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Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is
likely to increase in response to the warming and drying predicted for the future climate. In addition to
quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is
the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire
succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ

Ié(?r' g‘;rgs r:est observations of important severity characteristics in Alaskan black spruce stands, including depth of burning
Fire severity of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers
Alaska with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer
Regression tree in burned black spruce stands. Using a regression tree approach, the R? of the organic layer depth reduction
Boosting models was 0.60 and 0.55 (p<0.01) for relative and absolute depth reduction, respectively. All of the

independent variables used by the regression tree to estimate burn depth can be obtained independently of
field observations. Implementation of a gradient boosting algorithm improved the R? to 0.80 and 0.79
(p<0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in
the regression tree model of burn depth included topographic position, remote sensing indices related to soil
and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth
characteristics are determined for a large (>200,000 ha) fire to identify areas that are potentially vulnerable
to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe
enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary
data are useful in the modeling of the surface organic layer fire depth. Because quantitative differences in
post-fire surface characteristics do not directly influence spectral properties, these modeling techniques
provide better information than the use of remote sensing data alone.

Published by Elsevier Inc.

1. Introduction

Disturbance of natural ecosystems, particularly forest environ-
ments, is critical to understanding carbon cycling and other important
ecosystem processes on a regional to global scale (Chapin et al., 2006;
Kurz et al, 2007; Running, 2008). Biomass burning is one of the
primary vehicles of land cover change in the sub-arctic boreal forest,
with the frequency of large fire years more than doubling over the
past half century across the North American boreal forest (Kasischke &
Turetsky, 2006) in response to overall warming (Gillett et al., 2004),
as well as seasonal variations in temperature and precipitation that
are driven by teleconnections with longer-term variations in ocean
circulation (Skinner et al., 1999, 2006; Duffy et al., 2005).
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The objective of this study is to determine the depth of burn for
five large fires that occurred during the 2004, the largest fire year on
record for interior Alaska. Variations in depth of burning of deep
organic soils common to boreal forests can precipitate changes in
post-fire succession (Johnstone & Kasischke, 2005; Johnstone &
Chapin, 2006; Johnstone et al., 2009), and affect energy budgets
(Chambers & Chapin, 2003; Randerson et al., 2006), net ecosystem
carbon balance (Kasischke et al., 1995; Harden et al., 1997; Balshi
etal., 2007), permafrost dynamics and hydrology (Zhuang et al., 2002;
O'Donnell et al., 2009; Yi et al., 2009), and other ecosystem services,
particularly subsistence resources used by Native Peoples in interior
Alaska (Rupp et al., 2006; Natcher et al., 2007; Chapin et al., 2008;
Nelson et al., 2008).

Fire severity is defined as the immediate post-fire environment,
which interacts with site-specific conditions to determine burn
severity over a longer time period (Lentile et al., 2006). The severity
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characteristic of interest, burn depth, is the most important effect on
ecosystem functioning in the Alaskan boreal forest. The reduction of
the surface organic layer impacts soil characteristics as well as post-
fire regeneration, and is the primary focus of this analysis. This study
is unique in that it combines spectral and ancillary geospatial data to
analyze fire severity in the Alaskan boreal forest, although such a
combination of data types has proven fruitful in other contexts (Rogan
& Miller, 2006).

1.1. Background

Black spruce (Picea mariana (Mill.)) stands, the dominant species
in majority of forested land cover of the Alaskan interior, are typically
characterized by poor to moderate drainage and cool soil tempera-
tures, which inhibits decomposition of organic matter. Deep soil
organic layers are covered by a surface organic layer that insulates the
ground from warmer summer temperatures when the surface is dry.
In spring and winter, when the organic layer is wet or frozen, the
thermal conductance is higher and the soil underneath is cooler (Burn
& Smith, 1988); therefore the active layer under a deep organic layer
is generally thinner than in areas with a thinner organic layer or
exposed mineral soil (Kane et al., 2007). The organic material in these
soils and surface materials is highly vulnerable to burning, particularly
during more severe fires that consume more of the surface organic
layer (Kasischke et al., 2000; Kasischke & Johnstone, 2005; Amiro
et al,, 2009). Black spruce trees are able to tolerate cool, moist soils
and therefore dominate in flat areas and toe slopes north-facing back
slopes. The soil organic layer in low productivity black spruce stands
tends to be deeper than in other upland ecosystems because cool,
moist soil conditions inhibit decomposition rates and provide
resistance to deep-burning fires. Black spruce cones are semi-
serotinous, but the trees are vulnerable to fire-induced mortality
due to the thin bark.

In burned black spruce stands experiencing low to moderate levels
of combustion of the surface organic layers, post-fire succession is
likely to follow a self-replacement trajectory (Viereck, 1983;
Johnstone & Kasischke, 2005; Johnstone & Chapin, 2006). In high-
severity fires that consume most or all of the soil organic layer, there is
an increased likelihood of a post-fire successional shift toward
deciduous dominance (Johnstone & Kasischke, 2005; Johnstone &
Chapin, 2006; Johnstone et al., 2009). Fire frequency and possibly
severity have increased in interior Alaska in recent decades, which, if
sustained, could shift the species composition of the region to a novel
ecosystem: a mix of black spruce and aspen or birch. The region has
not been dominated by such a mixture of coniferous and deciduous
species since the early Holocene (~10,000 years BP) (Lynch et al.,
2002, 2006; Lloyd et al., 2006).

A shift to increased deciduousness in Alaskan boreal forests can
result from two types of modifications of the fire regime — decreased
fire return interval and increased severity. Both modifications are
likely in the context of predictions of a warmer and drier climate for
the Arctic and sub-Arctic (Stocks et al., 1998; ACIA, 2004; Flannigan
et al., 2005; Rupp et al., 2007). First, fire years with high annual area
burned become more common in the Alaskan Interior, and the fire
return interval for a given stand becomes shorter. The decrease in fire
return interval in turn reduces the amount of seedling recruitment
from black spruce because the slow-growing trees do not reach sexual
maturity before the next fire (Johnstone & Kasischke, 2005; Johnstone
& Chapin, 2006). Second, more severe fires that consume the soil
organic layer favor recruitment and establishment of deciduous
seedlings, which thrive on the exposed mineral soils and inhibit the
growth of coniferous species (Johnstone & Kasischke, 2005).

The deciduous or mixed deciduous-conifer ecosystem that could
result from these changes in fire regime characteristics is likely to
alter ecosystem functions such as albedo and carbon cycling and may
contribute to feedbacks among vegetation, climate, and fire. Estab-

lishment of deciduous species such as trembling aspen (Populus
tremuloides) and paper birch (Betula papyrifera) in areas previously
dominated by black spruce is likely to increase surface reflectance and
to inhibit the establishment of black spruce seedlings (Johnstone &
Chapin, 2006). While the deciduous species may have higher biomass
and therefore store more carbon, increased heterotrophic respiration
in drier and warmer soils may offset these gains. The net effect of post-
fire radiative forcing and carbon emissions has been estimated to be a
cooling effect (Randerson et al., 2006), although variations in severity
exert considerable influence over these dynamics.

1.2. Spectral and ancillary geospatial data

Studies of severity characteristics such as burn depth typically use
in situ observations, which are limited in spatial extent because of the
need for site accessibility. Plot-based samples, even those located
across a range of burn conditions, cannot fully account for all of the
variability in burn conditions within a large (>10km?) burn
perimeter (Turner et al., 2003; Greene et al., 2004). Extrapolation of
plot-based observations of severity to an entire burn or an even
broader extent is difficult without information regarding the spatial
heterogeneity of conditions at these scales (Turner et al., 1999;
Turner, 2005) both pre-fire (such as species composition, topography,
and other factors that influence severity) and post-fire (such as
spectral indicators of severity from remote sensing).

A variety of approaches have been evaluated for using remote
sensing data to assess fire/burn severity (for a review, see French et al.,
2008). Fire severity mapping is typically conducted using a combina-
tion of information from the visible, near-infrared, and mid-infrared
portions of the EM spectrum (e.g., Lopez-Garcia & Caselles, 1991; Key
& Benson, 1999; Miller & Thode, 2007). These are the bands most
sensitive to variations in soil color (visible and mid-infrared), soil
composition (mid-infrared), and moisture and chlorophyll (near-
infrared), which are significantly affected by fire severity. The spectral
signature of severity immediately following a fire is composed of the
reflectance properties of soil, char, ash, moisture and living and dead
vegetation (Rogan & Franklin, 2001). If the entire surface organic layer
is consumed during the fire, the subsequently exposed mineral soils
will have a much higher reflectance value across the spectrum
compared to organic soils. Additionally, mineral soils, with a higher
bulk density than organic soils hold more moisture than mineral soils,
and are likely to exhibit a spectral signature more attenuated by water
absorption bands. Across a burned area char or ash may dominate in
the immediate post-fire environment, depending on combustion
completeness (Smith & Hudak, 2005). White ash, indicative of
complete combustion (Stronach & McNaughton, 1989; Robinson,
1991; Landmann, 2003), causes high spectral reflectance (Smith &
Hudak, 2005; Smith et al., 2005) in contrast with char, which
increases absorption across the spectrum (Smith et al., 2005).

For this reason, recent studies have focused on using moderate- to
coarse-grain remotely sensed data for mapping fire severity in the
Alaskan interior (e.g., Epting et al., 2005; Duffy et al., 2007; Allen &
Sorbel, 2008; Hoy et al., 2008; Murphy et al., 2008). The broad spatial
extent sampled by these medium-to-coarse-grain sensors (from
Landsat scenes of about 30,000 km? to MODIS scenes of about
6,000,000 km?) can cover a range of ecological conditions where
burns occur, and analysis of their spectral data has the potential to
produce indices of fire severity (Key & Benson, 2006; Lentile et al.,
2006).

Recently, the focus of remote sensing research on fire severity has
sought to correlate measures of site-level fire severity characteristics
(such as the Composite Burn Index, or CBI) with remotely sensed
spectral indices of severity (such as the Normalized Burn Ratio [NBR]
family) to produce regional estimates of severity characteristics (e.g.,
Epting et al., 2005; Miller & Thode, 2007; Allen & Sorbel, 2008;
Murphy et al., 2008) Other attempts to correlate remotely sensed and
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field-based observations of severity have not demonstrated that fire
severity characteristics such as burn depth can be reliably derived
from remote sensing based indices alone (Hoy et al., 2008; Verbyla &
Lord, 2008). Overall, the relationship between ground-based and
remote sensing based indices is inconsistent in black spruce forests
(Hoy et al., 2008).

2. Methods

In this analysis, information derived from remote sensing data
(spectral indices of severity as well as other relevant information
regarding fire regime characteristics such as seasonal timing of
burning) and ancillary data (e.g., meteorological data and topogra-
phy) are combined in a regression tree model to estimate depth of
burn. A gradient boosting algorithm, which uses regression trees as
the base learner, was applied to the data to improve accuracy. The
data used to develop the depth of burn algorithm were from a number
of 2004 Alaskan fire events. These algorithms were then applied to a
single fire event to produce a map of severity.

2.1. Study area

The sites used to develop a model of depth of burning were located
within fire events that occurred during 2004 in the boreal region of
interior Alaska. The 88 sites were located within 5 fire events: Bolgen
Creek, Boundary, Dall City, Porcupine, and Tors (Fig. 1). These fire
events and sites are described in detail in Kasischke et al. (2008). Mean
annual temperature in this region ranges between —5 and —7 °C
(Beget et al., 2006), with a high degree of seasonal variation.
Precipitation ranges between 215 and 300 mm (Beget et al., 2006),
with about two-thirds occurring as snowfall. The average elevation in
the region where our observations were taken is 168 m, though there
is significant topographic relief (standard deviation =127 m, mini-
mum =20 m, maximum=1280 m). The majority (>99%) of the
burning in this region occurs at elevations <900 m, which reflects
limits of fuel availability above treeline (Kasischke et al., 2002).

Mature black spruce stands account for 35% of the vegetation cover
and 70% of the mature forests in interior Alaska. Low-growing
branches are common to this species, and act as a fire ladder to

promote crown burning. In this region fire cycles range from <120 to
240 years (Kasischke et al., 2002). Based on data from Kasischke et al.
(2008), the average stand age in mature stands (a surrogate for time
since fire in black spruce stands) is about 112 years.

There is much variability in area burned from year to year, with
large fire years (>5000 km?) occurring in Alaska about once every five
years over the last fifty years (Kasischke & Turetsky, 2006). In 2004
approximately 27,000 km? burned in the state, compared with
2400 km? in 2003. Average annual area burned in Alaska has nearly
doubled over the past 25years (1984-2008) compared to the
previous 25 year period (1959-1983), from 2430 km? to 4730 km?2.

The Boundary Fire in Eastern Alaska burned almost 218,000 ha
over five weeks between mid-June and the beginning of August, 2004.
The burned area was the largest of any single fire in 2004, which was
the largest fire year on record for interior Alaska. Drought conditions
and elevated wind speeds helped the fire to spread quickly across the
landscape until management efforts aided by precipitation events
extinguished it.

2.2. Data

The dependent variables as well as some of the independent
variables used in our modeling activities were based on field
observations collected in sites located in five fire events that occurred
in 2004. These sites were selected to represent a range in fire severity,
from light to severe (relative organic layer depth reduction
mean = 0.60, minimum = 0.156, maximum = 0.997). The sites were
sampled for various factors related to site and stand characteristics
and fire severity. Details of the sampling procedures used to collect
these data can be found in Kasischke et al. (2008).

Site characteristics used as dependent variables included mea-
surements of pre-burn depth of the surface organic layer and depths
of the organic layers after the fire. Some burn depth data were derived
from direct measurements of pre- and post-fire organic layer depth
(those collected by the USFS), while most of the observations utilized
the height of the adventitious roots above mineral soil to estimate
pre-fire organic layer depth (Kasischke & Johnstone, 2005; Kasischke
et al., 2008).

Fig. 1. Study area of the Alaskan interior, points mark the locations of burn depth observations.
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Site characteristics that were used as independent variables
included topographic position, slope, aspect, percent of the surface
covered by charred organic soil, average basal diameter of the canopy
trees (live and dead), number of live/dead trees standing, and the
composite burn indices (CBI), including total CBI and CBI for individual
layers (e.g., canopy CBI, understory CBI, and substrate CBI). Unlike the
other independent variables used in the model, none of these in situ
observations are available at a regional level, a requirement for
expanding the predictive model beyond the burned areas sampled in
the field.

Other independent variables were derived from analysis of
remotely sensed data, weather records, and topographic data. We
obtained Landsat TM/ETM+ spectral imagery and NBR-family
severity metrics from the Monitoring Trends in Burn Severity
(Eidenshink et al., 2007) website (see http://mtbs.gov/methods.
html for information on pre-processing and specific information on
index calculation). The imagery used in the analysis is listed in Table 1.
All images were Level 1 terrain-corrected and georeferenced Landsat
(L1T) TM/ETM+ data. Clouds in imagery were masked from the
analysis, and ETM+ images obtained with SLC-off were masked for
missing data.

In addition to using the spectral reflectances from Landsat TM/ETM +
Bands 4, 5, and 7, a number of different spectral indices were included in
the analysis (Table 2). Post-fire reflectance in the near-infrared and mid-
infrared portions of the electromagnetic spectrum is related to changes
in vegetation cover and exposed soil. Ratios created using bands in the
near and mid IR that have proven useful in minimizing illumination
effects (Ekstrand, 1996). The Normalized Burn Ratio (Key & Benson,
1999), and the normalized differenced vegetation index (Tucker 1979)
can be used to distinguish variations in fire severity in some ecosystems
(Diaz-Delgado et al., 2003; Epting et al., 2005). Modifications of these
ratios include comparison of pre- and post-burn indices, such as the
post-fire change in NBR (dNBR) and a relativized form of dNBR (RANBR)
(Miller & Thode, 2007). Finally, the brightness, greenness, and wetness
output from the Kauth-Thomas transformation (Kauth & Thomas, 1976)
were included to analyze variations in surface reflectance related to soil
exposure, vegetation cover, and moisture content, respectively.

Additional data layers derived from remotely sensed data included
burned area and proportion of unburned “islands” within the fire
perimeter (through analysis of Landsat TM/ETM+ imagery) and burn
date (from MODIS active fire detection). Pre-fire land cover was
determined from in situ observations of the species of standing dead
trees to ensure that the land cover type evaluated was black spruce.

All of the meteorological data used as independent variables in the
analysis came from Remote Automated Weather Stations operated by
cooperative effort between the U.S. Bureau of Land Management, the
State of Alaska, the U.S. Fish and Wildlife Service, the National Park
Service, and the U.S. Forest Service. There are 142 such stations in
Alaska, 46 of which are in the study region. Fire weather indices were
created by averaging the conditions for polygons measuring 1°
latitude by 5° longitude. The 1° by 5° sampling unit was used to
insure that a sufficient number of weather stations (between 3 and 6)
determined the weather characteristics of each burned area polygon.

Table 1

Remote sensing imagery used in the analysis.
Path/row Sensor Image date Fire name AFS number
68/14 ETM+ 16-Aug-05 Wolf Creek 158
69/14 ETM+ 22-Jul-05 Boundary 193
71/14 ™ 26-Jun-05 Fort Hamlin Hills 241
66/15 ETM+ 31-Aug-04 Taylor Complex 293
68/14 ETM+ 16-Aug-05 Central Complex 372
71/13 ETM+ 20-Jul-05 Dall City 384
68/15 ™ 21-Jun-05 n/a 477
71/13 ETM+ 20-Jul-05 Hodzana River 583

Table 2
Independent variables based on spectral reflectance.

Description Wavelenth (pm) or formula
B7/B5 Ratioofband 7 toband B7/B5
5

NBR Normalized Burn Ratio B4 —B7/B4 + B7

dNBR  Differenced Pre-fire NBR — post-fire NBR
Normalized Burn Ratio

RANBR Relative differenced
Normalized Burn Ratio

NDVI  Normalized difference B4 —B3/B4 + B3
vegetation index

TC1 Tasseled cap

dNBR/SQRT(pre-fire NBR)

(B1*0.3561) + (B2*0.3972) + (B3*0.3904) +

brightness (B4*0.6966) + (B5*0.2286) -+ (B7*0.1596)
TC2 Tasseled cap (B1*0.3344) + (B2*—0.3544) +
greenness (B3*—0.4556) + (B4 *0.6966) +
(B5*—0.0242) + (B7* —0.2630)
TC3 Tasseled cap wetness  (B1*0.2626) + (B2*0.2141) + (B3*0.0926) +

(B4*0.0656) + (B5* — 0.7629) + (B7* — 0.5388)

The Fire Weather Index System (FWIS) is part of the Canadian
Forest Fire Danger Rating System (CFFDRS) created by the Canadian
Forest Service (Stocks et al., 1998). The purpose of the CFFDRS is to
provide fire managers with a set of simple indices that can be used to
estimate the probability of fire ignition and spread based on current
and seasonal weather patterns. These indices are generated using
commonly-collected meteorological measurements such as air tem-
perature, wind speed, precipitation, and relative humidity. The indices
represent fuel moisture conditions (fine fuel moisture code, duff
moisture code, and drought code), and potential fire behavior (initial
spread index, buildup index and fire weather index) (Van Wagner,
1987). The fire weather indices used in this study were calculated by
the Alaska Fire Service (AFS) from 2004 weather data obtained from
the Remote Automated Weather Stations located within the region of
our field observations. Finally, topographic information was derived
from a digital elevation model from the US Geological Survey with a
spatial resolution of 60 m.

2.3. Analytical approaches

The goal of this study was to produce a model of organic layer
depth reduction, either as absolute burn depth or a ratio of post-fire
depth relative to pre-fire conditions. In this study we ran a regression
tree analysis [using rpart in R (Therneau & Atkinson, 2010)] to
produce estimates of relative and absolute burn depth as a function of
topography. Finally, a gradient boosting approach [mboost in R
(Hothorn & Bithlmann, 2007)] that uses regression trees as a base
learner was employed to boost the accuracy of the burn depth
estimates.

2.3.1. Regression trees

Regression tree algorithms are performed using observations of
the dependent variable and corresponding independent variables
provided by the user (Breiman et al., 1984). The regression tree
algorithm iteratively splits the dataset into two groups based on every
value given for every input variable, selecting the split that minimizes
the user-specified loss function, such as squared error (Breiman et al.,
1984; Franklin, 1998; Lawrence et al., 2004). Each bifurcation of the
data is known as a node, and the terminal nodes contain the model
output values.

The effectiveness of regression trees has been shown in the context
of image classification (where they are referred to as classification
trees given the categorical output) (Hansen et al., 2000; Rogan et al.,
2002; Lawrence et al., 2004; Hansen et al., 2008) and to a lesser extent
change detection (Rogan & Franklin, 2001; Rogan et al., 2003; Im &
Jensen, 2005; Im et al., 2008; Liu et al., 2008). The continuous output
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from a regression tree model can be used to map non-discrete features
such as fire severity.

There are many options for user input in creating regression trees,
including the number of iterations to perform the binary recursive
partitioning as well as the minimum number of observations to
include in a terminal node. Post-processing of the regression tree can
be performed by selecting nodes for removal, known as pruning.

Regression tree algorithms differ in terms of the rule used to create
new nodes. Generally speaking, the split that minimizes the loss
function (least squares) for both groups is chosen as a node. In this
case, squared analysis of variance (ANOVA) was used to evaluate
within group and between group variance (F-test) for each side of a
split. The algorithm runs an ANOVA test on every possible split (all
values of all independent variables) and chooses the split that
maximizes the F-statistic (between group variance divided by within
group variance). It is recognized that spatial autocorrelation in the
response variables may violate the assumption that all observations
are independent, which in turn impacts significance and may affect
model performance. The response variables were tested for spatial
autocorrelation using Moran's . Autocorrelation was significant,
though weak, for both relative (Moran's Index =0.05, p=0.02) and
absolute depth reduction (Moran's Index =0.22, p=0.0001).

2.3.2. Ensemble techniques

Regression trees, while effective at incorporating disparate data
types, non-normal distributions and non-linear relationships, do not
allow for tree optimization, and accuracy may suffer in the presence of
outliers and non-balanced datasets (Breiman, 1996; Lawrence et al.,
2004) Ensemble techniques, also known as voting techniques, use the
mean of multiple regression tree runs to increase accuracy and
stabilize the algorithm so that variations in input data do not
disproportionately influence the output (Freund & Schapire 1999;
DeFries & Chan, 2000). While ensemble techniques generally perform
better than regression trees, the algorithm used to predict a value is
unique for each observation, therefore interpretation of the model is
different from the single regression tree approach.

Two common ensemble techniques are known as bagging and
boosting. Bagging involves creating many regression trees by varying
slightly the observations used for each tree. A boosting operation
utilizes the decision tree as a base learner. After each iteration, the
model output is compared with the training data and miscalculations
are assigned a greater weight so that, in the next iteration, the
algorithm pays greater attention to those cases that are more difficult
to predict. The boosting algorithm learns to predict the dependent
variable based on multiple attempts to correctly classify training data.
When a maximum number of boosting operations have been
performed the algorithm chooses the mean of the output from
every tree created as the final output value. In this case, 50 iterations
were used in both models, a number that reflects the point at which
training error (evaluated by comparing output with observations not
included in model construction, or out-of-bag observations) is
effectively minimized.

2.4. A case study: the 2004 Boundary Fire

To calculate the average depth of the organic layer before the fire, we
subtracted the depth reduction from the decision tree model from pre-
fire organic layer depth. We used field-based observations of pre-fire
organic layer depth that were collected across all topographic positions
where black spruce forests are located. Observations (n=29) were
taken from Harden et al., 2004, 2006; Kane et al., 2005, 2007; Kasischke
& Johnstone, 2005; Kasischke et al., 2008; Shetler et al., 2008 and are
summarized in Turetsky et al. (in review). Using these data, mean
organic layer depth was calculated for three backslope categories:
(i) north, (ii) east and west, and (iii) south-facing slopes; and two
flat or toe slope categories: (i) upland and (ii) lowland. These mean

values were used along with the area of each topographic position
in the Boundary Fire.

Pre-fire organic layer depth was used in conjunction with the
depth reduction models (described in Section 3.3) to estimate the
organic layer depths remaining following fire activity in the area of
the Boundary Fire. Post-fire organic layer depth was used to
determine which areas are vulnerable to a shift in post-fire species
dominance. We evaluated only those areas classified as conifer prior
to the burn (about 60% of the burned area according to the National
Land Cover Database), which we assumed were all black spruce.

The regression tree approach, which produces decision rules to
estimate organic layer depth reduction, lends itself to producing maps
of the output variable quite easily. The absolute and relative depth
reduction models were used in combination with an estimate of pre-
fire organic layer depth to identify areas with <3 cm of surface organic
layer after the fire, the critical post-fire organic layer depth in terms of
shifting post-fire succession (Johnstone & Kasischke, 2005; Johnstone
& Chapin, 2006).

3. Results
3.1. Regression tree analysis

Regression tree analysis using relative organic layer depth
reduction as the dependent had an overall goodness of fit of
R?=10.60. The first split used topographic position to bifurcate the
data (Fig. 2). Flat lowland areas, typically cool with highly fire-
resistant sphagnum hummocks, had the shallowest relative depth
reduction (0.322). The next split divided the observations into south,
east, and west facing slopes (average reduction = 0.74) versus north,
northeast, northwest, southeast and southwest facing slopes (average
reduction =0.55). Additional splits incorporated information from
remote sensing indices (ratio of TM bands 7/5) and air temperature.

The regression tree analysis using absolute depth reduction as the
dependent variable had an overall goodness of fit of R> = 0.55 (Fig. 3).
This regression tree incorporated similar factors of topographic
information and remotely sensed indices, and additionally incorpo-
rated burn date and two of the fire weather indices. The first split
occurred at slopes greater than 11.5%, which burned the deepest
(19.79 cm). Drought code, which generally increased toward the end
of the burn season reflecting increased drying of ground-layer fuels,
was chosen for the second split. High DC (above 532) tended to burn
deeply. The next split incorporated the post-fire normalized
differenced vegetation index, associated with deciduous vegetation
in severely burned areas. Additional splits included the shallowest
burns occurring in lowland flat areas, a later burn date, and the initial
spread index of the fire.

3.2. Gradient boosting

A gradient boosting algorithm was applied to the dataset, using the
regression tree as the base learner. Similar to the regression trees,
overall goodness of fit between the relative and absolute depth

position = flat lowland

aspect=S, E, W

0.322

air temperature > 24° C TM Band 7/5 < 0.805

aspect=N, NE, SE

0.651 0.831 0.418

0.562 0.681

Fig. 2. Decision tree model for relative organic layer depth reduction.
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slope < 11.5
drought code < 532
19.79
NDVI < 0.355
17.67
position = flat lowland
14.2
burn date > July 19
6.86
initial spread index >7.45
8.549
10.67 14.02

Fig. 3. Decision tree model for absolute organic layer depth reduction.

reduction models was similar (0.80 and 0.79 for absolute and relative
depth reduction, respectively), although the distribution of the
modeled values is somewhat different, reflecting the distribution of
the dependent variables (Figs. 4 and 5).

The predicted values in the relative burn depth model appear to be
more regularly distributed around the regression line. In the output
from the absolute depth reduction model there are no predicted
values between 18 and 20 cm, reflecting the lack of observed burn
depth values between 20 and 24 cm. The relative depth reduction
shows no such gap. There is one extreme outlier in the absolute depth
reduction model, where the model predicted a burn depth of 11 cm
and the observed value was nearly twice that amount. Without the
outlier the regression equation changes only slightly (slope=1.16
versus 1.15, intercept = 2.33 versus 2.02, R>=0.84 versus 0.80). The
confusion may have resulted from the fact that, although the area was
on a south-facing slope, it burned relatively early in the season (June
24), while the drought code was relatively low (226.4, which is in the
first quartile of values for the variable). The slope for this observation
(7%) was also below the threshold chosen for the deepest-burning
fires (11.5%). There were no obvious outliers in the relative depth
reduction model. The model residuals are normally distributed and
appear random.

Gradient Boosting
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Fig. 4. Model fit using the gradient boosting technique, relative organic layer depth
reduction as dependent variable.
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Fig. 5. Model fit using the gradient boosting technique, absolute organic layer depth
reduction as dependent variable.

3.3. Boundary Fire case study

According to the map of absolute organic layer depth reduction,
about 12% of the burned area in the Boundary Fire had organic layer
depth shallower than 3 cm after the burn. While the model using
relative depth reduction showed general agreement with the spatial
pattern of post-fire organic layer depths, no areas were estimated to
have <3 cm depth after the fire. Overall the absolute organic layer
depth reduction model estimated shallower post-fire organic layers
than the relative reduction model (absolute reduction mean post-fire
depth=7.7 cm, relative reduction mean post-fire depth=10.8 cm,
SD =3.8 and 4.7, respectively).

4. Discussion
4.1. Dependent variable selection

The use of absolute versus relative organic layer depth reduction as
a measure of fire severity determines what questions one can address,
where the dependent variable can be selected to represent the time
frame of interest. Absolute depth reduction gives us information about
what was removed from the soil during the fire event, and represents
the logical severity measure if one is interested in estimating carbon
loss or emissions. In contrast, relative depth reduction is more relevant
for questions regarding the ecosystem response to the fire.

Absolute depth reduction is useful to studies of mass and energy
exchanges from fire, combustion rates, and other factors related to the
fire event itself. The impact of the fire on ecosystem functioning may
utilize information on absolute burn depth to determine the amount
of carbon released to the atmosphere, as the carbon content of soils
varies with depth. With respect to post-fire characteristics, deeper
burning fires are more likely to smolder (Gleixner et al., 2001) and to
create less labile black carbon in the process. A higher proportion of
black carbon in the soil means less carbon will be available for post-
fire decomposition.

Relative depth reduction is more important to studies of ecosystem
functioning than the direct effects of fire on mass and energy
exchanges, and the relevance of relative depth reduction is likely to
persist for many years post-fire. The greater the proportion of material
that is combusted, the less there is to maintain post-fire ecosystem
structure and function. The combustion of plant propagules important
to post-fire recruitment such as seeds and vegetative material from
surface organic layers directly affects post-fire succession. In black
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spruce sites with low severity (i.e., deep residual organic layers), post-
fire shrub recruitment occurs as a result of vegetative reproduction
(Zasada et al., 1983). In deep-burning fires, the sources (roots, stems)
for vegetative reproduction are eliminated, therefore changing
community compositions to species recruited from seeding from
outside the stand (Johnstone & Kasischke, 2005). Fire also affects soil
bulk density by removing low-density surface organic layers and
leaving inorganic material such as loess that accumulated in the
combusted material prior to the burn. The bulk density of the top most
organic layer remaining after the fire controls water availability for
seed germination and growth. Thus, the low bulk densities of organic
layers in shallow fires tend to be too dry to support germination and
growth of tree species with small seeds (e.g., aspen and birch),
whereas species with larger seeds (black spruce) have a higher rate of
survival and recruitment (Johnstone et al., 2009). Finally, deep organic
layers in black spruce forest insulate the ground layer, and thus
facilitate the formation of permafrost (Yoshikawa et al., 2002). As a
result, the soil temperature and moisture in both unburned (Kane
et al., 2007) and burned (Kasischke & Johnstone, 2005) black spruce
stands are proportional to the depth of the organic layer, and deeper
burning, more severe fires, result in warmer and drier sites post-fire.

4.2. Regression tree architecture

Whether relative or absolute post-fire organic layer depth
reduction was employed as the dependent variable, the regression
tree outputs were similar in the types of variables included. The exact
same variables were not included in both models because regression
trees are not particularly robust and a difference at the root (or
primary node) will generally produce a very different tree. While the
tree architectures were different, both included topographic indica-
tors close to the root, highlighting their importance. The model of
absolute depth reduction employed slope in the first node, with the
areas greater than 11.5% having an average burn depth of 19.79 cm
and 11.79 cm in all other areas. The first node of the relative depth
reduction model was based on topographic position, with flat lowland
areas losing 0.33 of the surface organic layer and all other areas losing
an average of 0.64. Post-fire spectral characteristics, particularly band
ratios (NDVI in the case of absolute depth reduction, TM band 7/TM
band 5 for relative depth reduction) were chosen in the third level
split for both nodes. Fire weather indices (initial spread index in the
case of absolute depth reduction, air temperature in the case of
relative reduction) were used toward the terminal nodes, aiding in
the finer-level separations. In addition to selecting similar input
variables, the regression trees appeared to perform with roughly the
same level of accuracy (R>=0.55 and 0.60).

Interestingly, the position of different types of independent
variable in the tree is generally indicative of the scale at which
ecological processes related to fire operate. Landscape related
variables such as topography, are located near the root of both
trees, and operate at broad spatial scales. The steeper slopes (chosen
as the first split in the absolute depth reduction model) are better
drained and therefore less fire-resistant. The flat, lowland areas
(chosen by the relative depth reduction model) are more likely to be
inundated, and may be shadowed in regions of high topographic
relief. At the next level, the spectral characteristics that are related to
post-fire succession become important. The soil and vegetation
characteristics that attenuate the spectral signature are related to
regional to local scale variations. Finally, the last data partitioning uses
short-term variations in fire weather-related variables (initial spread
index in the case of absolute depth reduction, air temperature in the
case of relative depth reduction).

Differences between the regression trees to determine relative or
absolute burn depth may be related to differences in the contribution
of landscape related variables versus instantaneous fire conditions.
While the first split for both trees is based on topography, in the case

of absolute depth reduction, the next node splits the data based on the
drought code (areas that burned on a day with a drought code >532
lost an average of 18 cm, when drought code was <532 11 cm of
organic layer was lost). Relative depth reduction is split first based on
upland versus lowland areas and then aspect with south, east and
west facing slopes having an average depth reduction of 0.74, all other
areas lost 0.57. The fact that landscape factors are more prevalent in
the first branches of the relative depth reduction tree may mirror the
fact that this variable is linked more closely with landscape
characteristics than absolute depth reduction, which incorporates
more data splits based on fire weather and seasonality of the burn.

Interestingly, in the model of absolute depth reduction, areas that
burned later than July 19 had a shallower burn depth than those that
burned prior to that date. While fire severity is less dependent on
seasonality during large fire years, it seemed strange that severity
would decrease as warmer conditions continued through the fire
season. Upon inspection of the weather indices, it appears that the
decreased burn depth may have been caused by increased precipita-
tion that mitigated fire severity. The precipitation from June 1 to July
20 (40 mm) is 67% of the amount that fell in the following 50 day
period (July 20 to September 6, 60 mm) (Fig. 6).

4.3. Boundary Fire case study

The maps of absolute and relative depth reduction reflect the
importance of the input variables included in each tree and the
proportion of the landscape covered by the output fire severity values
(Fig. 7). In the case of absolute depth reduction, the majority (64%) of
the Boundary Fire burn was dominated by the first split in the tree,
with a slope greater than 11.5%. In areas with less extreme topography
it is likely that more of the nodes would be apparent in the model of
depth reduction. In terms of relative depth reduction, the areas with
the shallowest burn depth (the first node) are those in flat lowland
areas. In the Boundary Fire, very little of the area burned is
characterized as flat lowland, and therefore the area with a burn
depth of 0.32 is small. Instead, aspect (the second node) is a dominant
factor in determining relative depth reduction, given the dramatic
relief of the burned area.

The post-fire organic layer depth results from the interaction of the
disturbance event (the mechanisms by which organic layer depth
reduction occurs) with the context of the disturbance (the constraints
on organic layer depth reduction). For this reason, deeper organic
layers in flat lowland areas and non-south-facing slopes are less
vulnerable to severe depletion and the subsequent post-fire succes-
sional shifts. Within the Boundary Fire perimeter, the areas most
vulnerable to reduction were south-facing backslopes which are
typically well-drained and fuels may become very dry due to greater

2004 Precipitation Events
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Fig. 6. Mean precipitation across all weather stations in the study area for 2004.
Precipitation from 1 June to 20 July, identified as the grey bar, 40 mm compared with
60 mm in the following 50 day period.
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Fig. 7. Maps of the Boundary Fire: (i) modeled absolute depth reduction; (ii) relative depth reduction; (iii) topographic positions: (a) flat lowland, (b) north-facing slope, (c) east and
west facing slope, (d) flat upland, (e) south-facing slope; (iv) modeled post-fire organic layer depth based on absolute reduction model; and (v) modeled post-fire organic layer

depth based on relative reduction model.

insolation than other topographic positions, as well as the fact that
these sites typically have deeper active layers than other topographic
positions (Kane et al, 2007). In burned areas with significant
topographic variability, particularly those areas with a large area of
south-facing slopes, the post-fire organic layer depth reduction could
significantly alter successional patterns if predicted climate changes
lead to an increase in fire severity and shorter fire return interval.

5. Conclusions

Previous studies estimating fire severity using satellite spectral
indices alone produced inconsistent results for the Alaskan boreal
forest region. The results from our study show that the potential for
using satellite remote sensing data for mapping fire severity is greatly
improved when other geospatial data are used as well.

The regression tree model output was useful in determining which
independent variables were most important in determining burn
depth, but had lower predictive ability than the gradient boosting
method. An unanticipated feature of the regression tree output was
that the splitting process reflected the spatial scale at which the

independent variables operate. Topography, the broadest impact was
selected close to the root of the regression tree, factors related to soil
and post-fire succession were selected in the intermediate stages, and
local fire-related weather indices appear close to the terminal nodes.

While gradient boosting appears to be an effective method at
predicting burn depth, there are a few caveats. The factors that
influence burn depth in a large fire year versus a small fire year may be
very different, and the application of the model derived from this data
are assumed to be applicable in 2004 only. This is reflected in the fact
that later burning fires in the region did not burn as deeply because of
mid-season precipitation. Because this is not typical of burn season
weather conditions, the regression tree model may prove insufficient
to characterize burn depth even for other large fire years.

Future plans for work include applying the same techniques to
small fire years to compare the differences with 2004. Extending the
analysis using the same techniques to look at burn depth at a regional
scale could yield further insights to the spatial pattern of fire regime
characteristics in the region. In the absence of constraints on the
number of observations for which remote sensing and in situ data are
available, it would be interesting to divide the dataset into early
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season and late season fires to see if the independent variables chosen
by the regression tree algorithm are similar.

The ability to model specific characteristics of fire severity, such as
the reduction of the surface organic layer depth, is instrumental in
predicting ecosystem responses to fire. It is important to be explicit
about the severity characteristic of interest, as few general severity
indices (such as the NBR family) included in the analysis correlate
with more than one or two field observed variables. This study
highlights the importance of incorporating data from remote sensing
and in situ observations, as well as exploring the application of non-
parametric techniques including machine learning algorithms.
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