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A B S T R A C T

Wildland fire is common and widespread in Alaskan tundra. Tundra fires exert considerable influence on local
ecosystem functioning and contribute to climate change through biogeochemical (e.g. carbon cycle) and bio-
geophysical (e.g. albedo) effects. These treeless landscapes are characterized by a high degree of variation in fuel
loading at scales much finer than moderate (30m) satellite observations. However, because of the remoteness of
the tundra and its lower contribution to carbon release compared to boreal forests, most frequently tundra fuels
are poorly characterized, limiting the effective development of tundra-specific fire occurrence and behavior
models. This study presents an approach to mapping the fractional coverages of major fuel type components in
Alaskan tundra circa 2015 combining field data and Landsat 8 Operational Land Imager observations. We adopt
a multi-step Random Forest method to estimate the fractional vegetation cover of woody, herbaceous, and
nonvascular components at subpixel level. We demonstrate the strong capability of exploiting multi-seasonal
spectral information to identify these component types, with R-squared values around 0.95 and root mean
squared errors below 10% for predicting their fractional cover. Our mapping products depict the spatial dis-
tribution of woody, herbaceous, and nonvascular components at subpixel resolution across Alaskan tundra,
which can function as a critical input for studying wildland fire risk and behavior in the tundra. The distributions
of these fuel components align well with climate-based tundra ecoregions although climate variables are not
included in our models.

1. Introduction

Wildland fire is common across tundra, the coldest vegetated land
ecosystem on Earth. Active fire products derived from satellite data
identify a widespread distribution of fire across the pan-Arctic tundra
(Masrur et al., 2018). Out of the 10,260 km2 global burned area in the
tundra between 2001 and 2015, 54% was concentrated in Alaska as
estimated by satellite-based burned area data (Loboda et al., 2017).
Paleoecological and historical records also reveal frequent fire occur-
rence in Alaskan tundra (French et al., 2015; Higuera et al., 2011).

As a major disturbance in the tundra, wildfire exerts strong influ-
ence on the ecosystem state and functioning, including deepening of the
active layer (Jones et al., 2015), release of ancient carbon to the at-
mosphere (Mack et al., 2011), decrease of land surface albedo (French
et al., 2016) and shift in vegetation communities (Racine et al., 2004).
These impacts further contribute to climate change through the al-
teration of surface energy budget and global carbon cycle (French et al.,
2016; Mack et al., 2011; Pearson et al., 2013). Rapid climate warming

in the Arctic observed during recent decades and projected under var-
ious climate change scenarios is likely to increase tundra fire occur-
rence in the future (French et al., 2015; Young et al., 2017).

Despite its importance for global biogeochemical and biogeophy-
sical processes, tundra fire receives much less attention compared to
fire in other ecosystems. Although the number of studies on tundra fire
has grown considerably in recent years, they mainly focus on quanti-
fying post-fire impacts (French et al., 2016; Loboda et al., 2013) or
examining fire regimes (French et al., 2015; Rocha et al., 2012). Critical
for accurate monitoring of fire potential and for assessing its ecological
and climatic impacts, in-depth knowledge of fire ecology and improved
modeling capability of fire occurrence are still lacking for the tundra.
Current approaches primarily developed upon boreal forest fire studies
are thus insufficient to establish improved modeling and predictive
capability to assess the present and future tundra fire potential.

Wildfire occurrence is controlled through the interaction of fuel,
weather, and topography (Pyne et al., 1996). Effective modeling of fire
occurrence requires accurate characterization of these environmental
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factors. This is, however, difficult for the tundra under current efforts
due to the lack of in situ data for all three factors. Compared to other
ecosystems, very limited fuel inventory plots have been visited in
Alaskan tundra because of its remoteness. Existing fuel type products
provided by LANDFIRE (https://landfire.gov) for Alaskan tundra
(Table 1) are primarily developed based on the generic fuel classifica-
tion schemes designed for other ecosystems. In particular, FBFM13,
FBFM40 and CFFDRS include logging slash in their schemes and thus
cannot describe the surface fuel compositions in the tundra. Limited fire
weather stations and little to none geodetic surveys within Alaskan
tundra also lead to the lack of accurate weather and topographical
measurements. Primarily built upon remotely sensed observations,
models and interpolations, existing strategies and datasets developed
for wildfire monitoring thus simply provide a generic estimation of the
tundra environment in Alaska.

Whereas, tundra environment varies at a very fine spatial scale with
extremely high local heterogeneity (Davidson et al., 2016; Frost et al.,
2014; Lara et al., 2018; McManus et al., 2012), which makes existing
products poorly suited for capturing its detailed spatial variability.
Specifically, Alaskan tundra presents a highly variable and mixed
combination of burnable vegetation materials, including shrubs, her-
baceous plants, mosses and lichens. These fuel type components can
affect fire occurrence and behavior in multiple ways (Innes, 2013;
Rocha et al., 2012). First, fuel flammability varies by plant types in
Alaskan tundra (Sylvester and Wein, 1981). Live leaves from shrub
species tend to have higher fire-potential ratings than herbaceous
plants. Second, the variability of post-fire fuel recovery and accumu-
lation rates among vegetation types can lead to different fire frequency
levels across the tundra (Innes, 2013). Tundra regions dominated by
grasses or sedges tend to burn more frequently than those with shrubs
or mosses do because of their faster recovery rates. Third, tundra ve-
getation composition also impacts burned area extent (Rocha et al.,
2012). For example, larger burned areas are more frequently found
within moist shrub and tussock tundra compared to non-acidic tundra.
Thus, identifying the detailed composition and distribution of fuel type
components is critical for understanding tundra fire occurrence and
behavior.

However, the fine-scale fuel components in the tundra can only be
separated at centimeter-level resolution with drone data (Fig. 1) and are
not directly classifiable even in very high resolution (VHR; 1–5m)
imagery. Categorical LANDFIRE products developed at 30-m resolution
poorly capture the actual fuel distribution in the tundra. Recent efforts,
although limited, have been conducted to characterize the fractional
vegetation properties at subpixel level for Alaskan tundra with Landsat
imagery. For example, Macander et al. (2017) developed fractional
coverage maps of plant functional types (PFTs) across the North Slope
region of Alaska. Berner et al. (2018) also mapped the fractional
dominance and aboveground biomass (AGB) of shrubs on the North
Slope. However, these products are not directly transferable to fuel
classification schemes in the tundra because of the different vegetation
cover definitions adopted. They also fail to capture the information of
other tundra regions like Seward Peninsular and Noatak, which have
more frequent and intense fire activities than the North Slope based on
historical records (French et al., 2015; Rocha et al., 2012).

While fractional cover products for tundra are only at their early
stages of emergence, a variety of approaches has been developed to

unmix land cover fractions with multi-source remote sensing data
across different (most frequently tree dominated) ecosystems.
Supervised regression algorithms with multi-temporal spectral metrics
are among the most commonly adopted methods for fractional cover
mapping (Hansen et al., 2013; Olthof and Fraser, 2007; Selkowitz,
2010). Random forest (RF) regression, an ensemble learning method
based on decision tree regression, has been found to have strong cap-
ability in distinguishing vegetation fractions (Gessner et al., 2013; Liu
et al., 2017; Marino et al., 2016). A second type of algorithms employs
spectral mixture analysis to decompose sub-pixel fractional coverages
(Guan et al., 2012; Ma et al., 2015; Mu et al., 2018; Okin, 2007). They
primarily rely on spectral indices to determine the fractions of end-
members. However, the variability among endmembers is typically
ignored in the modeling procedure (Somers et al., 2011). A third type of
geometric-optical models has also been developed to derive vegetation
fractions with multi-angular remote sensing data (Chopping et al.,
2012, 2008), though their applications are limited by the spatial data
coverage.

The NASA's Arctic-Boreal Vulnerability Experiment (ABoVE) has
provided a new opportunity for conducting in-depth research on
wildland fire in the tundra. Through the support of field campaigns by
this program, researchers have been able to enlarge the spatial coverage
and environmental conditions of field observations. Coupling with re-
mote sensing datasets and existing algorithms, these field datasets make
it possible to develop broad-scale mapping products for the tundra. In
this study, we present an RF-based approach to mapping the fractional
distributions of wildland fuel components in Alaskan tundra using
multi-spectral and multi-temporal Landsat data circa 2015 and a suite
of field observations collected across a large span of tussock and shrub
tundra sites. Specifically, we focus on three fire-carrying fuel type
components for the shrub or graminoid dominated tundra in our study
area: 1) woody (shrub) component, 2) herbaceous (primarily sedge and
grass) component, and 3) nonvascular (lichen and moss) component,
and further develop separate maps for describing their fractional cov-
erages. We determine these components in a qualitative way con-
sidering their differences in vegetation genera, fuel characteristics and
spectral properties. This scheme also corresponds to fuel strata in FCCS
and major fuel components in other existing systems (Table 1).

2. Study area

Our study area of Alaskan tundra was determined using the
Circumpolar Arctic Vegetation Map (CAVM; Walker et al., 2005; Fig. 2),
which has been widely applied in defining the tundra region in Alaska
(Beck et al., 2011; Bhatt et al., 2013; French et al., 2015; Raynolds
et al., 2008). Burning in Alaskan tundra is primarily supported by
surface vegetation fuels including evergreen or deciduous shrubs, her-
baceous species (sedges and grasses), mosses and lichens (Hu et al.,
2015; Rocha et al., 2012). Dry sites in the tundra tend to be dominated
by dwarf shrubs with some grasses, mosses, and lichens, while wet sites
have more sedges and mosses (Sylvester and Wein, 1981).

Alaskan tundra shares similar vegetation communities and species
across ecoregions (Alaska Department of Fish and Game, 2006; Viereck
et al., 1992). The Unified Ecoregions of Alaska identifies four ecoregion
groups and eleven ecoregion units within Alaskan tundra based on their
climate, vegetation, geology, and topography (Nowacki et al., 2003;

Table 1
LANDFIRE fuel products and their major fuel strata or types for Alaskan tundra.

Fuel classification system Major fuel strata or types

13 Anderson Fire Behavior Fuel Model (FBFM13; Anderson, 1982) Grass, shrub, timber, logging slash
40 Scott and Burgan Fire Behavior Fuel Model (FBFM40; Scott and Burgan, 2005) Nonburnable, grass, grass-shrub, shrub, timber-understory, timber litter, slash-blowdown
Canadian Forest Fire Danger Rating System (CFFDRS; Hirsch, 1996) Coniferous, deciduous, mixedwood, slash, open
Fuel Characteristic Classification System (FCCS; Ottmar et al., 2007) Canopy, shrub, nonwoody fuels, woody fuels, litter-lichen-moss, ground fuels
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Fig. 2). With a dry, polar climate, the Arctic Tundra ecoregion group is
dominated by shrub and sedge tundra underlain by continuous per-
mafrost. The Bering Tundra group shows a moist polar or maritime
climate with principally Dryas-lichen and moist sedge-tussock tundra.
Bering Taiga group, having a moist polar climate with relatively thin
permafrost, is generally covered by Dryas-lichen, sedge-shrub tundra

and mixed forests. Dominated by a dry continental climate, the Inter-
montane Boreal group are primarily covered by shrublands and forests.

3. Data and methods

The variability of the tundra vegetation types in surface reflectance

Fig. 1. Examples of highly mixed fuel components in Alaskan tundra: (a) shrub and graminoid tussocks; (b) grass, lichen and moss.

Fig. 2. Alaskan tundra region defined by CAVM and corresponding ecoregions identified by the Unified Ecoregions of Alaska: 2001 (Nowacki et al., 2003). Each
colour represents one ecoregion unit. Ecoregion units within the same Level 2 ecoregion groups are separated by different line patterns.
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and phenology makes it possible to capture the subpixel compositions
using multi-spectral and multi-temporal remote sensing data. Dwarf
shrub, sedge, and moss/lichen mix show distinguishable spectra ac-
cording to the ground-based hyperspectral profiles measured in the
North Slope (Buchhorn et al., 2013; Davidson et al., 2016). Both field
observations and satellite-derived spectral indices also identify con-
siderable variations in the phenology patterns of tundra vegetation
species during their short growing seasons (Beamish et al., 2017; Shaver
and Kummerow, 1991; Stow et al., 1993). For example, graminoid
species such as tussock cottongrass (Eriphorum vaginatum) and Bigelow's
sedge (Carex bigelowii) tend to have an earlier onset of leaf expansion
compared to shrub species like tealeaf willow (Salix pulchra) and dwarf
birch (Betula nana; Shaver and Kummerow, 1991). By summarizing the
fuel properties, spectral characteristics and phenology patterns of these
vegetation types described above, we identified the following compo-
nents of surface fuel types in Alaskan tundra for large-scale mapping in
this study: 1) woody (shrub), 2) herbaceous (primarily sedge and grass),
and 3) nonvascular (lichen and moss).

We then designed a four-step method to map the spatial distribu-
tions of these fuel components (Fig. 3): (1) developing seasonal com-
posites of spectral bands and indices with multi-temporal Landsat
imagery for the entire Alaskan tundra (Section 3.2); (2) generating a
“tundra vegetation mask” to identify the shrub or graminoid dominated
tundra with land cover classification (Section 3.3); (3) RF modeling of
fractional fuel component cover (Section 3.4); (4) mapping fractional
cover of major fuel type components across the shrub or graminoid
dominated tundra in Alaska (Section 3.5).

3.1. Data sources

3.1.1. Landsat data
Landsat 8 Operational Land Imager (OLI) imagery acquired from

2013 to 2017 was used to develop spatially continuous mosaics of
Alaskan tundra. We downloaded the Level-2 surface reflectance data
generated with Landsat 8 Surface Reflectance Code (LaSRC; Vermote
et al., 2016) from USGS Earth Resources Observation and Science

Fig. 3. Flowchart of fractional fuel components mapping.

Table 2
Summary of Landsat 8 OLI tiles processed in this study. WRS2 path/row overlaps exist between different regions.

Major regions WRS2 path range WRS2 row range Total number of path/rows Total number of scenes

North Slope and Noatak 64–85 10–13 70 932
Seward Peninsula 75–84 13–15 25 358
Southwest Alaska 73–80 15–19 29 752
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Center (Table 2). Since the growing seasons of tundra vegetation gen-
erally start from late-April or May and end in October, for each year, we
downloaded images acquired during late-April through October with
land cloud coverage<70%, as estimated by the product metadata.
Additionally, we excluded images with 80–90% snow coverage over
vegetated land surface in late April, May and October based on our
visual interpretation during the data download. In total, we obtained
and processed 1837 Landsat 8 scenes covering 113 Worldwide Re-
ference System-2 (WRS2) path/rows as summarized in Table 2.

3.1.2. Field observations
We collected fractional cover observations of the three fuel com-

ponents from 222 10× 10m plots during three field campaigns in the
tussock and shrub tundra of Alaska (Fig. 4): 2012 campaign in the
North Slope (NASA Terrestrial Ecology Grant NNX10AF41G), 2016
campaign in the Noatak River National Preserve and 2017 campaign in
the Seward Peninsula (NASA Terrestrial Ecology Grant NNX15AT79A).
Fractional coverages of fuel components within each plot were de-
termined using ocular assessment. All three campaigns were conducted
during late-July to mid-August. Considering the limited amount of field
sites that we can visit during one single field trip, we combined field
data from all three campaigns in this study to provide a robust sample
collection for driving an ecosystem-wide mapping method.

Field plots were established following a generally accepted scheme
(Dyrness and Norum, 1983; Viereck, 1979). During each campaign, we
collected data within recovering burns as well as within areas that have
not been identified as burned by either management records or satellite
observations. This data collection design ensured that field data ob-
servations sampled a broad range of fire history and topographical
features with varying compositions of woody, herbaceous, and non-
vascular vegetation cover. The 2016 and 2017 data collection cam-
paigns also ensured that a variety of drainage conditions was in-
corporated into the stratified sampling scheme. Specifically we

identified four drainage categories based on slope and flow accumula-
tion using a method proposed by Kasischke and Hoy (2012). We then
randomly selected South-East corner point for the 10× 10m plots
considering these factors prior to field visits. Although assessment of
fractional cover during the 2012 field visit was conducted using the
similar protocol, the site set up was more systematic in order to support
a proper characterization of field sites for radar observations. In this
case, corner points of 10×10m plots were set up in two parallel
transect lines 100m apart within an area of visibly uniform conditions
following a previously established field protocol in existing studies
(Bourgeau-Chavez et al., 2007, 2013).

3.1.3. Auxiliary data
To assist the development of seasonal composites, we utilized the

16-day Moderate Resolution Imaging Spectroradiometer (MODIS)
Vegetation Indices product (MOD13Q1 Version 6) available on Google
Earth Engine from 2013 to 2017 to examine the phenology of tundra
vegetation and to determine the growing season periods for Landsat
data collection and processing. The Normalized Difference Vegetation
Index (NDVI) data layer in MOD13Q1 was used for deriving phenology
trends.

Although the quality assessment (QA) band provided by the Level-2
LaSRC product identifies water pixels for each scene, we adopted the
30-m ABoVE Surface Water Extent data (Carroll et al., 2016) centered
in 2011 to identify the representative extent of water bodies across the
study area for spatial and temporal consistency. Using Landsat imagery
centered on 1991, 2001 and 2011, this product maps the distribution of
surface water across the boreal and tundra regions in North America in
these epochs (Carroll et al., 2016).

To develop the tundra vegetation mask in step 3, we utilized a set of
30-m LANDFIRE products and VHR imagery freely available on Google
Earth to assist the sampling of training and validation datasets for land
cover classification. We acquired the FCCS, CFFDRS and FBFM40

Fig. 4. Alaskan tundra region as defined by CAVM (a; Walker et al., 2005) and three field campaign sites: (b) 2016 field plots in Noatak River National Preserve, (c)
2017 field plots in Seward Peninsula, (d) 2012 field plots in North Slope.
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products for Alaska (Table 1) in the latest available version 1.4.0, which
incorporates Landsat imagery through 2014. VHR time series imagery
provided by Google Earth was also accessed to help determine training
and validation data through visual interpretation.

3.2. Developing seasonal composites of spectral bands and indices

First, we developed continuous composites of surface reflectance
bands and spectral indices for pre-growing (late-April to early-June),
peak-growing (mid-July to mid-August) and post-growing season (end-
August to end-September). Since the specific timing of growing events
varies by year and latitude, we extracted vegetation phenology patterns
using NDVI data from MOD13Q1 to determine the specific dates of
three growing seasons. We particularly examined four graminoid or
shrub tundra regions as identified by CAVM across Alaska from north to
south and compared the NDVI profiles of ten randomly sampled pixels
in each region (Fig. 5). According to the vegetation growing patterns
shown from the profiles, we assigned the Landsat data acquired from
April 21 to June 10 as the pre-growing season, the data acquired from
July 1 to August 20 as the peak-growing season, and the data acquired
from August 30 to September 30 as the post-growing season.

We then downloaded and organized the Landsat 8 data by growing
seasons, and extracted all surface reflectance and QA bands. Four ratio-
based spectral indices and three Tasseled Cap (TC) components
(Brightness, Greenness, and Wetness; Baig et al., 2014) were calculated
for each scene to capture the detailed variability of vegetation spectral
characteristics (Table 3). Particularly, we considered four ratio-based
indices here including NDVI (Tucker, 1979), Normalized Burn Ratio
(NBR; García and Caselles, 1991) Normalized Difference Water Index
with near-infrared (NIR) and shortwave-infrared (SWIR) bands
(NDWI1; Gao, 1996), and Normalized Difference Water Index with
green and NIR bands (NDWI2; McFeeters, 1996).

Since Maximum Value Compositing (MVC) approach is effective in
minimizing the impacts of cloud contamination, off-nadir viewing,
aerosol and water vapor, we adopted this widely used method for

developing seasonal mosaics across Alaskan tundra (Holben, 1986;
Potapov et al., 2008; Roy et al., 2010; Stow et al., 2004). Before mo-
saicking, we masked out the cloud, cloud shadow, and snow pixels
detected by the CFMask algorithm (Zhu et al., 2015). We further con-
ducted morphological dilation for the masked pixels using a disk-
shaped structuring element with five as the radius to remove the un-
detected cloud and shadow pixels. Although cloud/shadow pixels are
generally thought to have lower NDVI than clear-sky pixels, pixels
along the cloud/shadow edges mixed by shadow and vegetation signals
could have higher NDVI than the clear-sky ones (Fig. 6). Since the di-
lated mask could still omit these edge pixels with high NDVI values that
can affect MVC results, we further filtered them out using the following
criteria based on empirical values identified in our study area:

< >and NDVI0.2 0.6,NIR

where ρNIR represents the surface reflectance of NIR band. For each
growing season, we identified the Landsat pixels with the maximum
NDVI and then generated the mosaics for each band using the values
from these pixels. The three output mosaics each include six spectral
bands and seven indices as listed in Table 3. They then served as the
input data for the following steps.

3.3. Generating a tundra vegetation mask for shrub or graminoid dominated
tundra

Since CAVM simply defines an approximate tundra boundary based
on 1-km Advanced Very Higher Resolution Radiometer (AVHRR) data
(Walker et al., 2005), we further developed a “tundra vegetation mask”
layer to refine the shrub or graminoid dominated tundra region using
RF classification. We have removed water body pixels in the previous
step using the nominal water mask (Carroll et al., 2016). Here we
identified three land cover classes including (1) tall shrub or tree, (2)
built-up or barren land, (3) shrub or graminoid dominated tundra.

We first used the three acquired LANDFIRE products (CFFDRS,
FBFM40 and FCCS) to define the general regions of the three classes

Fig. 5. Averaged NDVI profiles extracted from MODIS product (MOD13Q1) on Google Earth Engine in four regions across Alaskan tundra (a). Ten pixels were
randomly selected and plotted for each region as an example (b): (1) North Slope, (2) Noatak River National Preserve, (3) Seward Peninsula, (4) Southwest Alaska.
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based on their classification codes (Table 4). We then examined the
random points by visually interpreting the moderate resolution and
VHR time series imagery available on Google Earth based on expert
knowledge. Points that are not representative of the classes they are
supposed to represent were removed from the sampling dataset. For
each class, we extracted the intersections of each product as its
boundary for generating stratified sample points by area. In total, we
acquired 436 points for the tall shrub or tree, 1176 points for the built-
up or barren land, and 5238 points for shrub and graminoid tundra.

We used all bands from the seasonal mosaics as the input features
for training and mapping the tundra vegetation mask. For each class,
we randomly selected 70% of the sampled points for training the RF
classification algorithm and reserved the remaining 30% for assessing

the classification accuracy. We also reported the overall out-of-bag
(OOB) error rate to estimate the classifier error based on the training
data. Specifically, the OOB error rate is generated by estimating the
ratio of misclassification among all bootstrap iterations (Breiman,
2001).

3.4. RF modeling of fractional cover

Before modeling, we compared our designed sampling plots with
our full fire records, including both MODIS Active Fire Product and
Alaska Large Fire Database, to make sure that our plots were not im-
pacted by fire and thus representative of undisturbed conditions since
the time of the measurement. To predict the fractional cover of surface

Table 3
Landsat 8 spectral metrics used for developing seasonal composites.

Categories Properties Details

Surface reflectance bands Band 2 Blue: 0.45–0.51 μm
Band 3 Green: 0.53–0.59 μm
Band 4 Red: 0.64–0.67 μm
Band 5 NIR: 0.85–0.88 μm
Band 6 SWIR1: 1.57–1.65 μm
Band 7 SWIR2: 2.11–2.29 μm

Ratio-based spectral indices NDVI (ρNIR− ρRed)/(ρNIR+ ρRed)
NBR (ρNIR− ρSWIR2)/(ρNIR+ ρSWIR2)
NDWI1 (ρNIR− ρSWIR1)/(ρNIR+ ρSWIR1)
NDWI2 (ρGreen− ρNIR)/(ρGreen+ ρNIR)

Tasseled cap components TC brightness (TCB) 0.3029ρBlue+0.2786ρGreen+0.4733ρRed+0.5599ρNIR+0.508ρSWIR1+ 0.1872ρSWIR2

TC greenness (TCG) −0.2941ρBlue−0.243ρGreen−0.5424ρRed+0.7276ρNIR+0.0713ρSWIR1− 0.1608ρSWIR2

TC wetness (TCW) 0.1511ρBlue+0.1973ρGreen+0.3283ρRed+0.3407ρNIR−0.7117ρSWIR1− 0.4559ρSWIR2

Fig. 6. Unmasked cloud shadow pixels with high NDVI values from a Landsat 8 scene (Landsat Scene Identifier: LC80690122017228LGN00) in our study area.
Examples are highlighted in yellow rectangles: (a) LandsatLook natural colour image, (b) NDVI and cloud/shadow/water mask identified by Level-2 QA data from the
same Landsat scene. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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fuel components at the large scale, we trained individual RF regression
models for the three components separately with our field observations
and seasonal composites developed in Section 3.2. In particular, the
spectral properties from the three growing seasons, including all six
surface reflectance bands, four ratio-based spectral indices, and three
TC components, were used as the input parameters to train the RF
models for estimating fractional cover. For each RF regression model,
we set the number of input variables at each split to 14, the number of
trees to grow as 500, and the node size to 5.

To assess the modeling accuracy, we not only examined the internal
metrics provided by the RF regression algorithm, but also conducted
cross-validation with our field observations. Specifically, we assessed
the internal metrics including OOB, percent of variance explained,
mean squared error (MSE) and root mean squared error (RMSE). For the
cross-validation, we reserved 70% field data for model training and
kept the remaining 30% for validation using a stratified random sam-
pling strategy. We then reported the RMSE and R-squared values be-
tween the observed and estimated fraction values with the 30% vali-
dation dataset. For each fuel type component, we ran RF regression
multiple times and selected an optimal one as the final model for es-
timating fractional cover.

We also assessed the importance of predictors in determining the
fractional cover in each model. Although Mean Decrease Gini and Mean
Decrease Accuracy (MDA; Breiman, 2001, 2002) are the most com-
monly used indicators to assess the contributions of independent vari-
ables; there is an on-going debate about their comparative robustness
(Louppe et al., 2013). Here we chose to report the MDA, which eval-
uates the variable importance by estimating the mean decreased MSE
with permutated variable values.

3.5. Fuel component mapping

In the final step, we combined the results generated from the pre-
vious sections to develop fractional cover maps for the three fuel
components. Only shrub or graminoid dominated tundra pixels identi-
fied by the “tundra vegetation mask” in Section 3.3 were subsequently
used for mapping. We used the RF regression models developed in
Section 3.4 to estimate the fractional cover of fuel components in
Alaskan tundra. In addition to the statistical metrics we have adopted
for assessing the RF modeling accuracy in Section 3.4, we further as-
sessed our mapping results through comparisons with existing data
products at similar spatial scales considering the limited coverage of

our field observations.
We first examined the distribution of our fuel component fractions

against the ecoregions based on the expert knowledge. The variability
of climatic and topographic conditions across ecoregions in the tundra
affects the actual distribution of the burnable vegetation materials.
Here we utilized the Unified Ecoregions of Alaska (Nowacki et al.,
2003) product to define the ecoregions within the tundra (Fig. 2). For
each fuel component, we generated boxplots to summarize the fraction
distributions within the two Level 1 ecoregion groups (“Boreal” and
“Polar”). Since most ecoregions in Alaskan tundra are elements of the
“Polar” group, we further examined the distributions of each ecoregion
units within the “Polar” Level 1 group.

We then compared our results with existing vegetation cover pro-
ducts developed for the North Slope of Alaska to examine the differ-
ences caused by fractional cover definitions, field sampling strategies,
and modeling methods. Although no fractional fuel type products have
been developed across Alaskan tundra, Beck et al. (2011) mapped the
shrub cover of deciduous species circa 2000 and Macander et al. (2017)
quantified the fractional distributions of 16 PFTs across the North Slope
of Alaska. Here we examined these products against our field ob-
servations. We then compared the overall results between our maps and
these two products with randomly selected sample points in the over-
lapping regions of all products. Since the definition of PFTs is not di-
rectly transferable to our fuel component scheme, here we used the
“Total shrub” of PFT to compare with our woody component, the “Total
herbaceous” of PFT to compare with the herbaceous component, and
the “Total nonvascular plants” to compare with the nonvascular com-
ponent. Although Berner et al. (2018) also mapped the dominance of
shrub in the North Slope, they defined the shrub dominance differently
as the percentage of shrub AGB over the total plant AGB and thus was
not considered for comparison.

4. Results

4.1. Accuracy assessment of tundra vegetation mask

We used both internal metrics from the RF classification algorithm
and accuracy assessment to evaluate the performance of our tundra
vegetation mask. The RF algorithm showed an overall OOB error rate of
2.21%. We then generated the confusion matrix using the reserved 30%
data to validate the classification result (Table 5). The overall classifi-
cation accuracy reaches 97.91%, although the producer's accuracy and

Table 4
Land cover classes and corresponding classification codes from LANDFIRE products.

Land cover classes LANDFIRE products Fuel class or identification code

Tall shrub or tree FCCS 85, 87, 88, 89, 92, 93, 94, 101, 103, 105, 322, 332
CFFDRS C1, C2, C3, C4, C5, C6, C7

Built-up or barren land FCCS 0
CFFDRS NB1, NB9
FBFM40 NB1, NB9

Shrub or graminoid dominated
tundra

FCCS 95, 97, 98, 99, 100, 318, 323, 324, 326, 327, 330, 331, 333, 334, 336, 337, 338, 339, 601, 602, 603, 604, 610, 611,
614, 615, 616, 617, 620, 623, 624, 625, 627, 629, 630, 632, 635, 637, 638

CFFDRS D1, S2, S3, O1A, M1, M2A, M2B, M2C, M3

Table 5
Confusion matrix of land cover classification for developing tundra vegetation mask.

Reference

Tall shrub/tree Built-up/barren Tundra Total User's accuracy

Map Tall shrub/tree 102 0 11 113 90.27%
Built-up/barren 0 351 1 352 99.72%
Tundra 29 2 1560 1591 98.05%
Total 131 353 1572 2056 1
Producer's accuracy 77.86% 99.43% 99.24% 1 Overall accuracy: 97.91%
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user's accuracy vary among each land cover class. The class of tall shrub
or tree receives the lowest producer's accuracy (77.86%) and user's
accuracy (90.27%), while the other two classes have consistently high
accuracy values. Across the 494,971.4 km2 Alaskan tundra as estimated
by CAVM, we identified 380,755.2 km2 as shrub or graminoid domi-
nated tundra.

4.2. Accuracy assessment of fractional cover estimation

To assess the modeling results, we first examined the internal me-
trics generated from RF regression (Table 6). The RF models developed
for all three fuel components perform well in explaining the percent of
the variance, with 79.83%, 80.76%, and 80.02% for the woody (shrub),
herbaceous (sedge and grass), and nonvascular (lichen and moss)
components respectively. They also report high predictive power for
fractional cover mapping with low MSE and RMSE values. The woody,
herbaceous and nonvascular models show MSE values of 0.008852,
0.008117 and 0.007234, and RMSE values of 9.41%, 9.01%, and
8.51%, respectively.

We then evaluated the predicted fractional cover using the reserved
30% field samples. The comparisons between the modeled and ob-
served values show strong agreement for the three fuel components
(Fig. 7). The RSME values for the validation samples are within 2% of
those generated from the internal model statistics with 8.04%, 9.57%,
and 10.11% for woody, herbaceous and nonvascular components, re-
spectively. The R-squared values between observations and estimations
for the validation data are approximately 0.95 for all fuel components,
with 0.9717, 0.9633, and 0.9395 for the woody, herbaceous and non-
vascular components respectively.

Spectral bands and indices during pre- and peak-growing seasons
play the most important role in determining the fractional cover of
woody and herbaceous components in Alaskan tundra (Fig. 8 a-b),
while spectral indices during post-growing seasons contribute most to
the cover estimation of nonvascular component (Fig. 8 c). For the
woody component, the spectral reflectance of the red band during the
peak-growing season shows the highest MDA value of 14.73% in the RF

regression model, followed by that of the blue band during the pre-
growing season (13.53%) and NDVI during the peak-growing season
(11.78%). For the herbaceous component, the spectral reflectance of
the red band during the pre-growing season shows the highest MDA
value of 16.66%, followed by NBR during the peak-growing season
(15.79%) and the spectral reflectance of the green band during the pre-
growing season (13.83%). As for the nonvascular component, NBR
during the post-growing season is the most important independent
variable in the regression model with an MDA value of 19.15%. NDWI2
and NDVI during the post-growing season also show high MDA values
(13.77% and 11.75% respectively) in determining the fractional cover.
Although RF regression can alleviate the multicollinearity issue through
bootstrap aggregation, biases in variable importance can still exist
among correlated features.

4.3. Fractional cover of major fuel type components across Alaskan tundra

We mapped the fractional distributions of three fuel components
across the shrub and graminoid tundra in Alaska circa 2015 (Fig. 9).
From the south to the north of Alaska, shrub cover shows a slightly
decreasing trend as the temperature falls (Fig. 9a). The Southwest
Alaska shows a larger portion of the area with high shrub fraction
compared to the North Slope and the Seward Peninsula. For the North
Slope and the Seward Peninsula, shrub cover is higher along the rivers
(Fig. 9). The herbaceous component of sedge and grass is dominant and
widely distributed across the entire study area (Fig. 9b). In particular,
the central North Slope has a high fractional cover of sedge and grass.
As can be expected, the nonvascular component is highly concentrated
in the northern part of the North Slope (Fig. 9c). From the north to the
south across the entire tundra region, a general decreasing trend in the
distribution of lichen and moss is clearly observed.

A closer examination of our mapping results in the Noatak River
National Preserve shows an increase in the shrub fraction along the
drainages (Fig. 10b), while other regions have higher coverages of the
herbaceous fuels including sedge and grass (Fig. 10c). The amount of
the nonvascular component is generally low in this example and is most
frequently observed in high concentrations only close to the barren land
along the river or the mountains (Fig. 10d).

We then summarized the spatial distributions of fractional fuel
cover by the unified ecoregions (Nowacki et al., 2003) in Alaskan
tundra to examine their patterns. As expected, the comparison between
the two Level 1 schemes (Boreal and Polar) shows a higher coverage of
the woody component within the “Boreal” scheme (Fig. 11a). The
“Boreal” scheme has a mean shrub coverage of 37.96% while that of the
“Polar” scheme has a lower mean value of 31.57%. The “Boreal”

Table 6
Statistical summary of three RF regression models.

Fuel component % variance MSE RMSE

Woody component 79.83 0.008852 9.41%
Herbaceous component 80.76 0.008117 9.01%
Nonvascular component 80.02 0.007234 8.51%

Fig. 7. Scatter plots comparing estimated and observed fractional cover using the validation data for (a) woody, (b) herbaceous, and (c) nonvascular components.
RMSE and R-squared values between the estimations and observations are reported in the scatter plot of each component. RSMEs are within 2% of those from the
internal model statistics. R-squared values reach 0.95 for all components.
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scheme has an interquartile range (IQR) of 33.23% to 43.47%, while
the IQR of “Polar” ranges from 24.23% to 37.82%. Since the “Polar”
scheme includes three Level 2 groups and nine ecoregion units, we
further examined the distribution of shrub coverage within this scheme.
From north to south, the shrub coverage increases gradually among all
the Level 2 groups and the ecoregion units (Fig. 11b). The woody
component cover of units in “Arctic Tundra” and “Bering Tundra” is
comparable but lower than that in the “Bering Taiga” in general. Spe-
cifically, the “Beaufort Coastal Plain” located in the northernmost part
of Alaska has the lowest shrub cover on average of about 27.61%, while
the southernmost “Ahklun Mountains” unit has the highest mean cover
of about 39.04%.

For the herbaceous component (sedge and grass), the comparison
between the two Level 1 schemes (Boreal and Polar) suggests no ob-
vious differences (Fig. 12a). The “Boreal” scheme shows a mean her-
baceous coverage of 38.76% while that of the “Polar” scheme has a
higher value of 39.58%. The IQR of “Boreal” and “Polar” schemes are
about 33.77%–43.23% and 33.28%–45.68% respectively. The mean
fractional cover values of all Level 2 groups are also comparable in
general, with values of about 38% to 40%. The sedge/grass distribution
of units within the “Bering Taiga” group is consistent (Fig. 12b).
However, the “Brooks Foothills” in “Arctic Tundra” and the “Bering Sea
Islands” in “Bering Tundra” tend to have a higher herbaceous cover
than other units within groups do.

For the nonvascular (lichen and moss) component, the comparison
between the Level 1 schemes shows a higher cover of nonvascular ve-
getation within the “Polar” scheme (Fig. 13a). The “Boreal” scheme
shows an average coverage of 33.95% while that of the “Polar” scheme
has a higher value of 41.32%. The “Boreal” scheme has an IQR of
15.24% to 40.11%, while that of the “Polar” scheme ranges from
23.41% to 56.99%. From north to south, the lichen/moss cover shows a
slightly decreasing trend among the Level 2 groups and the ecoregion
units (Fig. 13b). The mean values of lichen/moss cover in the “Arctic
Tundra”, “Bering Tundra” and “Bering Taiga” are about 47.14%,
36.90%, and 30.04% respectively. Specifically, the “Beaufort Coastal
Plain” and “Brooks Range” show the highest coverages of lichen/moss
compared to other units. Within the “Bering Tundra” and “Bering
Taiga” groups, the nonvascular fractional cover also decreases gradu-
ally as the latitudes become lower.

We further compared our outputs with existing fractional vegetation
cover products developed for the tundra. A scatter plot comparison
between our field observations and the shrub cover circa 2000 (Beck
et al., 2011) suggests that the 2000 shrub cover product overestimates
the actual fractional cover of shrub in the North Slope (Fig. 14a).
Compared to our field observations of fractional cover collected in the

North Slope, the PFT maps circa 2015 (Macander et al., 2017) show an
overestimation of shrub cover and an underestimation of lichen/moss
cover, while the fractional cover values of herbaceous species (sedge/
grass) are relatively comparable (Fig. 14b).

The comparison between our maps and the existing products using
approximately 20,000 randomly selected pixels in the North Slope
(Fig. 15) indicates similar patterns to those observed in comparing
other products to field data directly. Fractional cover values of woody
component (shrub) in both products are higher than the estimations in
our results (Fig. 15a–b). Specifically, the majority of values were
identified as 100% or 0% in Beck et al. (2011) in the North Slope. The
fractional cover values of herbaceous species (sedge/grass) are com-
parable between our result and the product developed by Macander
et al. (2017), ranging from about 20% to 75% (Fig. 15c). However, the
coverage values of nonvascular component (lichen/moss) are much
higher in our result when compared to those in the PFT product
(Fig. 15d). The PFT product suggests that the nonvascular species in-
cluding lichen and moss have a general coverage of 0%–25% in the
North Slope, while our map indicates that lichen/moss can cover from
0% to 80%, mostly concentrated between 10% and 50% (Fig. 15d).

5. Discussion

Woody species in Alaskan tundra usually have higher surface re-
flectance in the NIR to SWIR spectrum but lower reflectance in the
visible spectral regions compared to herbaceous species such as sedge
and grass (Buchhorn et al., 2013; Strauss et al., 2012). Previous studies
have demonstrated the importance of multi-spectral bands and NDVI in
estimating the fractional coverage of shrub (Kushida et al., 2009;
Selkowitz, 2010; Vierling et al., 1997). Multi-seasonal information and
middle-infrared portion of the spectrum also contribute strongly to the
accuracy of shrub cover prediction (Selkowitz, 2010). Both woody and
herbaceous models demonstrate the importance of pre-growing season
spectral information in distinguishing the woody and herbaceous
components. This can be explained by their different phenological
stages (Shaver and Kummerow, 1991). The in situ measurements of
surface reflectance have shown that the lichen/moss component has
different spectrum patterns when compared to woody or herbaceous
species (Buchhorn et al., 2013; Huemmrich et al., 2013; Strauss et al.,
2012). Our modeling result suggests that spectral indices integrating
these bands in the post-growing season are effective in separating li-
chen/moss from woody and herbaceous components. This is likely to be
driven by the exposure of spectral signals by lichen/moss due to the
senescence of vascular species in the tundra during September.

In addition to spectral bands provided by 30-m Landsat imagery,

Fig. 8. Top 10 important independent variables and their MDA values from RF regression models for (a) woody, (b) herbaceous and (c) nonvascular components.
Spectral bands and indices during pre- and peak-growing seasons play the most important role in determining the fractional cover of woody and herbaceous
components (a-b), while spectral indices in the post-growing seasons contribute most to the cover estimation of nonvascular component (c).
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existing research has suggested that higher spatial resolution and red-
edge (RE) spectral bands have the potential to improve fractional ve-
getation mapping efforts in the tundra (Davidson et al., 2016;
Selkowitz, 2010; Stow et al., 1993). The launch of Sentinel-2 Multi-
Spectral Instrument incorporating three RE bands provides the oppor-
tunity to improve the estimation accuracy of surface vegetation dis-
tribution at a broad spatial scale.

Developed only using spectral signatures, our mapping results also
show effectiveness in representing the fuel component distribution
across ecoregions with different bioclimatic conditions. The “Boreal”
ecoregion scheme shows a higher cover of the woody component but a
lower cover of the nonvascular component than the “Polar” ecoregion
scheme in general. Mostly located in interior Alaska with a dry con-
tinental climate, ecoregions in the “Boreal” scheme tend to be domi-
nated by shrubs and even boreal forests in these mountainous regions.
Within the “Polar” scheme, the fractional cover of fuel components
identified in this study also corresponds to the bioclimatic environment
based on expert knowledge (Gallant et al., 1995; Nowacki et al., 2003).

The low fractional cover values of the woody component in the Beau-
fort Coastal Plain and Brooks Foothills ecoregions are likely to be driven
by their polar climate and poor soil drainage conditions. With higher
summer temperature and more annual precipitation then other tundra
areas, ecoregions as part of the “Bering Taiga” group (Nulato Hills,
Yukon-Kuskokwim Delta and Ahklun Mountains) are covered with
more woody fuels such as dwarf or tall scrub communities with wet
graminoid species dominating in some regions, which is also evident in
our maps.

Although our accuracy assessment shows strong predictive cap-
ability for fractional fuel mapping in Alaskan tundra, uncertainties still
exist in our modeling and mapping results due to the limited spatial
coverage of field observations, partially caused by the difficulty of
obtaining field observations in the tundra. Regions with no available
field data such as the Southwest Alaska and the northern North Slope
could have higher uncertainties in our fractional cover maps. The
mismatch of spatial resolutions between our 10×10m field plots and
the 30×30m Landsat 8 pixels could also introduce errors in the

Fig. 9. Fractional cover of three major fuel type components across Alaskan tundra: (a) woody, (b) herbaceous, and (c) nonvascular components.
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modeling and validation processes. During field campaigns, we have
made our efforts on establishing sample plots in areas with visibly
homogeneous distributions of vegetation species. However, it is pos-
sible that the actual vegetation coverages across one Landsat pixel may
not be fully represented by the smaller than pixel field plots. Since the

impacts of sample plot size on modeling and validation of fractional
coverages is still unknown, future studies can elaborate on this and
provide insights.

In addition, our results largely rely on the quality of the seasonal
mosaics developed across the entire study area. First, maintaining the

Fig. 10. Examples of fractional cover distribution in a tundra region near Lake Narvakrak in the Noatak River National Preserve: (a) VHR image from Google Earth;
(b) fractional cover of woody component; (b) fractional cover of herbaceous component; (d) fractional cover of nonvascular component.

Fig. 11. Boxplots of woody component cover against ecoregions in Alaskan tundra: (a) woody component cover by Level 1 scheme; (b) woody component cover by
Level 2 ecoregion groups in the “Polar” scheme (ecoregion units are colored from light yellow to dark blue based on the latitude from north to south). Shrub coverage
increases gradually among all the Level 2 groups and the ecoregion units, from north to south (b). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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spatial consistency of these mosaics in Alaskan tundra is hindered by
the pervasive cloud coverage and incomplete masking of cloud and
cloud shadow pixels in the Landsat data. Although the CFMask algo-
rithm delineates the major regions of cloud and shadow, it fails to
identify all cloud- and shadow-impacted pixels. Second, matching
multiple phenological stages of vegetation across different regions is
challenging because of the differences in illumination properties and
vegetation growing states under different climatic conditions (Muller
et al., 1999; Selkowitz, 2010). Therefore, in order to maintain spatially
and temporally consistent mosaics, we adopted the MVC method based
on NDVI values with carefully defined growing periods using multi-year

Landsat imagery.
It is also worth mentioning that the mismatches between our results

and existing products (Section 4.3) can be caused by the differences in
the cover definition and field sampling strategy. Beck et al. (2011)
defined two shrub types – tall (> 1m) and short – and mapped the total
and tall shrub coverages. Here we chose the total shrub cover for
comparison, which can explain why our estimates are lower. Macander
et al. (2017) developed the fractional distribution maps of detailed
PFTs. We used their integrated coverages of total shrubs, total her-
baceous and top nonvascular plants for comparison, which can lead to
the differences in our result comparisons. In addition, instead of

Fig. 12. Boxplots of herbaceous component cover against ecoregions in Alaskan tundra: (a) herbaceous component cover by Level 1 scheme; (b) herbaceous
component cover by Level 2 ecoregion groups in the “Polar” scheme (ecoregion units are colored from light yellow to dark blue based on the latitude from north to
south). Herbaceous cover values among Level 2 groups are generally comparable, with relative higher values in the “Brooks Foothills” and “Bering Sea Islands” units
(b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Boxplots of nonvascular component cover against ecoregions in Alaskan tundra: (a) nonvascular component cover by Level 1 scheme; (b) nonvascular
component cover by Level 2 ecoregion groups in the “Polar” scheme (ecoregion units are colored from light yellow to dark blue based on the latitude from north to
south). Nonvascular coverage shows a decreasing trend among the Level 2 groups and the ecoregion units from north to south (b). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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collecting field measurements, Beck et al. (2011) extracted sample data
by aggregating classified pixels from VHR imagery for training their
regression algorithm, which could lead to the overestimation the actual

shrub coverage in their mapping output. Moreover, Macander et al.
(2017) collected field data from sites widely distributed across the
North Slope, while our field data had no coverage within the Beaufort

Fig. 14. Scatter plots comparing our field observations and estimations from other products: (a) 2000 shrub cover (Beck et al., 2011); (b) PFT products (Macander
et al., 2017). Compared to our field observations, the PFT product (Macander et al., 2017) tends to overestimate the shrub cover, but underestimate the lichen/moss
cover. The fractional cover of herbaceous species (sedge/grass) is relatively comparable.

Fig. 15. Density plots comparing our results and estimations from existing products: (a) woody component cover circa 2000 by Beck et al. (2011); (b) woody
component cover circa 2015 by Macander et al. (2017); (c) herbaceous component cover circa 2015 by Macander et al. (2017); (d) nonvascular component cover
circa 2015 by Macander et al. (2017). Fractional cover values of woody component in both products are higher than the estimations in our results. Nonvascular
component tends to have much higher coverage in our result than in the PFT product.
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Coastal Plain ecoregion and only limited sites in the Brooks Foothills.
This could explain the differences in the estimated cover of the non-
vascular component in those regions between our result and that of
Macander et al. (2017).

6. Conclusions

In this study, we deliver the first fractional cover maps of major fuel
type components across Alaskan tundra circa 2015. We map the spatial
distributions of woody, herbaceous and nonvascular components in this
highly heterogeneous landscape. Although our field observations are
comparatively limited in quantity and spatial coverage, our findings are
broadly consistent with expected distribution according to bioclimato-
logical conditions.

We present a method of using multi-spectral and multi-seasonal
observations in the differentiation of fuel components. Our results show
that this combination offers strong predictability from moderate re-
solution data and thus is critical for mapping efforts at a broad spatial
scale. Our method can be adopted in monitoring other vegetation
properties such as vegetation dominance and biomass.

In addition, the long-term archive of moderate resolution data in
Alaska offers an opportunity to examine the fuel composition change in
Alaskan tundra as a result of both climate change and fire occurrence.
The outputs and spectral indicators identified in this paper can assist
long-term monitoring of fuel type components in the tundra. These fuel
maps and their periodic updates can create a strong basis for enhancing
modeling capabilities for both assessing fire behavior and post-fire
ecological impacts.
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