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A B S T R A C T   

Wheat is the most important commodity traded in the international food market. Thus, accurate and timely 
information on wheat production can help mitigate food price fluctuations. Within the existing operational 
regional and global scale agricultural monitoring systems that provide information on global crop yield and area 
forecasts, there are still fundamental gaps: #1. Lack of quantitative Earth Observation (EO) derived crop in-
formation, #2. Lack of global but detailed (national or subnational level) and timely crop production forecasts 
and #3. Lack of information on forecast uncertainties. In this study we present the Agriculture Remotely-sensed 
Yield Algorithm (ARYA) an EO-based method, advancing the state of EO-data application and usage (addressing 
gap #1) to forecast wheat yield. The algorithm is based on the evolution of the Difference Vegetation Index (DVI) 
using MODIS data at 1 km resolution and the Growing Degree Days (GDD) from reanalysis data. Additionally, we 
explore how Land Surface Temperature (LST) can be included into the model and whether this parameter adds 
any value to the model performance when combined with the optical information. ARYA is implemented at the 
national and subnational level to forecast winter wheat yield in the main wheat exporting countries of US, 
Russia, Ukraine, France, Germany, Australia and Argentina from 2001 to 2019 (covering over 70% of wheat 
exports globally) in a timely manner by providing daily forecasts (addressing gap #2). The results show that 
ARYA provides yield estimations with RMSE’s within 0.3 ± 0.1 t/ha at national level and 0.6 ± 0,1 t/ha at 
subnational level after Day Of the Year (DOY) 140 (mid May) in the Northern Hemisphere and DOY 280 
(beginning of October) in the Southern Hemisphere. This means that ARYA can provide crop yield estimates of 
wheat yield with 5–15% error at national and 7–20% error at subnational level starting from 2 to 2.5 months 
prior to harvest.   

1. Introduction 

Despite significant improvements in technology that the agriculture 
sector has experienced in the last century, food production are still 
highly dependent on climate (Rosenzweig et al., 2001). In the context of 
a changing climate average yields are predicted to decrease from 30% up 
to 82% depending on the warming scenario (Schlenker & Roberts, 
2009). When extreme weather events impact major food producing 
countries, these can often result in production shortfalls and dramatic 
food price spikes. Global food price crises are generally unpredictable in 
their occurrence and often in their duration. Droughts, floods or extreme 
temperatures are the main extreme weather events that cause crop 

failure and reduce global food supply with a consequent increase in 
prices (Tadesse et al., 2014). 

Enhanced, quantitative and timely information can improve agri-
cultural analysis and assessment and support improved decision making 
from international to local level. In this context, better informed de-
cisions can contribute to increased food security, greater sustainability, 
and greater resilience in the agriculture sector. In 2011, the Group of 
Twenty (G20) Agricultural Ministers developed the G20 Action Plan on 
Food Price Volatility and Agriculture that launched the Agricultural 
Market Information System (AMIS; URL1), and the Group on Earth 
Observations Global Agricultural Monitoring initiative (GEOGLAM; 
URL2). AMIS is an international platform whose main goal is enhancing 
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food market transparency and policy response for food security. GEO-
GLAM’s main objective is to strengthen the use of Earth Observations 
(EO) internationally to produce and disseminate relevant and timely 
information on agricultural production at national, regional, and global 
scales (Becker-Reshef et al., 2019, 2018). GEOGLAM and AMIS re-
quirements are lately evolving from qualitative to quantitative metrics 
based on EO of within season production forecasts in a timely manner 
and monitoring their evolution through time. 

Crop production estimation is based on two components: crop area 
and crop yield estimation. For most purposes related to food market and 
food security the principal need is information on production. Area 
estimation is needed in areas with strong crop area inter-annual vari-
ability and relatively stable yields. On the contrary, the priority will be 
on yield for countries were crop area is stable or predictable and yield 
change is stronger (Gallego, 2008). The main purpose of leveraging EO 
information is reducing the uncertainty of these estimations. 

The main goal of global and regional scale agricultural monitoring 
systems is providing up-to-date information on food production to de-
cision makers in support of global and national food security. A number 
of systems now exist that fill this role, but just three provide freely 
available production forecasts at the global scale: 

• The Foreign Agricultural Service (FAS) of the United States Depart-
ment of Agriculture (USDA) provides information from multiple 
sources including EO which is used by agricultural economists and 
researchers to predict global crop production for all major com-
modities, for all countries in a monthly report.  

• The Global Information and Early Warning System (GIEWS) from the 
Food and Agriculture Organization (FAO). The system provides 
quarterly global reports of food crop production and market prices at 
continental scale, and more specific regional reports based on in-
telligence from FAO’s regional and country offices (Rojas, 2015).  

• CropWatch, which is led by the Institute of Remote Sensing and 
Digital Earth at the Chinese Academy of Sciences, evaluates national 
and global crop production. Since 2013, CropWatch has been 
releasing quarterly and annual bulletins internationally covering 
most of the prominent food-producing countries in the world from 
global to sub-national (for the nine largest countries) level. These 
bulletins include predictions of crop conditions and production for 
the main commodities (wheat, maize, rice, and soybean) (Wu et al., 
2014). 

In Europe, the Monitoring Agricultural Resources Unit (MARS) of the 
European Joint Research Centre (JRC) provides information on the 
status of crops in the EU and neighboring countries and forecasts crop 
yields in monthly bulletins (Baruth et al., 2008; López-Lozano et al., 
2015; Rembold et al., 2019). 

Despite the improvements in access to high resolution satellite im-
agery over the last decade and the use of numerous remote-sensing 
based products by the different systems, there are still fundamental 
gaps (Fritz et al., 2019). Next, we identify three gaps addressed in part 
by this study: 

#1. Lack of quantitative EO-derived crop information. Current 
agriculture monitoring systems generally use EO to assist qualita-
tively assessments of crop conditions and identifying anomalies 
which are then used by analysts to infer yield, area and production 
reductions. However, these systems do not provide the quantitative 
area and production forecasts, which are needed. Since the early 
days of EO satellites, agricultural monitoring was considered a major 
targeted application of these technologies (Macdonald, 1984). 
However, it is widely recognized that EO could play a much stronger 
and transformational role in informing better policies, programs, and 
more effective implementation to benefit food security and agricul-
tural practices (Fritz et al., 2019). 

#2. Lack of global but detailed (national or subnational level) and 
timely crop production forecasts. Current global systems provide at 
most regular monthly reports of national level yield or production 
forecasts. Monthly reports are a very good source of information for 
the commodity markets and decision-making around the world 
(from production, marketing, domestic and global trade, among 
others). However, higher frequency global reports that contain pro-
duction forecast regionally detailed information would potentially 
minimize the gap between one report and the update (currently one 
month period), reducing the “surprise effect” that some reporting has 
on the market. Minimizing the “surprise” effect, especially in times 
when an important weather event is occurring to a crop in an 
important production region, or in a tight situation of stock-to-use 
ration, would potentially alleviate excess price volatility. For 
instance, severe weather events in major food producing countries 
were a major factor in recent (2007/8; 2011/12) food-price spikes, 
pushing the number of food insecure people to over 1 billion and 
leading to civil unrest, economic strife and geopolitical tension 
(Anderson et al., 2014; Janetos et al., 2017). The most recent cata-
strophic droughts in Southern (2015–16) and Eastern (2017) Africa 
led to major food shortages (URL3), requiring a timely international 
response. These events underscore the importance of timely and 
accurate production forecasts in stabilizing markets, mitigating food 
supply crises, and mobilizing humanitarian assistance. 
#3. Very limited information on forecast uncertainties. Current 
forecasting systems do not report uncertainties of their outputs, and 
it is not clear the targeted uncertainty for yield estimations. 

There are a growing number of studies based on exploiting remote 
sensing data for agriculture monitoring. In this context, Weiss et al. 
(2020) provides an extensive overview of the recent research de-
velopments of how remote sensing can be used for agricultural appli-
cations. Focusing on crop yield estimation and forecasting, remote 
sensing data does not directly provide these parameters. Thus, most 
methods rely on establishing empirical relationships between yield 
statistics (based on surveys or field measurements) and remote sensing 
parameters that can be retrieved from satellite data. The EOS/ Moderate 
Resolution Imaging Spectroradiometer (MODIS) sensors provide EO 
data globaly with a daily (twice a day) coverage at coarse spatial reso-
lution (250 m) and has a suite of validated products. All these qualities, 
and especially a good temporal coverage, are key for agriculture 
monitoring applications. Among many empirical yield models devel-
oped based on MODIS data (e.g. Doraiswamy et al., 2005; Mateo-Sanchis 
et al., 2019; Sakamoto et al., 2013), Becker-Reshef et al. (2010) devel-
oped a crop yield model based on its relationship with the Normalized 
Difference Vegetation Index (NDVI) seasonal peak from MODIS CMG 
(0.05 deg spatial resolution). The model was successfully applied to 
Kansas and Ukraine. Later, Franch et al. (2015) improved the timeliness 
of the model by including information on the NDVI evolution with the 
Growing Degree Days (GDD). The model was applied to forecast wheat 
yields in the US, Ukraine and China at national level with errors lower 
than 10% up to 2 months before harvest. The method also showed a 
good performance when applied to the AVHRR LTDR data set (Franch 
et al., 2017). At coarse resolution the signal retrieved by each pixel is a 
mixture of the targeted crop and the surrounding surfaces. The previous 
works cited solve this issue by averaging the NDVI signal from the pixels 
that reach the maximum percentage of the crop within each Adminis-
trative Unit (AU), which limits the spatial representativity of the whole 
AU. Additionally, it is well known that the NDVI saturates when moni-
toring dense vegetation (Baret & Guyot, 1991; Buschmann & Nagel, 
1993; Gitelson et al., 2003; Sellers, 1985). Therefore, Franch et al. 
(2019) presented a model based on the Difference Vegetation Index 
(DVI) from MODIS data at 1 km resolution and yearly wheat crop type 
maps (Skakun et al., 2017) to un-mix the DVI signal of all pixels within 
an AU to a 100% wheat signal. This average wheat signal of each AU is 
used to build a linear regression model using DVI seasonal amplitude 
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and length and the average of the Evaporative Fraction (EF) 30 days 
after the DVI peak as inputs. The model was applied from 2001 to 2017 
to estimate the winter wheat yield in the US and Ukraine both at na-
tional and subnational level. At the subnational level the model showed 
a Root Mean Square Error (RMSE) lower than 0.6 t/ha (15–18%). At 
national level the model showed a RMSE of 0.11 t/ha (3.7%) for the US 
and 0.27 t/ha (8.4%) for Ukraine. However, this is not a forecast model 
and it must be applied at the end of the season in order to retrieve the 
three regressors. Next, we briefly describe the main findings of some 
works on wheat yield forecasting and their reported metrics that are 
focused on the countries analyzed in this manuscript. In Ukraine, Kogan 
et al. (2013) used NDVI data from MODIS to forecast winter wheat yield 
at oblast (sub-national) level with RMSE ranging from 0.5 to 0.8 t/ha 
from 2 to 3 months prior to harvest. In Argentina, (Lopresti et al., 2015) 
developed an early method of wheat yield estimation in Northern Bue-
nos Aires province based on MODIS NDVI data during 2008–2011 that 
allowed predicting wheat yields 30 days before harvest with a deter-
mination coefficient of 0.75 at department level. In Europe, Pagani et al. 
(2017) improved the Crop Growth Modeling System (CGMS) of the 
European Commission JRC, within MARS, to forecast maize, wheat, and 
barley yield in Europe. Their results when applied from 1995 to 2013 to 
forecast wheat yield from flowering to maturity stages ranged between a 
relative RMSE of 3.86–4.62% in France and 4.26–5.66% in Germany. 
Recently, Kamir et al. (2020) used machine-learning regression methods 
based on climate records and satellite image time series from 2009 to 
2015 to estimated wheat yields in the Australian wheat belt. Though this 
method was applied at pixel level, the performance at national level 
explained showed a determination coefficient of 0.73 and a RMSE of 
0.59 t/ha. Note that these performance metrics correspond to end-of- 
season estimates. 

Finally, looking for additional variables that can be retrieved from 
EO, in this work we explore the use of the satellite-derived Land Surface 
Temperature (LST) to complement the optical data and to correct the 
effects of extreme events on the crop yields. The LST is generally used in 
the literature to derive downstream products to monitor water deficit 
(Kogan, 1997; Anderson et al., 2011; Anderson et al., 2016). There are 
few studies using the LST directly in crop yield forecasting models. 
Originally, Idso et al. (1979) successfully combined the stress-degree- 
day (SDD) defined as the difference between the canopy temperature 
and the air temperature approximately 1 m above the crop, with the 
GDD to predict spring wheat yields in 11 field plots in Arizona. More 
recently, Johnson (2014) built a regression tree-based modeling tech-
nique combining the NDVI and daytime LST to forecast maize and 
soybean yield at the county level in the United States. The study found 
that the LST was negatively correlated with both crops. 

In this work, we present the Agriculture Remotely sensed Yield Al-
gorithm (ARYA) forecasting algorithm and we contribute to address the 
aforementioned gaps by  

• Amplifying the use of EO data in end user decision making, focused 
on agriculture.  

• Advancing the state of the art of yield modelling at the national and 
subnational levels  

• Consolidating the yield model into a forecasting algorithm to provide 
timely national and subnational yield forecasts over the major 
exporting countries.  

• Tracking and reporting the accuracy of the yield estimates. 

The main science questions that we will answer in this study are: can 
we quantitatively assess the crop yield in the main wheat exporting 
countries and how early in the growing season can we provide a good 
(with an associated error) yield forecast in each country? 

The ARYA forecasting algorithm is based on moderate resolution 
data acquired by MODIS rescaled to 1 km spatial resolution, using the 
crop signal unmixing method presented in (Franch et al., 2019) and 
exploring the use of the LST in the algorithm. The forecasting of the 

optical parameters is based on the evolution of the optical signal with 
the accumulated GDD information. 

2. Study area and data description 

2.1. Study area 

In this study we analyze the main wheat exporting countries: the US, 
France, Germany, Ukraine, Russia, Australia and Argentina, which 
together account for c. 70% of global wheat exports (Fig. 1 top). Wheat 
is the most important cereal crop traded on international markets and 
winter wheat constitutes approximately 80% of global wheat produc-
tion. Fig. 1 (bottom) shows the evolution of wheat yield at the national 
level in each country analyzed and during the period 2001–2019. During 
this period, all countries showed some variability and a positive trend, 
with Russia, Argentina and especially Ukraine showing the largest in-
creases in yields. Next, we describe the main characteristics of wheat 
production in each country. 

Wheat yield levels in the US have remained relatively stable during 
the past 40 or more years. Five major classes are grown in the US: Hard 
Red Winter (HRW), Soft Red Winter (SRW), Hard Red Spring (HRS), 
White and Durum. Most US wheat is grown in the Great Plains from 
Texas to North Dakota. The large majority of winter wheat is rainfed and 
approximately seven percent is irrigated. 

In Ukraine wheat is grown mainly on the central, southern and 
eastern regions. Most of the wheat planted in Ukraine is winter wheat. 
Generally, wheat is not irrigated in this country. Ukraine produces 
mostly the HRW class. The amount of winterkill varies widely from year 
to year, from 2% in 1990 to 65% in 2003, when a persistent ice-crust 
smothered the crop. Ukraine is characterized by highly variable wheat 
and coarse grains productivity. On average, every three years, wheat 
production changes by 20%. Fig. 1 shows Ukraine as the country with 
the largest yield variation amongst the major wheat exporting countries 
with a positive trend of 0.09 t/ha per year. 

Russia was the largest wheat exporter in 2020 according to data from 
U.S. Department of Agriculture’s Foreign Agricultural Service (FAS 
USDA). The varieties of winter wheat are mostly cultivated in the Cau-
casus, in the Central Black Earth region, and in the Volga region while 
spring wheat (whose yield is generally half that of winter wheat) is mostly 
planted in the Eastern region (Western Siberia). Major constraints to 
production in Russia include droughts, diseases, lodging and winterkill of 
plants. Most of the wheat cultivation is rainfed. Thus, droughts also occur 
in some years and can result in serious crop losses. This occurred in 2010, 
when a large fraction of the wheat area in Russia experienced extraordi-
narily high temperatures through the summer and leading to a drop of 
about 40% in production from previous years’ levels. 

The major wheat-growing countries in Europe in order of size of 
production are France, Germany, the United Kingdom, Italy, Spain and 
Portugal. In these countries, the most common wheat class is SRW of 
generally low quality due to its low protein content and poor gluten 
content. However, these countries have the highest yields in the world. 

Wheat production in Australia accounts for 55% of the total national 
cropland. Most wheat is grown in the arcuate belt of land curving across 
the eastern and southern regions where winter rainfall is sufficient to 
produce a crop. Spring wheat is grown as a winter crop sown in the 
autumn (May to June) and harvested in early summer (November to 
December). Wheat yields in Australia are low and highly variable pri-
marily due to extreme fluctuations in annual rainfall. 

Over 85% of the grain production in Argentina takes place in the 
Pampas region, which covers the central provinces of Santa Fe, Cordoba, 
Buenos Aires, Entre Rios and La Pampa. Argentina has a favorable 
climate for rainfed crop production, and despite the potential for irri-
gation expansion, current irrigated area is negligible. In Argentina, 
environmental factors affecting wheat during the growth cycle are early 
and late heat, early and midterm drought, frosts at flowering and rains at 
harvest. 
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2.2. Crop statistics 

We gathered the official national and subnational level statistics on 
yield, area harvested, and production that is available for each country 
from the different national agriculture agencies shown in Table 1. 

2.3. Crop type masks 

Crop type masks are needed to unmix the wheat signal. In the US we 
used the Cropland Data Layer (CDL) product produced by the National 
Agricultural Statistics Service (NASS) (D M Johnson & Mueller, 2010). 
We studied the main land surfaces surrounding the wheat fields in the 
US and considered eight different crop types: winter wheat, spring 
wheat, soybean, corn, potato, alfalfa, grassland and forest. 

In the other countries, the crop type masks were generated using the 

approach presented in (Skakun et al., 2017) that allows automatic 
mapping of winter crops based on MODIS data using a priori knowledge 
of crop calendars and without using ground truth data. These maps were 
produced yearly for each country. When compared to the CDL for Kansas 
and ground measurements for Ukraine, crop masks produced with this 
method showed accuracies > 90% when generated 1.5–2 months before 
the harvest (Skakun et al., 2017). 

2.4. EO data 

In this study, we use MODIS daily surface reflectance Collection 6 
data (M{O,Y}D09GQ) at 250 m resolution and gridded in the sinusoidal 
projection. Besides, the product M{OY}D09GA was also downloaded to 
extract the observation/illumination geometry of each image. Addi-
tionally, the 250 m surface reflectance data were re-sampled to 1 km 

Fig. 1. Top: countries and subnational units divisions as well as percentage wheat across the countries considered. Bottom: trends of the national yield in the 
countries considered over the period 2001–2019. 
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spatial resolution by aggregating 4x4 pixels to avoid the inaccuracies of 
incorrect registration of the 250 m product (Breon et al., 2015). The 
solar and view geometry effects on the surface reflectance were cor-
rected based on the VJB method (Vermote et al., 2008; Franch et al., 
2014). Following this method, the normalized surface reflectance (ρN), 
that is the Bidirectional Reflectance Distribution Function (BRDF) cor-
rected surface reflectance, is written as 

ρN(45, 0, 0) = ρ(θs, θv,ϕ)
1 + V⋅F1(45, 0, 0) + R⋅F2(45, 0, 0)

1 + V⋅F1(θs, θv,ϕ) + R⋅F2(θs, θv,ϕ)
(1)  

where ρ is the surface reflectance, θs is the sun zenith angle, θv is the 
view zenith angle, ϕ is the relative azimuth angle, F1 is the volume 
scattering kernel, based on the Ross-Thick function derived by (Roujean 
et al., 1992) but corrected for the Hot-Spot process proposed by (Mai-
gnan et al., 2004), F2 is the geometric kernel, based on the Li-sparse 
model (Li & Strahler, 1986) but considering the reciprocal form given 
by (Lucht, 1998), V represents the volume parameter since it is linked to 
the Volume kernel and R represents the roughness parameter since it is 
linked to the geometric kernel. These parameters (V and R) represent the 
shape of the BRDF. 

The LST was extracted from the official MODIS LST Collection 6 
official product (M{O,Y}D11A1) that provides daily LST and surface 
emissivity at 1 km spatial resolution. Fig. 2 (top) shows an example of 
the LST evolution in Harper County Kansas, USA. While the cloud mask 
layer is useful to detect cloudy pixels at the time of the satellite overpass, 
the effects of clouds on LST, decreasing its values, can last well after the 
cloud has passed. Therefore, to minimize this effect we dilated the cloud 
mask using a buffer of 5 pixels around each cloudy pixel (Fig. 2 bottom). 

Finally, near-surface air temperature (T2M) was extracted from the 
MERRA2 reanalysis inst1_2d_asm_Nx product. The inst1_2d_asm_Nx 
product provides hourly T2M values at a spatial resolution of 0.5◦ lati-
tude × 0.625◦ longitude. For this study, we computed both the daily 
average T2M value, which was used to compute the accumulated GDD); 
and the value at the time of the satellite overpass, used to compute the 
difference between the T2M and LST as described in the following sec-
tion. In both cases, the T2M data was spatially interpolated to 1 km using 
a bilinear method. Near-surface air temperature from MERRA-2 has 
been shown to have good agreement with observations from weather 
stations, with R2 ~ 0.98 and RMSD ~ 1.7 (Santamaria-Artigas et al., 
2019). 

3. Methodology 

Fig. 3 shows the workflow of the data preprocessing. 

3.1. Un-mixing of the wheat signal 

According to Franch et al. (2019), for each AU and date, the DVI 
signal retrieved by pixel, i, is: 

DVIi = DVIi,wheat⋅Wpcti +DVIi,others⋅(1 − Wpcti) (2)  

where DVIi,wheat is the DVI signal from the wheat in the pixel, Wpct is the 
percentage of wheat within the pixel and DVIothers is the DVI from other 
surfaces observed by the same pixel. 

In the case of the US: 

DVIi=DVIi,wheat⋅Wpcti+DVIi,corn⋅Cpcti+⋯+DVIi,others⋅(1− Wpcti − Cpcti − ⋯)

(3) 

Therefore, based on the DVI of all pixels through the county (DVIi) 
and the crop type maps, we can use Eqs. (2) or (3) to unmix the wheat 
signal. 

3.2. Wheat DVI forecast 

To forecast the wheat signal, first, we derive the Gaussian fitting 
parameters (Eq. (4)) of the DVI evolution with the accumulated GDD for 

Table 1 
Official wheat statistics considered and their source of information. *These years in the Southern Hemisphere correspond to the planting year. Acronyms used in the 
table: Russia United Interdepartmental Information and Statistical System (EMISS), National Agricultural Statistics Service (NASS), State Statistical Committee of 
Ukraine (SSC), Sistema Integrado de Información Agropecuaria de Argentina (SIIA).  

Country Data source Administrative unit 
(AU) 

Number of 
AU 

Years considered in the 
study 

Average national yield ± standard 
deviation (t/ha) 

Average date of flowering 
(DVI peak) 

Russia EMISS Oblast 18 2001–2019 3.1 ± 0.3 152 ± 9 
United 

States 
USDA/NASS County 249 2001–2019 3.0 ± 0.5 130 ± 16 

France Ministry of Agriculture 
and Food 

Province 14 2001–2019 7.1 ± 0.6 140 ± 13 

Australia Australian Bureau of 
Statistics 

Districts 13 2001–2018* 1.7 ± 0.6 267 ± 7 

Ukraine SSC Oblast 17 2001–2019 3.3 ± 0.7 149 ± 5 
Argentina SIIA District 101 2001–2017* 2.4 ± 0.9 280 ± 10 
Germany Eurostat Province 13 2001–2019 7.5 ± 0.5 147 ± 6  

Fig. 2. LST images of the Harper County (KS, USA) in 2003 using the original 
cloud mask (top) and dilating the cloud mask 5 pixels (bottom). 
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each growing season. 

DVI(day) = A⋅e− 0.5⋅((GDDaccum(day)− B)/c)2
+D (4)  

where A,B,C and D are the fitting parameters and GDDaccum(day) is 
estimated by accumulating the daily GDDs during the growing season 
starting from a biofix date: 

GDDaccum(day) =
∑day

d=biofixdate
GDDd (5)  

and GDDd is the average daily maximum (Tmax) and minimum temper-
atures (Tmin) minus a base temperature (Tbase) that in the case of wheat is 
equal to 0 ◦C. Note that the biofix date is established as January 1st in 

the Northern Hemisphere analogously to Franch et al. (2015) while for 
the Southern Hemisphere (Argentina and Australia) the DOY 180 (June 
29th) is selected as the average start of season for both countries ac-
cording to Crop Monitor calendars [URL3]. 

GDDd =
Tmax + Tmin

2
− Tbase (6)  

where if [(Tmax + Tmin)/2 < Tbase], then [(Tmax + Tmin)/2] = Tbase 
(McMaster & Wilhelm, 1997). 

Fig. 4 (left) shows an example of the DVI wheat signal Gaussian 
fitting for Harper County in 2004. 

Fig. 4 (right) shows the evaluation of the Gaussian fitting through the 
US and for all years analyzed in the dataset (2001–2019). The plot shows 
the predicted DVI (based on the GDDaccum and the gaussian fitting 

Fig. 3. General workflow of the data preprocessing.  

Fig. 4. DVI wheat signal Gaussian fitting on Harper County in 2004 (left) and evaluation of the US DVI estimation based on the Gaussian fitting parameters from 
2001 to 2019 across all counties (right). 
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paramenters) versus the real DVI from DOY 1 to 200. Note that this 
selection may include some periods (during dormancy and after harvest) 
where the DVI is correspond to bare soil conditions and the Gaussian 

fitting provides constant DVI values. The metrics show a good a good 
agreement with a RMSE of 0.03 and a coefficient of determination of 
0.89, showing the low values of DVI (when there is no crop or it has not 
emerged) the largest errors. 

Second, each date of the forecast is fitted using a Gaussian function 
considering the DVI wheat signal up to the date considered and the 
average bare soil conditions after the growing season. Fig. 5 shows an 
example of the Gaussian fitting on Day Of the Year (DOY) 110 (a) and 
DOY 130 (b) of 2004 in the Harper County. 

Note that we use some data after the end of the season (around 
GDDaccum = 1500C-days) as a basis for the Gaussian fitting during the 
forecasting process. This data is estimated by averaging the bare soil 
signal after the growing season. To do so, we use the timeseries database 
in each AU and the average GDDaccum value from which historically the 
bare soil signal is stable (DVI lower than 0.2 and standard deviation 
lower than 0.04). 

3.3. Including the LST into the model 

In order to account for any stress conditions related to water defi-
ciency or extreme temperatures, we analyzed the impact of including the 
difference between the LST and the air temperature in the model. When 
this difference is positive, it means that the surface is warmer than the 
surrounding air which can be related to any water stress conditions. In 
contrast, if the difference is negative, it means that the surface is colder 
than the surrounding air and may be consequence of a frost event. Based 
on this principle we accumulated the difference between LST and the air 
temperature analogously to the GDDaccum. To do so, first we applied the 
unmixing methodology to derive both the daily LST and the air tem-
perature both at Terra and Aqua overpass times to estimate the average 
temperatures of the wheat pixels across each AU applying Eq. (3). Sec-
ond, we averaged the daily difference from Terra and the Aqua overpass 
times (7). Note that we consider all cloud free pixels within each AU to 
unmix the LST and then we average the temperature difference (LST- 

Tair) from Terra and Aqua, which minimizes the absence of data caused 
by clouds. Nevertheless, to avoid any remaining data gaps, we inter-
polate the TDifAU,d daily based on the GDDaccum evolution.  

Finally, we accumulated this TDif daily from GDDaccum = 100C-days 
until GDDaccum = 1200C-days. However, the daily averaged difference 
was strengthened by the weight (*3) during and after the peak DVI 
happens, that is from GDDaccum = 800C-days d to GDDaccum = 1200C- 
days. This range of GDDs is equivalent to 30 day period after the peak 
considered in (Franch et al., 2015) to account for water stress conditions 
that may reduce the final yield and are not captured by the optical data. 
Additionally, the selected period (800–1200C) includes the grain filling 
stage when any drought condition is critical to determine the final 
yields. Note that we apply the same approach (i.e. the same factor) to all 
regions analyzed in this work. 

TDif AU,t =
∑t

d(GDDaccum=100)

LSTAU,d − TairAU,d (8) 

Fig. 6 (left) shows the accumulated difference evolution for each 
season. The plot shows that the year with the lowest accumulation is 
2007 and such year also shows the impact of the late frost in early April 
which drives the accumulated difference to negative values on DOY 91. 
On the contrary, 2018 and 2014 show the largest temperature difference 
accumulation. However, while 2018 shows the largest accumulated 
values through the season, 2014 showed normal accumulated differ-
ences up to April, when the drought conditions started to be more severe 
(USDA-NASS, 2019). Besides, Fig. 6 (right) shows the yield versus the 
accumulated difference on DOY 150 for Harper County where each dot 
represents a different growing season (from 2001 to 2019). This plot 
shows a quadratic relationship between the accumulated temperature 
and the final yield. Low accumulated TDif, which might be related to 
frost events show lower yields. This is the case of 2007 when a late frost 
hit Kansas. Similar is the case for high accumulated TDif, which can be 
related to drought conditions and show the lowest yields. Finally, the 
highest yields are obtained for mid- accumulated temperatures’ differ-
ences (around 500 K). 

Fig. 5. DVI wheat signal forecast on DOY 110 (left) and DOY 130 (right) vs the GDDaccum on Harper County in 2004.  

TDif AU,d = LSTAU,d − TairAU,d = mean
(
LSTAU,Terra − TairAU,Terratime,LSTAU,Aqua − TairAU,Aquatime

)
(7)   
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3.4. Calibration of the yield model 

We calibrated the yield model based on all years’ official statistics at 
the subnational level. In this study, we just consider in the study those 
AU with pixel wheat purities higher than 40% as suggested by (Franch 
et al., 2019). In each AU we tested two approaches. First, we evaluated 
the model performance based solely on the solar spectral range 
information: 

yieldAU,t = c1AU,t⋅AAU,t + c2AU,t⋅CAU,t (9)  

where c1AU,t and c2AU,t are the calibration coefficients and AAU,t, BAU,t 
and CAU,t are the Gaussian fitting parameters described in the previous 
section for a given AU and day t. 

Second, we test the model performance when including the thermal 
information as explained in the previous section: 

yieldAU,t = c1AU,t⋅AAU,t + c2AU,t⋅CAU,t + c3AU,t⋅TDif AU,t + c4AU,t⋅TDif 2
AU,t

(10)  

where c1AU,t, c2AU,t, c3AU,t and c4AU,t, are the calibration coefficients and 
TDifAU,t is the difference between LST and air temperature of the AU and 
accumulated until day t. However, given the relatively large number of 
regressors compared to the data available in each AU (19 years 
maximum depending on data availability for the particular AU), we run 
an iterative process to reduce the number of regressors. To do so, we 
computed the relative importance of each regressor based on the per-
mutation feature importance method (Altmann et al., 2010). The per-
mutation feature importance is calculated as follows. First, the model is 
fitted and a baseline metric is calculated (the determination coefficient 
in this case). Next, one of the regressors from the same data set is 
randomly permuted and the metric is evaluated again. The permutation 
importance is defined as the difference between the metric obtained 
after the permutation and the baseline metric. These steps are repeated 
independently for all the regressors in the dataset to obtain the impor-
tance of all the features. A high value means that the feature is important 
for the model. Based on this statistic we iteratively removed the re-
gressors with relative importance (evaluated against the determination 
coefficient) lower than 20%. Note that two of the regressors considered 
(TDif and TDif2) are directly correlated. Thus, the relative importance of 
these regressors might be underestimated by the permutation impor-
tance method. 

3.5. Cross-validation and performance metrics 

Each country is validated independently both at the national and the 
subnational level from 2001 to 2019. The national yield forecast (For-
NatYieldDOY,year) is estimated following this equation: 

ForNatYieldDOY,y =
∑

SUForYieldAU,DOY,y⋅AreaAU,y
∑

SUAreaAU,y
(11)  

where ForYieldAU,DOY,y is the ARYA yield forecasted in each AU in a 
given DOY and year y and AreaAU,y is the harvested area in each AU and 
year y. 

Note that at the End Of the Season (EOS), when aggregating the 
subnational yield estimations to national level the total yield forecast is 
in some cases biased against the national statistics in some countries. 
This is a consequence of limiting the applicability of the model to AU 
with purities higher than 40%. This ensures that the wheat signal is 
strong enough (compared with the signal from surrounding surfaces) to 
apply the un-mixing algorithm. Table 2 shows the bias generated when 
comparing the subnational yield forecasts at the EOS aggregated at 
national level to the official national statistics considering the whole 
time series in each country. In order to correct the bias, the results 
shown in in the following section are re-calibrated dividing the yield 
results of each forecast by the constant re-calibration coefficients (RCC) 
displayed in Table 2. 

RCC =

∑2019
y=2001Nationalyieldy⋅ForNatYieldEOS,y

∑2019
y=2001Nationalyield

2
y

(12) 

Additionally, the variability in climatic zones can result in different 
timing of crop development. This means that in cooler parts of a country, 
wheat will emerge after dormancy later than in warmer areas. ARYA can 

Fig. 6. Accumulated difference of LST and air temperature for each DOY (left) and on DOY 150 versus the final yield (right) in Harper County during all growing 
seasons from 2001 until 2019. 

Table 2 
Re-calibration coefficients (RCC) at national 
level.  

Country RCC 

Russia  1.066 
United States  0.941 
France  1.000 
Australia  0.984 
Ukraine  0.960 
Argentina  1.000 
Germany  1.000  
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just be applied after the emergence of the crop, when there is already 
vegetation signal, so the Gaussian fitting can be implemented. This is 
one of the challenges in crop forecasting over large areas using remote 
sensing data. Thus, during the early forecasts there is an additional bias 
at national level caused by the limited number of AU where the algo-
rithm can be applied. To minimize this effect, early national yield 
forecasts consider the average yield of the timeseries (2001–2019) in 
those AU where ARYA can be applied at the EOS but not during the early 
forecasts. 

The performance metrics are based on a leave-one-out cross-valida-
tion (LOOCV) procedure, which is based on iteratively retaining a year 
for validation, while using the other years for model’s calibration. The 
main performance metrics analyzed are the determination coefficient 
(r2), the RMSE and the Relative RMSE (RRMSE). Particularly, the evo-
lution of the RMSE for each DOY of the forecast is estimated following 
this equation: 

RMSEDOY =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑2019

y=2001

(
ForNatYieldDOY,y − StatsYieldy

)2

19

√
√
√
√
√

(13) 

Finally, to evaluate how the performance of the model is translated 
into the production, the forecast production is estimated by multiplying 
the ARYA yield forecasts by the harvested area from official statistics. 

Total Forecast Production =
∑

SU
Yield Forecasted⋅Harvested Area (14) 

The uncertainty of the production forecasts, given that we consider 
the official harvested area with unknown error, is estimated by multi-
plying the absolute error (RMSE) of the yield forecasts by the harvested 
area as defined by the theory of error propagation. 

4. Results 

4.1. Calibration of ARYA. 

Fig. 7 shows the relative importance of each regressor and the 
number of regressors considered in each AU for all the countries 
analyzed. Generally, ARYA considers 2 or 3 regressors. Note that re-
gressors with relative importance lower than 20% are not considered 
into the model. The regressor with the largest relative importance is the 
peak value followed by the width. For the US, the thermal regressors 
show more importance in the central counties where generally TDif2 
shows higher importance than TDif. This is also the case in Russia and 
Ukraine, where the thermal regressors are more important in southern 
oblasts. However, TDif is slightly more important than TDif2 in France 
and Germany though there is a limited number of provinces where the 
thermal regresors show an importance. In Australia, where the thermal 
information plays a more important role (as we detail in the next 

Fig. 7. Relative importance of each regressor and number of regressors considered in each AU in the US, Russia and Ukraine, France and Germany, Australia 
and Argentina. 
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section), TDif is relatively more important in the west of Victoria and 
South East of South Australia while TDif2 is more important across New 
South Wales. Finally, in Argentina both TDif and TDif2 have very similar 
importance across the country and there are a few districts in the south 
of Buenos Aires or along the Cordoba province where the thermal pa-
rameters are the only regressors considered in the model. 

4.2. Performance metrics 

Fig. 8 shows the subnational (red) and national (black level error 
evolution depending on the date of the forecast of the modeled yield 
when compared to the official statistics from 2001 to 2019 based on the 
cross validation approach. The solid line shows the results when using 
just optical data (Eq. (8)) while the dashed line represents the error 

evolution when integrating both the optical and the thermal information 
(Eq. (9)). Additionally, in the background the bars represent the number 
of AU where ARYA is applied. This number increases as the season 
advances. 

All countries show some spikes at the beginning of the season which 
are generated first by the large uncertainty at the SOS, when the peak 
has not yet happened and second by the limited number of AU where 
ARYA can be applied at the beginning of the forecast. 

In every country the inclusion of thermal data in the model provides 
better statistics, reducing specially the national level error up to 0.2 t/ha 
in Australia, and around 0.1 t/ha in Ukraine, Germany and Argentina. 
However, the thermal inclusion generates slightly higher errors at sub-
national level in Russia, however this is not translated into the national 
level performance. 

Fig. 7. (continued). 
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To better analyze the results, Table 3 summarizes the national level 
RMSE and RRMSE at particular DOYs. 

The minimum error at the EOS in absolute units is in the US followed 
closely by Australia, while in relative units is Germany followed by the 
US. On the contrary, the largest error in absolute units is in France and 
Ukraine and in relative units in Ukraine and Australia. Focusing on the 
error evolution, the errors remain stable after DOY 180 (end of june) in 
the northern hemisphere and after DOY 310 (beginning of November) in 
the southern hemisphere. Before that, the error increases slightly 

(within a 2% variation) in most countries until the average date of the 
peak that is between DOY 130 and DOY 150 in the northern hemisphere 
and DOY 280 in the southern hemisphere. Besides, the countries where 
the error increases more rapidly are Australia and Ukraine. Overall, the 
error remains low (within 0.2–0.4 t/ha at national and 0.5–0.7 t/ha at 
subnational level) after DOY 140 (middle of May) in the Northern 
Hemisphere and DOY 280 (beginning of October) in the Southern 
Hemisphere. Note that the harvest is completed by the beginning of 
August in the Northern Hemisphere and end of December in the 

Fig. 7. (continued). 
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Southern Hemisphere, which means that we can provide a good estimate 
2 to 2.5 months prior to harvest. 

Next, Fig. 9 shows the national and subnational level cross validation 
at the last day of the forecast, which corresponds to the EOS. This date 
was selected based on GEOGLAM Crop Monitor crop calendar harvest 
dates for each country [URL3]. 

To better compare their performance, Fig. 10 shows the error at the 
EOS for each country. The US and Australia show the lowest errors at 
both the subnational (~0.5 t/ha) and national (~0.2 t/ha) levels, while 
Ukraine and France show the largest errors for both the subnational 
(~0.7 t/ha) and national (~0.5 t/ha) levels. 

Finally, Fig. 11 (left) shows the national level production estimation 

for all the countries considered. The performance statistics show a good 
agreement with a RMSE of 3.1 MT (10%) and a determination coeffi-
cient of 0.94. Additionally, Fig. 11 (right) shows the aggregated global 
production based on the yearly total production of each country 
included in the study added up at global level. Despite 2007, when a late 
frost in Kansas caused a major winter wheat loss and leads to over-
estimation of the final production, all the other years’ production esti-
mations errors include the official production from statistics and show a 
good agreement with a RMSE of 12 MT/ha (5.9%) and a determination 
coefficient of 0.74. 

Fig. 7. (continued). 
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5. Discussion 

In this work we present the ARYA forecasting algorithm. This 
method is based on EO and reanalysis data, thus contributing to address 
gap #1 cited in the introduction section. With this method we amplify 
the use of EO data in agriculture monitoring. Additionally, ARYA is 
evaluated in seven major wheat exporting countries over 19 years which 
provides a good understanding of the forecast uncertainties, contrib-
uting to address gap #3. Particularly, the wheat yield can be forecasted 
with RMSE within 0.2–0.4 t/ha (5–15%) at national and 0.5–0.7 t/ha 

(7–20%) at subnational level after DOY 140 (middle of May) in the 
Northern Hemisphere and DOY 280 (beginning of October) in the 
Southern Hemisphere. Finally, the forecasts can be implemented based 
on the daily acquisitions of MODIS and MERRA2 data estimations. 
However, MERRA2 data has one month of latency. Therefore, in the 
operational context other products with similar performance metrics for 
agriculture applications (Santamaria-Artigas et al., 2019) such as NCEP2 
(Kanamitsu et al., 2002), with three to five days latency, or ERA5 
(Hersbach et al., 2020), that can provide preliminary data within 5 days 
of real time, could be an alternative. Therefore, weekly forecasts can be 

Fig. 7. (continued). 

B. Franch et al.                                                                                                                                                                                                                                  



International Journal of Applied Earth Observation and Geoinformation 104 (2021) 102552

14

Fig. 8. Forecast error (%) evolution depending on the forecast date at subnational (red) and national level (black) for each country. The solid line represents ARYA 
performance when applying Eq. (8) and the dashed line when applying Eq. (9). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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aimed in the operational context both at national and subnational level, 
providing timely but detailed estimations, and contributing to address 
gap #3. 

The work presented builds on our previous work (Franch et al., 2015) 
by using the GDD as a parameter to forecast the NDVI peak. However, 
said work assumes a linear regression of the forecasting day and the peak 
and in this work, we use the gaussian fitting to forecast both the peak 
and the width of the DVI curve. Additionally, Franch et al. (2015) focus 
on the 5% purest pixels in each AU to implement a unique regression 
algorithm for all AU just corrected by the maximum purity retrieved 

(Becker-Reshef et al., 2010). Deriving a global model (unique model for 
all regions), might be more robust thanks to higher cardinality of data 
and in Franch et al. (2015) paper it was shown that the same model 
could be applied to the US, Ukraine and China by just adding a cali-
bration factor. However, that might not be the case for other regions. In 
the present work we unmix the DVI signal from all pixels and calibrate a 
different regression algorithm in each AU which is more efficient to 
capture the particularities of each region. Nevertheless, we need to keep 
in mind that the model is trained for each AU with limited data 
(compared to the number of regressors) that is reduced further to derive 

Fig. 8. (continued). 

Table 3 
Forecasts’ RMSE (t/ha) and relative error (%) at national level for different DOY. Values in red highlight the timing of the national average wheat peak date while the 
yellow represents the date when in average the latest AU reaches the peak.  
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the cross-validation statistics (each year’s performance is evaluated 
excluding it from the calibration of the model). This kind of validation 
provides a good representation of the model performance and robust-
ness. In practice, however, yield forecasts for upcoming years will use 
data from available previous years, which might be useful to better 
characterize the effect of past extreme events on crop yields. This is the 
case for the late frost that impacted Kansas in 2007 or Ukraine’s drought 
in 2003. When evaluating these particular years’ performance, the error 
is high since those are unique events in each countries’ time series 
(2001–2019). One solution that will be explored in future research to 
enhance the robustness of the model will be integrating all the AU with 
similar performance in terms of yield within the same calibration 
equation. This can be done using geographically weighted neural net-
works (Crane-Droesch, 2018). 

Comparing this work with Franch et al. (2019), there are several 
differences:  

(1) ARYA is a forecasting algorithm while Franch et al. (2019) can be 
just implemented after the EOS.  

(2) In this work we directly use the difference between the LST and 
the air temperature in the model while our previous work con-
siders the average Evaporative Fraction (EF) 30 days after the DVI 
peak. Note that the EF was estimated based on the S-SEBI method 
(Roerink et al., 2000) that uses LST vs albedo diagrams of the area 

considered to derive the dry and wet conditions. This limits the 
applicability of the method to days when the cloud conditions 
allowed a good representation of the area conditions. This 
worked when averaging this value over a 30 day period, but in 
the operational context of a forecasting method, it might create 
important gaps in the timeseries. This was addressed in this work 
by directly using the LST combined with the air temperature from 
reanalysis products. 

Comparing the ARYA performance metrics with previous works, the 
results show some improvements. The forecasts remain low from 2 to 
2.5 months before harvest. This agrees with the results presented in 
Franch et al. (2015). However, said work just focused on forecasting two 
countries (the US and Ukraine) at national level and the error (<10%) 
refers to calibration validation results. Compared to Franch et al. (2019), 
this work provides equivalent results at the EOS in Ukraine and the US 
by directly using the LST and the air temperature. Note that said work 
was based on the DVI peak and width and the average EF 30 days after 
the peak and is not a forecasting method. Compared to Kogan et al. 
(2013) and despite including more years in our analysis (19 versus 12 
years), our results show very similar performance metrics with errors at 
subnational level ranging between 0.5 and 0.8 t/ha up to 3 months 
before harvest. In Europe, our results show larger errors in France and 
Germany (6–8% and 5–7% respectively) compared to Pagani et al. 

Fig. 9. EOS yield forecast validation at national (left) and subnational (right) level in each country analyzed.  
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(2017) (4.2–5.6% and 3.8–4.6% respectively). However, said study, that 
also analyzed 19 years (from 1995 to 2013) does not include especially 
complex years. Particularly, year 2016 in France, when a conjunction of 
abnormally warm temperatures in late autumn and abnormally wet 
conditions in the following spring led to the most extreme yield loss in 
recent history that was not anticipated by any public forecasting system 
(Ben-Ari et al., 2018). In fact, this year is not well captured by ARYA. 
Note that the only factor in ARYA that accounts for meteorological 
conditions (not captured by the DVI) is the accumulated temperature 
difference (TDif). However, the underperformance of France in 2016 is 
related to extreme wet conditions in spring (April to July). Thus, to solve 
the underperformance of ARYA in France 2016 (Fig. 9), in future works 
we will look into integrating additional meteorological parameters that 
could capture said conditions such as the accumulated precipitation. 
Another complex year in Europe that has been included in our analysis is 
2018 in Germany, when crop losses (48.9%) and early harvesting 
(61.3%) happened as a result of the compound effects of the soil mois-
ture drought and a heatwave (de Brito et al., 2020). Though this year is 
well captured at the EOS (Fig. 9), the earlier forecasts’ larger errors 
might be impacted by such events. Finally, compared to Kamir et al. 
(2020) that reported an EOS error of 0.59 t/ha at subnational level in 

Australia, our results show better performance metrics of 0.21 t/ha at 
national and 0.47 t/ha at subnational level. 

Comparing the different countries’ performance, the US shows the 
lowest errors. This might be a consequence of two error sources. One is 
the number of AU considered, which is largest for the US. In fact, Fig. 12 
shows the ratio of the RMSE at subnational and national level versus the 
square root of the number of AU considered in each country. Except for 
Australia, that has a low RMSE with a limited number of AU (13), the 
other countries’ error ratio show a linear dependency with the square 
root AU. This is a consequence of the error propagation theory: the 
national error depends both on the subnational error and de square root 
of number of subnational units. 

The other source of error is the crop type maps. The US is the only 
country with moderate resolution crop type maps (30 m resolution from 
CDL), while ARYA implementation to other countries relies on crop type 
maps derived directly from MODIS 250 m data. 

During this work we learned that the LST is a very useful parameter 
to monitor the crop yield. The improvement of estimates when including 
the thermal information versus just using the optical information (DVI) 
is stronger in Australia, Argentina, Germany, Ukraine and Russia and is 
more limited or even provides very similar performance metrics in 

Fig. 9. (continued). 
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France and the US. However, the thermal information retrieval presents 
some limitations that we must consider in order to exploit its benefits. 
Fig. 2 showed that depending on the direction of the cloud, the LST of 
the underlying surface can change dramatically. In this work, we 
minimized the impact of such cases by dilating the original cloud mask 

with a 5 pixels buffer and by integrating both Aqua and Terra temper-
ature differences. However, after these processes the data presented 
gaps caused by clouds in some regions that were filled out interpolating 
linearly the LST-Tair cloud free estimations. This approach might be 
causing some inaccuracies in some regions prone to cloud cover. 

Fig. 9. (continued). 

Fig. 10. Errors at the EOS in each country at national (left) and subnational (right) level.  
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Therefore, a potential solution to this problem, would be using geosta-
tionary data to analyze the clouds direction and exploit the large number 
of LST images per day. 

6. Conclusions 

This study presents the ARYA forecasting algorithm which is based 
on analyzing the DVI evolution with the accumulated GDD information 
and the difference between LST and the air temperature. The algorithm 
is successfully applied to the seven major wheat exporting countries 
which account for over 70% of the wheat exports worldwide. The results 
show that ARYA provides good estimations with RMSE within 0,2–0,4 t/ 
ha at national and 0,5–0,7 t/ha at subnational level after DOY 140 (mid 
of May) in the Northern Hemisphere and DOY 280 (beginning of 
October) in the Southern Hemisphere. This means that ARYA can pro-
vide reliable estimates 2 to 2.5 months prior to harvest. Additionally, the 
study provides some insite of LST importance to monitor crop yield and 
can provide improvements the yield uncertainties up to 0.2 t/ha. 
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