)).
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GCOS specification (S). Data are less correlated than the two other prod-
ucts and the underestimation is strong, mainly for values greater than 1.
This underestimation is in agreement with the conclusion of Garrigues
et al. (2008) who have found a small underestimation of LAIMOD15

compared to two effective LAI measurements on a crop site. The under-
estimation is also visible in the study of Fang, Wei, and Liang (2012)
where comparisons have been based on true LAI. However, in this
study, we considered effective LAI measurements which may be lower
than MOD15 LAI defined as true LAI for non-regular clumped canopies
(Weiss et al., 2004). This result demonstrates the difficulty to accurately
quantify the clumping factor as observed by Demarez et al. (2008) for
cropland canopies. The Uncertainty of 0.23 from Fig. 8c remains none-
theless lower than the ones deducted over cropland/grassland biomes
from these previously mentioned studies (Fang et al., 2012; Garrigues
et al., 2008) mainly because the scale of the analysis is coarser. LAIGEOv1
displays a good precision (19%) but related to a strong positive Accuracy
(43%). In the observed range of values (LAI b 3), GEOv1 estimates over
croplands are mainly derived from CYCLOPES estimates (refer to the
weighted function described in Baret et al., accepted for publication)
whose algorithm is equivalent to BV-NNET. The precision (better than
LAIMOD15 precision) shows thus the consistency of the algorithm. How-
ever, the bias points out discrepancies between the two inputs SR data:
F2 for referencemaps and SPOT/VEGETATION for GEOv1. Moreover, the
analysis showed previously a small underestimation of MOD15 LAI.

Concerning FAPAR (Fig. 9), the FAPARNET_MOD09 product performs
better than FAPARNET_MODN one against reference maps. Indeed,
FAPARNET_MOD09 product displays the highest correlation and the lowest
error (Uncertainty = 0.04) and 73% of the retrieval remains under the
stringent max(0.05, 10%) limits required by GCOS. The slope of the
regression slightly differs from the 1:1 line due to overestimation of
high FAPAR. The FAPARNET_MODN is overestimated, mainly for the low
values (b0.4) and the relative differences (14%) exceeds the reference
map uncertainty (11.3%). NET_MODN and NET_MOD09 yield to low
differences on LAI retrievals and significance differences on FAPAR
retrievals. Not shown in this paper, one third of the simulated LUT
was used to validate the network generated using the two other thirds.
The analysis of this theoretical validation shows that NET_MOD09 net-
work performance is 11% better thanNET_MODNnetwork performance
for FAPAR and only 4% better for LAI. Concerning FAPARMOD15, the low
values are overestimated while the accuracy is low for the highest
values. FAPARMOD15 displayed a significant scattering (r2 = 0.56). One
of the explication of the divergence is the definition itself of the FAPAR
which is computed for the satellite overpass solar time for MOD15
(about 10:30 and 13:30 at the equator) while BV-NNET FAPAR are
computed for a constant solar time (10:00), considered as a good esti-
mate of the daily integrated FAPAR (Baret et al., 2004). Finally, the
overestimation of FAPARGEOv1 is similar to the one observed for LAI.

4.5. Time series analysis

In addition to the previously presented quantitative validation,
Fig. 10 shows the LAI and FAPAR temporal profiles of the different
products for 3 selected pixels (see A, B and C letters to locate the pixels
in the map of Fig. 2). All products consistently reproduce the overall
crop phenology. The green-up periods are systematically fast whereas
the senescence rate varies from year to year. The presence of 2 peaks
(e.g., pixel A) is related to an equivalent proportion in CMG pixel of
winter crops (wheat and rapeseed, 25%) and summer crops (maize,
sunflower and soybean, 30%) which phenologies are delayed. However,
notice that due to the 30-daywindow used in the LAIGEOv1 compositing,
the twopeaks of pixel A are less pronounced than for other products. LAI
and FAPAR peaks dates range systematically between mid and end of
May. This corresponds to the end of the full vegetated winter crops
fields and the beginning of the summer crop growing season. Finally,
peaks observed on the 4 coarse resolution products are correctly syn-
chronized without lag.

Fig. 10g–h highlights the difference in magnitude between coarse
resolution products and reference maps. LAIGEOv1 displays a systematic
overestimation throughout the year included from 0.1 to 1, which is
consistent with previous results. LAINET_MODN and LAINET_MOD09 present
similar magnitude of the reference maps peaks: differences do not
exceed 0.25 (Fig. 10g). The annual LAIMOD15 peaks are systematically
underestimated compared to the other products. This reflects the un-
derestimation of cropland LAIMOD15 products compared to LAI CYCLOPE
products identified by Camacho et al. (accepted for publication). These
authors observed this underestimation mainly over “broadleaf crops”
land cover which represents 90% of our study area. The winter LAI of
the 3 coarse resolution products are in agreement with the reference
maps: yearly minimum LAI is between 0.4 and 0.6. It never reaches 0
since CMGpixels generally comprise a small fraction of evergreen grass-
land and natural vegetation. We also observe differences for FAPAR.
Winter FAPARNET_MODN (minimum between 0.2 and 0.4) is consistent



Fig. 10. Five-year coarse resolution LAI (subplots a, c, and e) and FAPAR (subplots b, d, and f) time series of 3 selectedpixels (A, B and C, see locations in Fig. 2). Pixel A includes an equivalent
proportion of Winter Crops (WC) and Summer Crops (SC); pixels B and C include a bigger proportion of winter and summer crops, respectively. WC, SC and Non-Crop (NC) proportions
are given in subplots a, c and e. Absolute differences between coarse resolution estimates and reference maps (ΔLAI and ΔFAPAR) for the 3 pixels are displayed in subplots g and h. The Δ
envelope is colored using same color as the legend.Δhigher than±0.6 and±0.1, for LAI and FAPAR respectively,were set to±0.6 and±0.1. No referencemapdatawere acquired in 2006
and 2010 for pixel B as it is located on the side of the footprint. Vertical gray bars represent 1st day of year. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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with FAPARGEOv1 (0.2–0.5) but not with FAPARNET_MOD09 (0.05–0.2).
Winter FAPARMOD15 are more contrasted and display better agreement
with FAPARNET_MODN/FAPARGEOv1 on pixels A and C and with
FAPARNET_MOD09/reference maps on pixel B. Due to winter cloud cover
andweak interest of this period for cropmonitoring, only few reference
maps were available. Nonetheless they emphasize that winter
FAPARNET_MOD09 best agrees with FAPAR reference maps. These differ-
ences are discussed in more detail in Section 4.6.

Products display relatively smooth time series. However, few
outliers (sharp peaks) are observed on both NET_MOD products which
may be due to cloud masking omission (e.g., October 2006). Note that
the impact of misclassified cloud pixel is higher on FAPAR than on LAI.
Although MOD15 is a composited product, we observe a larger number
of outliers. To quantify the smoothness of the product, we computed
an estimate of the time series noise based on the method previously
described in Section 3.3.
Relative noises computed for the 4 coarse resolution products and
the referencemap are indicated in Table 2, including SR and ECV noises.
Only 19 triplets per pixels were available for the reference map to com-
pute noises, providing a noise on SR reference map of 2.7% in average.
This result demonstrates the quality of the cloud detection and atmo-
spheric correction performed by Hagolle et al. (2008, 2010). Note how-
ever that the view direction of F2 was almost constant during the
5 years, limiting the BRDF effects that impact the computed noise. The
LAI noise is higher than SR ones, but remains very low. The biggest
noise reduction from SR noise to ECV noise is observed for MOD09
time series (SR noises range from 18.7% to 29.9% depending on the
band while ECV noises are 10.1% and 17.9%). SRMOD09 are, indeed, not
corrected from surface anisotropy. This noise reduction demonstrates
the impact of PROSAIL BRDF simulations. The noise observed for
MODN SR is significantly lower than that of MOD09 SR, as expected
since data were normalized from viewing angle. SRMOD0N noises remain



Table 2
Relative noise calculated on Surface Reflectance (SR, column 3) and ECV (column 4)
time series of the 4 datasets under study. Column 1 indicates the 5-year average number
of triplets (i − 1, i, i + 1) of the SR and ECV time series per CMG pixel, where
dayi + 1 − dayi − 1 ≤ 20.

Average triplet
number

SR noise ECV noise

Reference map 19 Green band: 2.5% LAIF2: 4.0%
FAPARF2: 2.5%Red band: 3.8%

NIR band: 1.7%
MOD09 547 Red band: 28.8% LAINET_MOD09: 17.9%

FAPARNET_MOD09: 10.1%NIR band: 18.4%
Green band: 29.9%
MIR band: 18.7%

MODN 548 Red band: 13.6% LAINET_MODN: 10.1%
FAPARNET_MODN: 6.4%NIR band: 5.0%

Green band: 20.1%
1240 nm band: 4.9%

MOD15 370 – LAIMOD15: 16.4%
FAPARMOD15: 13.9%

GEOv1 104 – LAIGEOv1: 2.3%
FAPARGEOv1: 1.7%
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in a similar range as Vermote et al. (2009). ECVNET_MODN noises are
included in the range of SRMOD09 noises and remain lower than
ECVNET_MOD09 noises. Concerning the noise calculated on MOD15 and
GEOv1 products, the temporal resolution and compositing reduced
the noise level (dayi + 2–dayi ≥ 8 and 20 for MOD15 and GEOv1,
Fig. 11. Direct comparison between coarse resolution products (MOD15, NET_MOD09, and NET
products to the two daily NET_MOD products, we averaged valid NET_MOD data acquired dur
between s and ΔFAPAR (FAPARNET_MOD09 − FAPARNET_MODN). Boxplots show the distributions
(For interpretation of the references to color in this figure legend, the reader is referred to the
respectively) as compared to the daily ECVNET_MOD products (dayi + 2–

dayi ≥ 2). Based on an average of 370 triplets per pixel, the ECVMOD15

noises (16.4% and 13.9%) are higher than ECVNET_MOD except
LAINET_MOD09. GEOv1 noises (1.7% and 2.3%) illustrate the smoothness
of GEOv1 products mainly due to the 30-day window used for
compositing (Baret et al., accepted for publication).

4.6. Product inter-comparison

Fig. 11 displays the 5-year pixel to pixel comparison of NET_MOD09,
NET_MODN,MOD15 and GEOv1 LAI (Fig. 11a–f) and FAPAR (Fig. 11g–l)
products estimated for the same day for NET_MOD products and during
the 4-day and 10-day periods for MOD15 and GEOv1. Based on a very
large number of samples, products are globally in good agreement
with significant positive correlation. LAIGEOv1 are highly correlated
with NET_MOD products (r2 N 0.9) with a persistent accuracy relating
the higher LAIGEOv1 values. This overestimation of LAIGEOv1 over crop-
land biome has recently been shown by Fang et al. (2013). LAIMOD15

displays largest scatterings with the 3 other LAI estimates (Fig. 11b–
d). The r2 between LAINET_MOD09 and LAINET_MODN products (0.95) is
greater than the one calculated between normalized and not normal-
ized SR (not shown in this paper; red: 0.75; NIR: 0.85). This agreement
demonstrates the acceptable consistency of the two BRDF assumptions
(PROSAILmodel for LAINET_MOD09 and VJBmodel for LAINET_MODN) apply
onMODIS CMG SR acquired over cropland. As introduced in Section 4.5,
the bias and deviation between FAPARNET_MOD09 and FAPARNET_MODN
_MODN) for LAI (subplots a–f) and FAPAR (subplots g–l). To compare MOD15 and GEOv1
ing the 4-day and 30-day periods of the composite. Subplot g-bis shows the comparison
for each 5° increment of s and the red line connects the medians. Refer to Fig. 4 legend.
web version of this article.)
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are high for low values (Fig. 11g). These values are observed mostly
during winter season when bare soil has the biggest impact on the
signal. Conversely to the VJB model where the BRDF pattern is driven
by the NDVI value (including thus low bare soil NDVI), PROSAIL model
does not include soils BRDF as soils are assumed to be Lambertian.Win-
ter season is also related to highest θs, which magnifies the anisotropy
effects and thus the deviation between the two products (Fig. 11g-bis).
Low FAPARGEOv1 products are more consistent with low FAPARNET_MODN

products since both SR input data are BRDF-corrected before the appli-
cation of BV-NET. In the same way as for LAI, FAPARMOD15 displays the
lowest correlation with the 3 other products (r2 b 0.69). MOD15 prod-
ucts are derived from a hybrid method concerning soil anisotropy
effects assumption: over cropland area, soil is assumed Lambertian
while a soil BRDF model is used over none-cropland area (Knyazikhin
et al., 1999). The land cover heterogeneity at CMG level composed of a
majority of cropland and some shrubland, forest and urban pixels may
impact on the observed scattering but does not allow a firm conclusion
concerning observed FAPARMOD15 differences.

4.7. ECV evaluation at finer spatial resolution

The whole analysis of this study was completed at the CMG spatial
resolution (0.05° in geographic coordinates) since this resolution limits
geometric scan effects which occur on the side of the images and the
Point Spread Function (PSF). However, the averaging reduces the spatial
variability. AS GCOS (2011) recommends delivering LAI/FAPAR
estimates at 250 m, it is required to confront the algorithm with finer
spatial resolutions. Fig. 12 displays the direct comparison of reference
maps ECV and ECVNET_MOD09 derived from none BRDF-corrected
500 m SR data (250 m MODIS SR are not provided for green and
1240 nm bands) and aggregated SR data (1 km to 4 km). The figure
highlights the decrease of the precision (and thus the uncertainty)
with the increase of the resolution due to the limitation of geometric
effects (scan effects, PSF, co-registration error). Notice that the relative
accuracies are preserved along the resolution and are consistent with
the relative accuracies computed at CMG level (Figs. 8a and 9a). At
500 m, 84% of LAINET_MOD09 meets the GCOS requirement (max(0.5,
20%)) compared to 98% at 4 km. Concerning FAPAR, GCOS requirement
Fig. 12. Comparison of LAI and FAPAR reference maps with NET_MOD09 obtained at 500 m, 1
were aggregated from daily 500 m MOD09GA (Terra only). Red dashed line represents the o
theGCOS (2011) specifications boundaries. Refer to Fig. 4 legend. (For interpretation of the refer
are more difficult to achieve since only 49% at 500 m and 74% at 4 km
are below max(0.05, 10%).

5. Conclusion

In this study, the performances of four LAI/FAPAR satellite products
were evaluated over cropland using a coarse spatial sampling of 0.05°
and a very high temporal sampling. We focused on one of the recently
released official LAI/FAPAR MODIS products (MCD15A3, 1 km, 4-days),
the European GEOLAND-2 LAI/FAPAR products (GEOv1, Baret et al.,
accepted for publication) and two LAI/FAPAR products derived from
the BV-NNET tool (Baret et al., 2007) applied on MODIS surface reflec-
tance (MOD09CMG, 0.05°, daily) BRDF-corrected (NET_MODN) and
non-BRDF-corrected (NET_MOD09). The evaluationwasbased on quan-
titative and qualitative assessments of the deviation between the four
products and LAI and FAPAR reference maps. The latter were derived
from BV-NNET tool applied on 105 high spatial and temporal resolution
sensor Formosat-2 (8 m) images acquired from 2006 to 2010 over a
cropland site in Southwest France. The maps were first validated at a
local scale using an intensive LAI/FAPAR in situ measurements cam-
paign, and then aggregated at a coarse spatial resolution (0.05°).

At a local scale, BV-NNET tool applied on Formosat-2 data demon-
strated a high level of robustness over the study area, i.e. croplands. It
resulted to uncertainties of 0.35 and0.07 for LAI andFAPAR, respectively,
when compared with in situ measurements acquired over three crop
types.

Inter-comparison of MODIS and aggregated Formosat-2 surface
reflectances (SR) highlighted the good quality of two distinct atmo-
spheric correction methods (Hagolle et al., 2008; Vermote et al., 2002)
applied on two very different satellite data sets and of the BRDF correc-
tion VJB model (Bréon & Vermote, 2012; Vermote et al., 2009) applied
to MODIS data. The deviations between Formosat-2 and MODIS SR
estimates were reduced by a factor of approximately 4 after angular
effects correction.

This study provided one of the first intensive validation studies over
cropland for MOD15 collection 5 and GEOLAND-2 (GEOv1) products.
The study area covers indeed main European crop types (wheat, maize,
sunflower, soybean and rapeseed), and all crop phenological stages
km, 2 km and 4 km. ECV estimates were derived from BV-NNET applied with MOD09 SR
verall fit and magenta lines the GCOS specifications boundaries. Magenta lines represent
ences to color in thisfigure legend, the reader is referred to theweb version of this article.)
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were analyzed during 5 years of Formosat-2 data acquisition. With 474
CMG reference maps pixels used for the comparison, MOD15 yielded
an uncertainty of 0.23 (23%) and 0.07 (18%) for LAI and FAPAR, respec-
tively, with low biases. At the opposite, GEOv1 displayed systematic
overestimations for LAI and FAPAR.

LAI/FAPAR estimates derived from BV-NNET tool applied on both
MODIS sensors (on board of Aqua and Terra) data were very similar
even when data were acquired and not corrected from different geom-
etry. The confrontation of the BV-NNET estimates with the reference
maps provided better agreement than MOD15 and GEOv1. The use of
BRDF corrected SR as input of BV-NNET did not improve significantly
the LAI estimates performances and the two outputs (LAINET_MODN and
LAINET_MOD09) were highly correlated (r2 = 0.95). These results
suggested that BRDF effects are well taken into account both by VJB
and PROSAIL models for vegetated covers. FAPAR estimated from non-
BRDF-corrected SR (FAPARNET_MOD09) were in good agreement with
the reference maps but showed significant discrepancies with low
winter values of FAPAR from BRDF-corrected SR (FAPARNET_MODN) and
FAPARMOD15. These discrepancieswere attributed to various Lambertian
soil properties modeling assumptions. Nonetheless, the four products
displayed a good overall temporal consistency in agreement with the
reference maps. The analysis of the time series noise highlighted that
the two daily BV-NNET estimates were smoother than the 4-day
composited MOD15 products.

This study was made in the context on the Land Product Validation
as part of other similar studies (Fang et al., 2012; Garrigues et al.,
2008;Weiss et al., 2007). Contrary to thementioned studies, the current
one aimed to validate LAI/FAPAR throughout time by combining in situ
measurements and high spatial and temporal remote sensing time
series data. Due to the limited availability of such data, the analysis
was carried out over a unique crop site. This study showed that BV-
NNET produced good results over cropland, but more investigations
using a similar time series approach need to be carry over other land
cover type (natural vegetation, grassland, savannah, different forest
types). Previous studies have shown that the good agreement obtained
with BV-NNET over crops was difficult to reproduce overmore complex
canopy such as forest. A second limitation concerns the resolution used
for the comparison. It was shown that the errors decreased with the
increase of the resolution due essentially to decrease of geometric
effects. There was nonetheless a significant discrepancy between LAI
and FAPARGCOS specifications. According to the presented comparisons
with BV-NNET products and MOD15, the LAI specification appeared
indeed much more permissive than the FAPAR one. Finally, the method
used to derive the MODIS and Formosat-2 LAI/FAPAR was based on the
same BV-NNET tool. This may be a problem of the validation process
as reference maps were validated on a limited number of field and
crop types. In the future, a generalization of the approach described in
this paper over the Joint Experiment of Crop Assessment andMonitoring
network will include a larger number of crop types.
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