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Abstract: It is an unequivocal fact that to date the automatic or semi-automatic transformation of huge amounts of multi-

source multi-resolution remote sensing (RS) imagery into useful information (such as biophysical variables, categorical 

maps, etc.) still remains far more problematic than might be reasonably expected. To invert this trend, a novel two-stage 

stratified hierarchical hybrid remote sensing image understanding system (RS-IUS) was presented in recent literature to 

encompass the four levels of analysis of an information processing device, namely, computational theory (system 

architecture), knowledge/information representation, algorithm design and implementation. The proposed original RS-IUS 

architecture comprises: (i) a first-stage pixel-based application-independent top-down (deductive, physical model-driven, 

prior knowledge-based) preliminary classifier and (ii) a second-stage battery of stratified hierarchical context-sensitive 

application-dependent modules for class-specific feature extraction and classification. The proposed implementation of 

the prior knowledge-based preliminary classification first stage of a two-stage stratified hierarchical hybrid RS-IUS 

consists of the original Satellite Image Automatic Mapper™ (SIAM™, University of Maryland Invention Disclosure No. 

IS-2010-103, patent pending, © Andrea Baraldi & University of Maryland). SIAM™ is an operational automatic (turnkey, 

good-to-go, press-and-go) software button (executable) for unsupervised near real-time per-pixel multi-source multi-

resolution application-independent spectral rule-based decision-tree classification of spaceborne multi-spectral imagery. 

The goal of this patent review is to highlight the several degrees of novelty and operational advantages of the proposed 

two-stage hybrid RS-IUS employing SIAM™ as its preliminary classification first stage in comparison with alternative 

approaches, such as two-stage object-based RS-IUSs which, in spite of their lack of consensus and research, have recently 

gained widespread popularity in both scientific and commercial RS image applications. 

Keywords: Decision-tree classifier, deductive learning, image classification, inductive learning, prior knowledge, radiometric 
calibration, remote sensing. 

1. INTRODUCTION 

 One traditional, albeit visionary goal of the remote 
sensing (RS) community is the development of operational 
(easy to use, accurate, fast, robust) satellite-based 
measurement systems suitable for automating the 
quantitative analysis of large-scale spaceborne multi-source 
multi-resolution image databases [1]. In past years this goal 
was almost exclusively dealt with in research programs 
involved with land cover (LC) and land cover change (LCC) 
detection at global scale [1] (pp. 451, 452). In fact, the 
majority of RS scientists and practitioners appears to be 
involved with RS data understanding problems at small 
spatial scale and coarse semantic granularity (equivalent to 
toy cognitive problems) where many RS data understanding 
approaches, e.g., supervised data learning Support Vector 
Machines (SVMs) [2], are capable of achieving satisfactory 
operational quality indicators (QIs), such as degree of 
automation, accuracy, efficiency, robustness to changes in  
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input parameters, robustness to changes in the input data set, 
scalability, timeliness and economy. 

 In recent years the objective of developing operational 
satellite-based measurement systems has become 
increasingly urgent due to multiple drivers. While cost-free 
access to large-scale low spatial resolution (SR) (above 40 
m) and medium SR (from 40 to 20 m) spaceborne image 
databases has become a reality [1, 3-7], in parallel, the 
demand for high SR (between 20 and 5 m) and very high SR 
(VHR, below 5 m) commercial satellite imagery has 
continued to increase in terms of data quantity and quality, 
which has boosted the rapid growth of the commercial VHR 
satellite industry [5]. 

 In this scientific and commercial context, an increasing 
number of on-going international research projects aim at the 
development of operational services requiring harmonization 
and interoperability of Earth observation (EO) data and 
derived information products generated from a variety of 
spaceborne imaging sensors at all scales - global, regional 
and local. Among these on-going programs it is worth 
mentioning the Global EO System of Systems (GEOSS) 
conceived by the Group on Earth Observations (GEO) [6, 7], 
the Global Monitoring for the Environment and Security 
(GMES), which is an initiative led by the European Union 
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(EU) in partnership with the European Space Agency (ESA) 
[8-9], the National Aeronautics and Space Administration 
(NASA) Land Cover and Land Use Change (LCLUC) 
program [1] (p. 3) and the U.S. Geological Survey (USGS)-
NASA Web-Enabled Landsat Data (WELD) project [10]. 

 Unfortunately, based on unequivocal sources of 
converging evidence it is possible to infer that to date the 
automatic or semi-automatic transformation of huge amounts 
of multi-source multi-resolution RS imagery into 
information still remains far more problematic than might be 
reasonably expected. This thesis is perfectly in line with a 
well-known opinion by Zamperoni according to which, to 
date, scientific disciplines such as Computer Vision (CV), 
Artificial Intelligence (AI)/Machine Intelligence (MAI) and 
Cybernetics/Machine Learning (MAL), whose origins dates 
back to the late 1950s, appear inadequate to provide their 
cognitive objectives with operational solutions [11]. To 
support the aforementioned thesis, consider the following 
facts. 

• The percentage of data downloaded by stakeholders 
from the ESA EO databases is estimated at about 
10% or less (!) [12]. Does the interested reader know 
of any other public or private sector, with the 
exception of RS, where the exploitation index of 
valuable and expensive resources (e.g., RS data) is as 
low as 10% or less? 

• The Ministry of Science and Technology of the 
People’s Republic of China has recently approved the 
launching of a new global land cover mapping project 
at the 30 m resolution level where primary sources of 
spaceborne images are the MODIS sensor, for data 
acquired around the year 2000, and Landsat-class 
sensors primarily acquired around the year 2010 [13]. 
In terms of data processing system architecture, a 
stratified hierarchical land cover classification 
approach will be adopted, with eco-region 
classification done first and more detailed land cover 

classification performed within each eco-region. Both 
computer-based image classification algorithms and 
manual (!) image interpretation techniques will be 
assessed, selected and employed for different types of 
eco-regions. To summarize, in the year 2011 the 
second-largest economy in the world considers 
manual image interpretation a still-competitive and 
viable solution in practical RS data mapping 
problems at global scale. 

• In the framework of the Global Forest Cover Change 
(GFCC) Project [14], an SVM model selection 
strategy is run for each (!) image of a multi-temporal 
image mosaic at global scale. This site-specific model 
selection approach is extremely time-consuming, to 
counterbalance the well-known limitation of 
statistical models which are effective for summarizing 
local data exclusively, i.e., they are usually (always?) 
site-specific [15]. In addition, it is well-known that 
supervised (labeled) data learning algorithms, 
whether context-insensitive (e.g., pixel-based) or 
context-sensitive (e.g., (2-D) object-based), require 
the collection of reference training samples which are 
typically scene-specific, expensive, tedious and 
difficult or impossible to collect [1]. This means that, 
in RS common practice where supervised data 
learning algorithms are employed, the cost, 
timeliness, quality and availability of adequate 
reference (training/testing) datasets derived from field 
sites, existing maps and tabular data have turned out 
to be the most limiting factors on RS data product 
generation and validation [1]. 

• Emanuel Diamant asks: when did AI, MAL and CV 
derail from their original and ambitious goals? To 
make their cognitive problem domain more 
“tractable”, these scientific disciplines were 
fragmented into many partial tasks and goals. 
Diamant's answer to his own question is: These 

Table 1. Existing Commercial RS-IUSs and their Degree of Match with the International QA4EO Guidelines 

 

Commercial RS-IUSs  

Sub-symbolic (Asemantic) Versus Symbolic 

(Semantic) Information Primitives, Namely, 

Pixels/(2-D) Objects (Regions, Segments)/Strata 

Radiometric Calibration (RAD. CAL.) Requirement 

According to the International QA4EO Guidelines [7] 

PCI Geomatics GeomaticaX  Sub-symbolic pixels NO RAD. CAL.  semi-automatic and site-specific  

eCognition Server by Definiens 
AG 

Unsupervised data learning sub-symbolic objects NO RAD. CAL.  semi-automatic and site-specific 

Pixel- and Segment-based 
versions of the Environment for 
Visualizing Images (ENVI) by 

ITT VIS  

Either sub-symbolic pixels or unsupervised data 
learning sub-symbolic objects 

NO RAD. CAL.  semi-automatic and site-specific  

ERDAS IMAGING Objective  Supervised data learning symbolic objects NO RAD. CAL.  semi-automatic and site-specific  

ERDAS Atmospheric 
Correction-3 (ATCOR-3) [25] 

Sub-symbolic pixels 
Consistent with the QA4EO recommendations: surface 
reflectance, SURF  inherently ill-posed atmospheric 

correction first stage  semi-automatic and site-specific.  

Novel two-stage stratified 
hierarchical RS-IUS employing 

SIAM™ as its preliminary 
classification first stage 

Prior knowledge-based symbolic pixels  symbolic 
objects  symbolic strata (layers) 

Consistent with the QA4EO recommendations: top-of-
atmosphere (TOA) reflectance (TOARF) or surface 

reflectance (SURF) values, with TOARF  SURF  
atmospheric correction is optional. Automatic and robust to 

changes in RS optical imagery acquired across time, space 
and sensors.  
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disciplines derailed right at their origin dating back to 
the late 1950s. For example, Diamant reports that 
Steve Grand said: “Rodney Brooks has a copy of a 
(1956's) memo from Marvin Minsky (one of the 
founders of AI) in which he suggested charging an 
undergraduate for a summer project with the task of 
solving vision. I don’t know where that undergraduate 
is now, but I guess he hasn’t finished yet” [16]. 

• The international Quality Assurance Framework for 
Earth Observation (QA4EO), led by the Committee of 
Earth Observations (CEOS) Working Group on 
Calibration and Validation (WGCV) in the context of 
the GEOSS program, considers mandatory an 
appropriate coordinated program of calibration and 
validation (Cal/Val) activities throughout all stages of 
a spaceborne mission, from sensor building to end-of-
life [7]. This ensures the harmonization and 
interoperability of multi-source observational data 
and derived products. In spite of the QA4EO 
recommendations and although it is regarded as 
common knowledge in the RS community, 
radiometric calibration, i.e., the transformation of 
dimensionless digital numbers (DNs) into a physical 
unit of measure related to a community-agreed 
radiometric scale, is often neglected in literature and 
surprisingly ignored by scientists, practitioners and 
institutions involved with RS common practice 
including large-scale spaceborne image mosaicking 
and mapping [17-24]. For example, in disagreement 
with the QA4EO guidelines, most existing scientific 
and commercial RS-IUSs, such as those listed in 
Table 1, do not require RS images to be 
radiometrically calibrated and validated. As a 

consequence, these RS-IUSs are semi-automatic 
and/or site-specific, refer to Section 5. 

 To summarize, according to the aforementioned sources 
of evidence it is possible to state that to date productivity in 
terms of quality, quantity and value of high-level output 
products generated from input EO imagery remains 
unexpectedly low in both scientific and commercial 
applications. This is tantamount to saying that existing 
scientific and commercial RS image understanding 
(classification) systems (RS-IUSs), such as [25-27], score 
poorly in operational contexts. If this conjecture holds in 
general, it applies in particular to two-stage segment-based 
RS-IUSs (see Fig. 1), whose conceptual foundation is well-
known in literature as (2-D) object-based image analysis 
(OBIA) [28]. Due to the availability of a commercial OBIA 
software developed by a German company [26-27], OBIA 
approaches are currently considered the state-of-the-art in 
both scientific and commercial RS image mapping 
applications. However, in spite of its commercial success, 
OBIA remains affected by a lack of general methodological 
consensus and research [28]. 

 To outperform existing scientific and commercial image 
understanding systems there is a new trend in both computer 
vision [29] and RS literature [15, 30]. This novel trend deals 
with the development of hybrid models for retrieving sub-
symbolic continuous variables (e.g., leaf area index) and 
symbolic categorical discrete variables (e.g., land cover 
composition) from optical multi-spectral (MS) imagery. By 
definition, hybrid models combine both statistical (bottom-
up, fine-to-coarse, driven-without-knowledge, inductive 
learning-by-example) and physical (top-down, coarse-to-
fine, prior knowledge-based, deductive learning-by-rule) 
models to take advantage of the unique features of each and 
overcome their shortcomings [15, 29, 30]. 

 

Fig. (1). Two-stage segment-based RS-IUS architecture adopted, for example, by the eCognition commercial software toolbox [13]. This 

data flow diagram (DFD) shows processing blocks as rectangles and sensor derived data products as circles [50]. Preliminary image 

simplification is pursued by means of an (ill-posed hierarchical) image segmentation approach which generates as output a segmented 

(discrete) map, either single-scale or multi-scale. Worthy of note is that first-stage output sub-symbolic informational primitives, namely, 

labeled segments (2-D objects, parcels), e.g., segment 1, segment 2, etc., are provided with no semantic meaning. 

(Ill-posed) Hierarchical piecewise constant 
image segmentation (includes no texture 

model)

Class 1-specific Fuzzy 
Rule-based Classifier

Inter-segment spatial 
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Class 2-specific Fuzzy 
Rule-based Classifier
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 Accomplished by the author of the present work, novel 
achievements in the development of an operational automatic 
(turnkey, good-to-go, press-and-go) hybrid RS-IUS were 
recently published in RS literature [17-24]. These new 
developments encompass the four levels of analysis of an 
information processing device [18, 21], namely: (i) 
computational theory (system architecture), (ii) knowledge/ 
information representation, (iii) algorithm design and (iv) 
implementation. In particular, a novel two-stage stratified 
hierarchical hybrid RS-IUS architecture was proposed (see 
Fig. 2). It comprises: 

 (i) a first-stage pixel-based application-independent top-
down (physical model-driven, prior knowledge-
based) preliminary classifier and 

(ii) a second-stage battery of stratified hierarchical 
context-sensitive application-dependent modules for 
class-specific feature extraction and classification. 

 It is noteworthy that, since it employs a first-stage 
physical model rather than a first-stage statistical model like 
traditional OBIA systems, the proposed two-stage stratified 
hierarchical hybrid RS-IUS architecture encompasses a 
change in the learning paradigm at first stage from inductive 

Machine-Learning (MAL)-from-data to deductive Machine-
Teaching (MAT)-by-rules [16, 47]. 

 The proposed original implementation of the 
aforementioned first-stage preliminary classifier consists of 
the Satellite Image Automatic Mapper™ (SIAM™, 
University of Maryland Invention Disclosure No. IS-2010-
103, patent pending, © Andrea Baraldi & University of 
Maryland) [17-24]. SIAM™ is an operational automatic 
(turnkey, good-to-go, press-and-go) software button 
(executable) for unsupervised near real-time per-pixel multi-
source multi-resolution application-independent spectral 
rule-based decision-tree classification of spaceborne MS 
imagery. To the best of this author’s knowledge, SIAM™ 
provides the first operational example of an automatic multi-
sensor multi-resolution EO system of systems envisaged 
under on-going international research programs such as the 
GEOSS [6, 7]. 

 The goal of this patent review is to highlight the several 
degrees of novelty and operational advantages of the 
proposed two-stage hybrid RS-IUS (see Fig. 2) employing 
SIAM™ as its preliminary classification first stage in 
comparison with alternative approaches, such as two-stage 
segment-based RS-IUSs (see Fig. 1) which, in spite of their 

 

Fig. (2). Novel hybrid two-stage stratified hierarchical RS-IUS architecture, related to original works by Shackelford and Davis [42, 43]. 

This DFD (refer to Fig. 1) shows processing blocks as rectangles and sensor-derived data products as circles. In this example, a 10 m 

resolution SPOT-5 multi-spectral (MS) image is adopted as input, where anthropic structures (e.g., roads, buildings) are visible. According to 

the sole SIAM™ input data requirement, input digital numbers (DNs) are radiometrically calibrated into top-of-atmosphere (TOA) 

reflectance (TOARF) values or surface reflectance (SURF), with TOARF  SURF, the latter being an ideal (atmospheric noise-free) case of 

the former. The panchromatic (PAN) image can be generated as a linear combination of the multi-spectral (MS) bands. The MS image is 

input to the preliminary classification first stage and, if useful, to second-stage class-specific classification modules. The PAN image is 

exclusively employed as input to second-stage stratified class-specific context-sensitive feature extractors and classification modules, where 

color information is dealt with by stratification. For example, stratified (driven-by-knowledge, better-posed) texture detection is computed in 

the PAN image domain, which reduces computation time. It is noteworthy that a stratified image segmentation module is run at the second 

stage only where required, namely, in the image candidate areas where the presence of anthropic structures featuring salient geometric 

properties (e.g., roads, building, impervious surfaces) is feasible. It is noteworthy that as output of the first-stage SIAM™ preliminary 

classifier, symbolic pixels in symbolic segments in symbolic strata (layers) co-exist. In other words, three spatial types (pixel, segment and 

stratum) co-exist as output of the first-stage SIAM™, which overcomes the typical duality of sub-symbolic pixels versus sub-symbolic 

segments in OBIA systems (see Fig. 1). 
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lack of consensus and research [28], have recently gained 
widespread popularity in both scientific and commercial RS 
image applications [26, 27]. 

 The rest of this paper is organized as follows. 
Operational properties of SIAM™ are summarized in 
Section 2. Section 3 presents SIAM™ as a system of systems 
eligible for use with nearly all existing spaceborne optical 
imaging sensors. The novel two-stage stratified hierarchical 
hybrid RS-IUS instantiation employing SIAM™ as 
preliminary classification first stage, proposed in [17-24], is 
sketched in Section 4. Section 5 compares the proposed two-
stage stratified hierarchical hybrid RS-IUS design with 
existing RS-IUS architectures. SIAM™ application 
examples are shown in Section 6. Add on modules to be 
employed in series with SIAM™ are discussed in Section 7. 
In Section 8, new interdisciplinary research and market 
opportunities opened up by SIAM™ are explored. Section 9 
compares SIAM™ with recent patents on space technology. 
Future developments are reported in Section 10. 

2. MAIN FUNCTIONAL PROPERTIES OF THE 
SIAM™ PRELIMINARY CLASSIFIER 

 SIAM™ consists of an operational automatic (turnkey, 
good-to-go, press-and-go) preliminary Spectral Rule-based 
Classifier (SRC), equivalent to a non-adaptive (to data) 
decision-tree classifier, presented in RS literature in recent 
years [17-24]. 

 As input, SIAM™ requires a multi-spectral (MS) image 
radiometrically calibrated into top-of-atmosphere (TOA) 
(planetary) reflectance (TOARF) values or surface 
reflectance (SURF) values, where TOARF  SURF, the 
latter being an ideal (atmospheric noise-free) case of the 
former when atmospheric effects are removed [25] or 
considered negligible [59]. This allows SIAM™ to consider 
the inherently ill-posed atmospheric correction of an input 
MS image as an optional rather than compulsory pre-
processing stage, unlike competitive commercial RS-IUSs 
such as ERDAS ATCOR-3 [25] (also refer to Table 1). 

 As output, SIAM™ generates a preliminary 
classification map or primal sketch in the Marr sense [31]. 
This preliminary classification map consists of a discrete 
finite set of mutually exclusive and totally exhaustive 
spectral-based semi-concepts, also called spectral 
categories. Each spectral category is equivalent to a land 
cover class set. For example, spectral category ‘vegetation’ 
is an or-combination (union) of land cover classes ‘either 
woody vegetation or cropland or grassland (herbaceous 
vegetation) or (shrub and brush) rangeland’. To summarize, 
the semantic meaning of a spectral category is: 

• superior to zero, which is the semantic value of 
traditional sub-symbolic image segments and 
unlabeled data clusters, and 

• equal or inferior to the semantic meaning of target (3-
D) land cover classes, also called concepts or (3-D) 
object-models [30]. 

 Thus, spectral-based semi-concepts are eligible for filling 
in the well-known information gap between stable percepts 
(semantic information) and varying sensations (sensory data) 
[30]. In practice, “we are always seeing objects we have 

never seen before at the sensation level, while we perceive 
familiar objects everywhere at the perception level” [30]. In 
particular, spectral-based semi-concepts (e.g., vegetation) fill 
in the gap between symbolic concepts (e.g., land cover 
classes) in the (3-D) scene (e.g., broad-leaf forest) and sub-
symbolic (non-semantic) features in the (2-D) image such as 
sub-symbolic pixels and sub-symbolic (2-D) regions 
(segments) or, vice versa, region boundaries (since boundary 
detection is the dual task of 2-D region extraction). It is well 
known that (2-D) image segments are affected by the 
uncertainty principle according to which, for any contextual 
(neighborhood) property, we cannot simultaneously measure 
that property while obtaining accurate localization [32, 33]. 
This is tantamount to saying that image segmentation, 
namely, region extraction and its dual problem, contour 
detection, is an ill-posed (subjective) task (for further 
discussions on this important issue, which is often 
underestimated or neglected by the CV and RS communities, 
refer to Section 5). 

 Spectral categories generated as output by SIAM™
 

belong to six parent spectral categories (also called super-
categories) or major spectral end members which are listed 
below. 

I. ‘Clouds’. 

II. ‘Either snow or ice’. 

III. ‘Either water or shadow’. 

IV. ‘Vegetation’, equivalent to the land cover class set 
‘either woody vegetation or cropland or grassland 
(herbaceous vegetation) or (shrub and brush) 
rangeland’. 

V. ‘Either bare soil or built-up’. 

VI. ‘Outliers’. 

 In terms of operational quality indexes (QIs), SIAM™ 
appears superior to existing commercial RS-IUSs [17-24] 
(also refer to Section 5). In operational contexts a RS-IUS is 
defined as a low performer if at least one among several 
operational QIs scores low. Typical operational QIs of a RS-
IUS encompass the following (also refer to Table 6). 

1. Degree of automation. A data processing system is 
termed automatic when it requires no user-defined 
parameter to run, therefore its user-friendliness 
cannot be surpassed. When a data processing system 
requires neither user-defined parameters nor reference 
data samples to run, then it is termed “fully 
automatic” [17-24]. For example, the prior 
knowledge-based SIAM™ is fully automatic. 
Therefore, its ease of use cannot be surpassed. 

2. Effectiveness, e.g., classification accuracy. For 
example, in recent years SIAM

™
 has been subjected 

to independent scientific scrutiny for validation over a 
wide range of spatial conditions, time periods, optical 
imaging sensors and geographic extents ranging from 
local to regional and continental scales [17-24]. 

3. Efficiency, e.g., computation time, memory 
occupation, etc. For example, SIAM

™
 is near real-

time, namely, it takes 5 minutes to map a Landsat 
scene on a standard laptop computer. 
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4. Robustness to changes in the input data set acquired 
across time, space and sensors, e.g., changes due to 
noise in the data. For example, SIAM™ is eligible for 
use with nearly all existing spaceborne optical sensors 
(refer to Table 2). 

5. Robustness to changes in input parameters, if any 
exist. For example, SIAM™ employs no input 
parameter to be user-defined, therefore its robustness 
to changes in input parameters cannot be surpassed. 

6. Maintainability/scalability/re-usability to keep up 
with changes in users’ needs and sensor properties. 
For example, to scale to different spectral resolutions 
of spaceborne optical sensors SIAM™ consists of six 
sub-systems (refer to Table 2). 

7. Timeliness, defined as the time span between data 
acquisition and product delivery to the end user. It 
increases monotonically with manpower, e.g., the 
manpower required to collect site-specific training 
samples. For example, SIAM™ reduces timeliness 
(from data acquisition to preliminary map generation) 
to approximately zero. 

8. Economy (costs). Related to manpower and 
computing power. For example, open source solutions 
are welcome to reduce costs of software licenses. In 
the case of SIAM™ costs of manpower (equal to zero 
since SIAM™ is fully automatic) and computing 
power (equal to 5 minutes to classify a a Landsat 
scene on a standard laptop computer) are negligible. 

 In addition SIAM
™

 is: 

• pixel-based, i.e., it works at the sensor spatial 
resolution. In other words SIAM

™
 is spatial 

resolution-independent; 

• application-independent. In other words SIAM
™

 
provides a unifying preliminary classification first 
stage independent of the MS image classification 
problem at hand. 

3. THE SIAM™ SYSTEM OF SYSTEMS 

 To the best of this author's knowledge SIAM™ provides 
the first example of operational automatic (turnkey, good-to-
go, press-and-go) multi-sensor multi-resolution EO system 
of systems in line with the visionary goal of the GEOSS 
international research program (refer to Section 1) [6, 7]. In 
particular, SIAM™ consists of six sub-systems, comprising 
one master 7-band Landsat-like SIAM™ (L-SIAM™) plus 
five down-scaled L-SIAM™ subsystems whose spectral 
resolution overlaps with, but is inferior to, Landsat’s. 

 The six SIAM™ sub-systems are identified as follows 
(see Table 2). 

1. 7-band [namely, channel Blue (B), Green (G), Red 
(R), Near Infra-Red (NIR), Medium IR1 (MIR1), 
Medium IR2 (MIR2), and Thermal IR (TIR)] L-
SIAM

™
. 

2. 4-band (channels G, R, NIR, MIR1) SPOT-like 
SIAM

™
 (S-SIAM

™
). 

3. 4-band (channels R, NIR, MIR1, and TIR) Advanced 
Very High Resolution Radiometer (AVHRR)-like 
SIAM

™
 (AV-SIAM

™
). 

4. 5-band (channels G, R, NIR, MIR1, and TIR) 
ENVISAT Advanced Along-Track Scanning 
Radiometer (AATSR)-like SIAM

™
 (AA-SIAM

™
). 

5. 4-band (channels B, G, R, and NIR) IKONOS-like 
SIAM

™
 (I-SIAM

™
). 

6. 3-band (channels G, R, and NIR) Disaster Monitoring 
Constellation (DMC)-like SIAM

™
 (D-SIAM

™
). 

 The output spectral categories detected by the six SIAM
™

 
sub-systems described in Table 2 are summarized in Table 3. 
Two examples of map legends adopted by SIAM

™
, namely, 

the L-SIAM
™

 and the I-SIAM
™

 legend at fine semantic 
granularity, consisting of 95 and 52 spectral categories 
respectively, are provided in Tables 4 and 5. 

4. NOVEL TWO-STAGE HYBRID REMOTE SENSING 
IMAGE UNDERSTANDING SYSTEM (RS-IUS) 

ARCHITECTURE 

 SIAM
™

 is based on prior spectral knowledge exclusively, 
i.e., its knowledge is available before looking at the sensory 
data at hand. This is tantamount to saying that SIAM

™
 is 

non-adaptive to input data. Thus, SIAM
™

 belongs to the 
family of so-called top-down, physical model-based or 
deductive learning-by-rule inference systems (see Section 1) 
[15]. 

 In terms of computational theory (system architecture), 
the top-down (deductive) SIAM

™
 is not alternative, but 

complementary in nature to traditional bottom-up, inductive 
learning-from-examples algorithms, such as statistical 
kernel-based classifiers (e.g., SVMs [2]), non-parametric 
neural networks, image segmentation algorithms, unlabeled 
data clustering algorithms, etc. [34-36]. 

 In RS common practice, rather than as a standalone 
classifier, SIAM

™
 is eligible for use as the automatic pixel-

based preliminary classification first stage of a novel two-
stage stratified hierarchical hybrid RS-IUS architecture 
proposed in [17-24], see Fig. (2). According to Marr [31], 
the linchpin of success in attempting to solve the computer 
vision problem involves computational theory (system 
architecture) rather than algorithms or implementations. In 
other words, if the vision device architecture is inadequate, 
even sophisticated algorithms can produce low-quality 
outputs. On the contrary, improvement in the vision system 
architecture might achieve twice the benefit with half the 
effort. 

 The novel RS-IUS architecture shown in Fig. (2) 
combines a first-stage top-down context-insensitive (pixel-
based) application-independent (general-purpose) preliminary 
classifier with second-stage bottom-up context-sensitive 
application-specific classification modules. Since it combines 
top-down with bottom-up inference strategies, this original 
RS-IUS model is termed hybrid (refer to Section 1). This is 
in line with a new trend in research in both computer vision 
and remote sensing where hybrid quantitative models are 
developed to combine benefits from both statistical 
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(learning-from-data) and physical (learning-by-rule) models 
while overcoming shortcomings of each [15, 29, 30]. 

 In the novel RS-IUS architecture shown in Fig. (2), 
traditional inductive data learning algorithms, such as 
supervised data learning classifiers and unsupervised data  
 

Table 2. SIAM™ System of Systems. List of Spaceborne Optical Imaging Sensors Eligible for Use 

Legend. Y: Yes, N: No, C: Complete, I: Incomplete (radiometric calibration offset parameters are set to zero), (E)TM: (Enhanced) Thematic Mapper, B: Blue, G: Green, R: Red, 

NIR: Near Infra-Red, MIR: Medium IR, TIR: Thermal IR, SR: Spatial Resolution, Pan: Panchromatic (for interpretation of the references to color in this table Caption, the reader is 

referred to the web version of this paper).  

Blue columns: visible channels typical of water and haze. Green column: NIR band typical of vegetation. Brown columns: MIR channels characteristics of bare soils. Red column: 
TIR channel. 

 

SIAM™ 

System of 

Systems 

 

B –

(E)TM1, 

0.45-0.52 

(μm) 

G –

(E)TM2, 

0.52-0.60 

(μm) 

R –

(E)TM3, 

0.63-0.69 

(μm) 

NIR –

(E)TM4, 

0.76-0.90 

(μm) 

MIR1 –

(E)TM5, 

1.55-1.75 

(μm) 

MIR2 –

(E)TM7, 

2.08-2.35 

(μm) 

TIR –

(E)TM6, 

10.4-12.5 

(μm) 

SR 

(m) 

Rad. 

Cal. 

Y/N, 

C/I 

Pan 

SR 

(m) 

Notes 

 Landsat-4/-5 TM        30 Y-C  
Refer to Table I 
in [17]. 

L-

SIAM
™

 
Landsat-7 ETM+        30 Y-C 15 Same as above. 

(95/47/

18  
MODIS         

250, 

500, 
1000 

Y-C  Same as above. 

Sp. 

Cat.) 
ASTER         

15-

30 
Y-C  Same as above. 

 CBERS-2B         N   

SPOT-4 HRVIR         20 Y-I 10 
Refer to Table II 

in [17]. 

SPOT-5 HRG        10 Y-I 
2.5 - 

5 
Same as above. 

SPOT-4/-5 VMI        1100 Y-I  Same as above. 

IRS-1C/-1D LISS-

III 
       23.5 Y-I   

IRS-P6 LISS-III        23.5 Y-I   

S-

SIAM
™

 

(68/40/
15 Sp. 

Cat.) 

IRS-P6 AWiFS        56 Y-I   

AV-

SIAM
™

 
NOAA AVHRR        1100 Y  

Refer to Table II 

in [17]. 

(82/42/

16 Sp. 
Cat.) 

MSG        3000 Y  Same as above. 

ENVISAT AATSR        1000 Y  Same as above. AA-

SIAM
™ 

(82/42/
16Sp. 

Cat.) 

ERS-2 ATSR-2        1000 Y   

 IKONOS-2        4 Y 1  

 QuickBird-2        2.4 Y 0.61  

 WorldView-2        2.0 Y 0.5  

I-

SIAM
™

  
GeoEye-1        1.64 Y 0.41  

(52/28/ OrbView-3        4 Y 1  

12Sp.  RapidEye-1 to -5        6.5 Y-I   

Cat.) ALOS AVNIR-2        10 Y   

 KOMPSAT-2        4 N 1  

 TopSat        5 N 2.5  

 FORMOSAT-2        8 N 2  

Landsat-1/-2/-3/-
4/-5 MSS 

       79 Y   

IRS-P6 LISS-IV        5.8 Y-I   

SPOT-1/-2/-3 
HRV 

       20 Y-I 10  

D-

SIAM
™ 

(52/28/
12Sp. 

Cat.) 

DMC        
22-

32 
N   
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learning image segmentation algorithms, are employed at 
second stage on a stratified (driven-by-knowledge) basis. 
The idea of stratification is well known in statistics. Its 
advantage is that “stratification will always achieve greater 
precision provided that the strata have been chosen so that 
members of the same stratum are as similar as possible in 
respect of the characteristic of interest” [37]. Hence, 
statistical models (inductive data learning algorithms) are 
never made worse (i.e., they are improved or left the same) 
by incorporating the “stratified” or “layered” approach, 
which is typical of decision-trees [36]. 

 

5. COMPARISON WITH EXISTING RS-IUS MODELS 

 Due to the availability of commercial software developed 
by a German company [26, 27], OBIA has recently gained 
widespread popularity and is currently considered the state-
of-the-art in both scientific and commercial RS image 
mapping application domains. Unfortunately, together with 
their increasing diffusion commercial two-stage segment-
based RS-IUSs show an increasing lack of productivity [38], 
consensus and research [28]. 

 To overcome these shortcomings many researchers in the 
field of cognitive psychology believe that object 
segmentation cannot be achieved in a completely bottom-up 
manner, which is tantamount to saying that segmentation and 

Table 3. SIAM™ Systems of Systems 

 

Preliminary Classification Map Output Products: Number of Output Spectral Categories 

SIAM
™

 Input bands 
Fine Semantic 

Granularity 

Intermediate 

Semantic Granularity 

Coarse Semantic 

Granularity 

Inter-Sensor Semantic 

Granularity (*) 

L-SIAM™ 7 – B, G, R, NIR, MIR1, MIR2, TIR 95 47 18 

S-SIAM™ 4 – G, R, NIR, MIR1 68 40 15 

AV-SIAM™ 4 – R, NIR, MIR1, TIR 82 42 16 

AA-SIAM™ 5 – G, R, NIR, MIR1, TIR 82 42 16 

I-SIAM™ 4 – B, G, R, NIR 52 28 12 

D-SIAM™ 3 – G, R, NIR 52 28 12 

33 

Summary of Input Bands and Output Spectral Categories Reported in Table 2. 

(*) Employed in Sensor-independent Bi-temporal Land Cover Change Detection. 

Table 4. Preliminary Classification Map Legend Adopted by L-SIAM™ at Fine Semantic Granularity, Refer to Table 3 

 

Pseudo-colors of the 95 Spectral Categories Are Gathered Based on Their Spectral End Member (e.g., Bare Soil or Built-up) or Parent Spectral Category (e.g., “High” LAI 

Vegetation Types). The Pseudo-Color of a Spectral Category is Chosen as to Mimic Natural Colors of Pixels Belonging to that Spectral Category (for interpretation of the references 

to color in this table caption, the reader is referred to the web version of this paper).  

 

Table 5. Preliminary Classification Map Legend Adopted by I-SIAM™ at Fine Semantic Granularity, Refer to Table 3 

 

Pseudo-colors of the 52 Spectral Categories Are Gathered Based on Their Spectral End Member (e.g., Bare Soil or Built-up) or Parent Spectral Category (e.g., “High” LAI 

Vegetation Types). The Pseudo-Color of a Spectral Category is Chosen as to Mimic Natural Colors of Pixels Belonging to that Spectral Category (for interpretation of the references 

to color in this table caption, the reader is referred to the web version of this paper). 

"High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)

"Medium" LAI vegetation types (LAI values decreasing left to right)

Shrub or herbaceous rangeland

Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 

Bare soil or built‐up

Deep water, shallow water, turbid water or shadow

Thick cloud and thin cloud over vegetation, or water, or bare soil

Thick smoke plume and thin smoke plume over vegetation, or water, or bare soil

Snow and shadow snow

Shadow

Flame

Unknowns

 "High" leaf area index (LAI) vegetation types (LAI values decreasing left to right)
"Medium" LAI vegetation types (LAI values decreasing left to right)

Shrub or herbaceous rangeland

Other types of vegetation (e.g., vegetation in shadow, dark vegetation, wetland) 

Bare soil or built‐up

Deep water or turbid water or shadow

Smoke plume over water, over vegetation or over bare soil

Snow or cloud or bright bare soil or bright built‐up

Unknowns  
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classification are strongly linked [28]. In particular, Vecera 
and Farah proved that the process of human visual 
segmentation can be strongly influenced by top-down human 
(subjective) factors such as prior knowledge of the image at 
hand in addition to desires and expectations of an external 
observer [39]. To date, the inherent ill-posedness of any 
image region extraction/boundary detection algorithm 
(where image segmentation and boundary detection are dual 
problems - in fact they are both inherently ill-posed, i.e., 
subjective in nature) is acknowledged by a relevant portion 
of the CV and RS communities [28, 30, 32, 33, 40, 41]. 

 Unfortunately, in spite of the abovementioned contributions 
found in existing literature, the majority of the CV and RS 
communities appears to ignore the inherently ill-posed 
(subjective) nature of the image segmentation problem. As a 
consequence, literally dozens of “novel” segmentation (region 
extraction/contour detection) algorithms are published each 
year, apparently searching for “the best” segmentation 
algorithm which cannot exist in practice. 

 Table 1 reports on the relationship existing between 
commercial RS-IUSs and the radiometric calibration 
constraint considered mandatory by the international 

QA4EO guidelines [7]. Table 1 shows that firstly, no 
existing commercial RS-IUS software, except for the 
ERDAS Atmospheric Correction-3 (ATCOR3) software 
module [25], requires radiometric calibration pre-processing. 
In recent papers the present author highlighted the fact that 
by making RS data well behaved and well understood, 
radiometric calibration not only ensures the harmonization 
and interoperability of multi-source observational data 
according to the QA4EO guidelines, but is a necessary, 
although insufficient, condition for automating the 
quantitative analysis of EO data [17-24]. 

 Briefly stated, in disagreement with the QA4EO 
guidelines, most existing scientific and commercial RS-
IUSs, such as those listed in Table 1, do not require RS 
images to be radiometrically calibrated and validated. As a 
consequence, according to the aforementioned necessary 
condition for automating the quantitative analysis of EO 
data, these RS-IUSs are semi-automatic and/or site-specific 
(since one scene may represent, say, apples, while any other 
scene, even if contiguous or overlapping, may represent, say, 
oranges), refer to Table 1. 

Table 6. Operational QIs of SIAM™ in Comparison With Those of Commercial State-of-the-Art RS-IUSs 

 

 

Legend of Fuzzy Sets: Very Low (VL), Low (L), Medium (M), High (H), Very High (VH), Red highlight: Poor, Blue highlight: Medium, Green highlight: Good (for 

interpretation of the references to color in this table caption, the reader is referred to the web version of this paper). 

Quality Indicators (Qis) State-of-the-art RS-IUSs  SIAM™  

Degree of automation: (a) number, physical 

meaning and range of variation of user-defined 

parameters, (b)collection of the required training data 

set, if any.  

VL, L  VH (fully automatic, it cannot 

be surpassed) 

Effectiveness : (a) semantic accuracy and (b) spatial 

accuracy.  

M, H, VH  VH   

Semantic information level  Land cover class (e.g., deciduous 
forest)  

Spectral semi-concept (e.g., 

vegetation)  

Efficiency: (a) computation time and (b) memory 

occupation.  

VL, L in training (hours per 

images)  

VH (5 m to 30 s per Landsat 

image in a laptop)  

Robustness to changes in input image  VL (specific training per image)  VH  

Robustness to changes in input parameters  VL  VH (it cannot be surpassed)  

Scalability to changes in the sensor’s 

specifications or user’s needs.  

VL  VH (it works with any existing 

spaceborne sensor)  

Timeliness (from data acquisition to high-level 

product generation, increases with manpower and 

computing power).  

VH (e.g., the collection of 

reference samples is a difficult 

and expensive task)  

VL, i.e., timeliness is negligible 

(≈ 5 min of computation time in 

a laptop computer)  

Economy (inverse of costs increasing  with 

manpower and computing power).  

VL, L, high costs in manpower 

and also computing power  

VH, i.e., costs in manpower and 

computing power are reduced 

to almost zero (no manpower, 

≈ 5 min of computation time in 

a laptop computer)  
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 Secondly, Table 1 shows that unlike SIAM™ the ERDAS 
ATCOR3 requires as input an MS image radiometrically 
calibrated into surface reflectance (SURF) values. This implies 
that the ERDAS ATCOR3 software considers mandatory the 
inherently ill-posed and difficult-to-solve MS image 
atmospheric correction pre-processing stage, which requires 
user intervention to make it better posed. Thus, unlike SIAM™, 
the ERDAS ATCOR3 satisfies the necessary condition for 
automating the quantitative analysis of EO data, but is 
insufficient to provide a RS image classification problem with 
an automatic workflow requiring no user-defined empirical 
parameter based on heuristic criteria. 

 Table 6 shows that, based on existing literature [17-24], 
operational QIs of the prior knowledge-based SIAM™ (refer to 
Section 2) are superior to those of existing inductive data 
learning algorithms (e.g., supervised data learning classifiers, 
unsupervised data learning clustering algorithms, image 
segmentation algorithms, etc. [34-36]) adopted at the first stage 
of existing commercial RS-IUSs such as those listed in Table 1. 

 For example, with regard to the SIAM™ quantitative 
accuracy assessment found in existing literature [17-24], in the 
framework of the JRC-INFOREST project, whose aim is to 
generate a forest/nonforest binary classification map at pan-
European scale, a vegetation/nonvegetation (V/NV) binary map 
was generated by SIAM™ from a Landsat 7 ETM+ scene 
acquired on August 3, 2001, depicting a test area located in 
central Italy [17]. The accuracy of the V/NV binary 
classification was assessed by means of a reference data set 
consisting of 500 testing samples, extracted according to a 
simple random sampling technique on a mosaic of forty-six 
panchromatic orthophotos acquired at 1m resolution during the 
Agea flight campaign in 1998 and covering a surface area of 
approximately 2000 Km

2
 (which is approximately equivalent to 

a 28.5m resolution Landsat image of 1200  2000 pixels). At 
regional scale, the tested V/NV binary classification map was 
considered accurate (featuring a classification Overall 
Accuracy, OA, equal to 98.2%± 0.0%) and robust against the 
presence of shadow areas and large within-class spectral 
variations. 

6. SIAM™ APPLICATION EXAMPLES 

 Figs. 3-12 show application examples of the L-, S-, AV- and 
I-SIAM

™
 sub-systems employing as input spaceborne optical 

images ranging from low (  3 km) to medium (  30 m), high (  
10 m) and very high (< 5 m) spatial resolution at geographic 
extents ranging from local to continental scales. 

 For quantitative accuracy assessment of SIAM™, refer to 
Section 5 and existing literature [17-24]. 

7. ADD ON MODULES IN SERIES WITH THE SIAM™ 

 A broad set of original (novel) EO data processing modules 
has been developed to be employed in series with the SIAM™ 
cross-platform. In RS common practice, without the SIAM™ 
first stage these second-stage EO data processing modules lose 
operational qualities in terms of accuracy or robustness to 
changes in the input data set. For example, whereas image 
segmentation in the sensory data space is an inherently ill-posed 
(subjective) problem [28, 30, 32, 33, 40, 41] (refer to Section 5), 
map segmentation in the symbolic map domain is well posed 

(i.e., there is a unique segmentation map generated from a given 
classification map), e.g., refer to Fig. (8). 

7.1. Second-Stage Semantic-Driven (Stratified) Image 

Enhancement 

 By definition, an image enhancement process employs an 
image as input and generates as output an image of enhanced 
quality, e.g., in radiometric or geometric terms. 

 In series with the SIAM™, a set of original semantic-
driven (stratified) image enhancement modules has been 
developed to be employed in an EO data processing chain 
provided with a feedback mechanism. 

 These original semantic-driven (stratified) image 
enhancement modules are listed below. 

1. Semantic-driven texture enhancement based on 
morphology - Top-hat of opening (bright over dark), 
Top-hat of closing (dark over bright). 

2. Operational automatic semantic-driven image 
topographic correction. To the best of this author's 
knowledge, this is the only example of operational 
automatic topographic corrector found in existing 
literature [23]. See Fig. (13). 

3. Automatic semantic-driven master-slave image 
mosaic enhancement. See Fig. (14). 

4. Semantic-driven piecewise constant approximation of 
the multi-spectral input image generated from the 
preliminary classification map domain at the fine level 
of semantic granularity, refer to Fig. (8). If the piecewise 
constant image reconstruction generated from the 
classification map is capable of preserving small, but 
genuine image details, then the classification map is 
equivalent to a lossless mapping of the image data onto a 
discrete and finite set of symbolic concepts (equivalent 
to quantization levels in a continuous data quantization 
problem). 

7.2. Second-Stage Semantic-Driven (Stratified) Context-

Sensitive Feature Extraction Modules 

 In series with the SIAM™, a set of original semantic-
driven (stratified) context-sensitive feature extraction 
modules has been developed to be employed at the second 
stage of the two-stage stratified hierarchical RS-IUS archi-
tecture shown in Fig. (2). These original (novel) modules are 
listed below. 

(i). Well-posed semantic-driven segmentation in the pre-
liminary classification map domain at fine/intermediate/ 
coarse levels of semantic granularity, refer to Fig. (8). 

(ii). Well-posed semantic-driven contour detection of 
segments in the preliminary classification map 
domain at fine/intermediate/coarse levels of semantic 
granularity. For example, see Fig. (8c). It is 
noteworthy that traditional ill-posed contour detection 
in the (2-D) image domain is the dual problem of ill-
posed segmentation in the (2-D) image domain. 

(iii). Parallelized semantic-based texture detection in the 
signal space by means of a semantic-based (stratified, 
masked) multi-scale multi-orientation wavelet filter 
bank with mirror padding. See Fig. (15). 
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Fig. (3). MSG SEVIRI image acquired on May 16, 2007, at 12.30, depicted in false colors (R: band 3, G: band 2, B: band 1), spatial 

resolution: 3 km (for interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper). 

 

Fig. (4). Preliminary output map generated from Fig. (3) by AV-SIAM
™

. Output spectral categories are depicted in pseudo colors. Map 

legend: similar to Table 4 (for interpretation of the references to color in this figure caption, the reader is referred to the web version of this 

paper). 
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Fig. (5). 4-band GMES-IMAGE2006 Coverage 1 mosaic, consisting of approximately two thousand 4-band IRS-P6 LISS-III, SPOT-4, and 

SPOT-5 images, mostly acquired during the year 2006, depicted in false colors: Red – Band 4 (Short Wave InfraRed, SWIR), Green – Band 

3 (Near IR, NIR), Blue – Band 1 (Visible Green). Down-scaled spatial resolution: 25 m (for interpretation of the references to color in this 

figure caption, the reader is referred to the web version of this paper). 

 

Fig. (6). Preliminary classification map automatically generated by S-SIAM
™

 from the mosaic shown in Fig. (5). To the best of this author’s 

knowledge, this is the first example of such a high-level product automatically generated at the European Commission – Joint Research 

Center (EC-JRC). Output spectral categories are depicted in pseudo colors. Map legend: similar to Table 4 (for interpretation of the 

references to color in this figure caption, the reader is referred to the web version of this paper). 
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Fig. (7a). Web-Enabled Landsat Data (WELD) Project (http://landsat.usgs.gov/WELD.php). This is a joint NASA and USGS project 

providing seamless consistent mosaics of fused Landsat-7 Enhanced TM Plus (ETM+) and MODIS data radiometrically calibrated into top-

of-atmosphere reflectance (TOARF) and surface reflectance. These mosaics are made freely available to the user community. Each consists 

of 663 fixed location tiles. Spatial resolution: 30 m. Area coverage: Continental USA and Alaska. Period coverage: 7-year. Product time 

coverage: weekly, monthly, seasonal and annual composites (for interpretation of the references to color in this figure caption, the reader is 

referred to the web version of this paper). 

 

 

Fig. (7b), including the map of Alaska at the top. Preliminary classification map automatically generated by L-SIAM™ from the 2008 

annual WELD mosaic shown in Fig. (7a). Output spectral categories are depicted in pseudo colors. L-SIAM™ was run overnight by L. 

Boschetti (Univ. of Maryland) in Dec. 2010. To the best of this author’s knowledge, this is the first example of such a high-level product 

automatically generated at both the NASA and USGS. Map legend: refer to Table 4 (for interpretation of the references to color in this figure 

caption, the reader is referred to the web version of this paper). 
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(iv). Semantic-driven texture detection in the classification 
map domain by means of multi-scale moving windows 
and first-order distribution entropy estimation [21]. 

(v). Semantic-driven differential morphological profile 
(DMP) computation and DMP contrast and 
autocorrelation estimation [61]. 

(vi). Segment-based skeletonization: skeleton endpoints, 
angles and inter-point distance [42, 43]. 

(vii). Assessment of the straightness of region boundaries 
[44]. 

(viii). Semantic-driven multi-temporal multi-source contour 
detection. 

(ix). Semantic-driven segment extraction from non-connected 
contours [45]. 

7.3. Second-Stage Semantic-Driven (Stratified) Bi-
Temporal Change/No-Change Detection 

 Two dates of SIAM™ products generated from a bi-
temporal spaceborne image pair featuring the same spatial 
resolution and the same geographic footprint can be adopted 
for automatic bi-temporal change detection. In this case the 
following equation holds. 

  

  

Fig. (8a-d), from left to right and top to bottom. L-SIAM™ mapping of a single fixed location tile of the WELD mosaic shown in Figs. (5, 6). 

Top left, Fig. (8a): 7-band Landsat image tile in TOARF values, depicted in false colors, Red – Band 5 (Medium InfraRed, MIR1), Green – Band 4 

(Near IR, NIR), Blue – Band 1 (Visible Blue), extracted from the Web-Enabled Landsat Data (WELD) Project (http://landsat.usgs.gov/WELD.php). 

Spatial resolution: 30 m. 

Top right, Fig. (8b): SIAM
™

 Preliminary classification map, depicted in pseudo colors (same pseudo colors as in Fig. (3-1b)), generated 

from the Landsat image shown in Fig. (8a). Map legend: refer to Table 4. 

Bottom left, Fig. (8c). Image of segment contours. Segments are detected in the L-SIAM
™

 output map shown in Fig. (8b). 

Bottom right, Fig. (8d): Segment-based piecewise constant image reconstruction of the 7-band input image, depicted in false colors (same 

false colors as in Fig. (8a)). Genuine but small image details of Fig. (8a) are well preserved in Fig. (8d). In practice, the SIAM
™

 works as a 

successful edge-preserving smoothing filter. Fig. (8d), the segment-based piecewise constant approximation of the input image shown in Fig. 

(8a), provides an intuitive (qualitative, visual) tool to assess the quality of the preliminary classification map shown in Fig. (8b) (for 

interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper). 
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Fig. (9). WorldView-2 image, 2 m spatial resolution, acquisition date 2010-08-04, at 13:32 GMT, radiometrically calibrated into TOARF 

values, depicted in false colors (R: 5, G: 7, B: 2). Default image histogram stretching: ENVI linear stretching 2% (for interpretation of the 

references to color in this figure caption, the reader is referred to the web version of this paper).   
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Fig. (10). I-SIAM™ preliminary map of the WorldView-2 image shown in Fig. (9). Spectral categories are depicted in pseudo colors. Map 

legend: refer to Table 5 (for interpretation of the references to color in this figure caption, the reader is referred to the web version of this 

paper). 
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 Accuracy of the bi-temporal change/no-change detection 
map  (Map accuracy at time T1  Map accuracy at time 
T2). 

 For example, if Map accuracy at time T1 = Map accuracy 
at time T2 = 0.9, then Accuracy of the bi-temporal 
change/no-change detection map  0.81. 

 The SIAM™ bi-temporal change/no-change detection 
generates two output products. 

1. Bi-temporal SIAM
™

-based semantic-driven 
change/no-change of spectral categories. The bi-
temporal change/no-change map legend is shown in 
Table 7. 

2. Bi-temporal SIAM
™

-based semantic-driven 
change/no-change of spectral indexes (e.g., 
greenness). For example, a continuous greenness 
index change ( GR) image is such that: (i) GR < 0 
if (GR2 < GR1); (ii) GR > 0 if(GR2 > GR1); and 

 

Fig. (11). 4-band QuickBird-2 VHR image of the city area of Brazilia, Brazil, acquired on 2010-03-16, at 13:25 GMT, depicted in false 

colors (R: band R, G: band NIR1; B: band B) (provided by Digitalglobe, 8-band Challenge), radiometrically calibrated into TOARF values. 

Spatial resolution: 2.4 m (for interpretation of the references to color in this figure caption, the reader is referred to the web version of this 

paper). 
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(iii) dumb negative value (= - 150) if((GR1 == 
0)AND(GR2 == 0)), equivalent to the “never 
vegetation” condition. 

 As an example of the pair of SIAM™ bi-temporal 
change/no-change detection products, see Fig. (16). 

8. NEW INTERDISCIPLINARY RESEARCH AND 
MARKET OPPORTUNITIES 

 In operational contexts, SIAM™ opens up new inter-
disciplinary research and market opportunities such as those 
listed below. 

• SIAM™ is eligible for bridging two major gaps 
between RS imagery and Geographic Information 
Systems (GIS) by transforming: (a) sub-symbolic data 
into symbolic information and (b) raster data into 
vector 2-D objects. This means that SIAM™ provides 
an operational tool for the seamless integration of RS 
(sub-symbolic raster) imagery with (symbolic vector) 
geospatial information managed by GIS (see Fig. 17). 

• Automatic multi-temporal (MT) spaceborne image 
land cover (LC) classification and change (LCC) 
detection. In particular, SIAM™ can provide a time 
series of single-date preliminary classification maps 
suitable for: 

 

Fig. (12). I-SIAM™ preliminary map of the QuickBird-2 image shown in Fig. (11). Spectral categories are depicted in pseudo colors. Map legend: 

refer to Table 5 (for interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper). 
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o Efficient rule-based extraction of land cover classes 
(e.g., agricultural fields) in the symbolic preliminary 
classification map domain rather than in the 
traditional sub-symbolic signal domain. 

o Change detection in the symbolic preliminary 
classification map domain rather than in the 
traditional sub-symbolic signal domain, refer to 
Table 7 and Fig. (16). 

• Integration of internet-based satellite mapping on 
demand with virtual earth geo-browsers such as the 
hugely popular Google Earth, NASA’s World Wind 
and Microsoft Virtual Earth (see Fig. 18). 

• Development of operational automatic near real-time 
satellite-based measurement systems such as those 
envisaged under on-going international research 
programs, such as GEOSS [6], GMES [9], USGS-
NASA WELD [10] and LCLUC [1] (refer to Section 
1). 

• Development of semantic querying systems of large-
scale multi-source RS image databases where 
SIAM™ can be exploited as an automatic source of 
reference classification maps. This would represent a 

dramatic improvement over non-semantic query 
modes currently available in image database retrieval 
systems based on text-driven query strategies and 
query by either an image, object or multi-object 
example. 

• Development of so-called fourth generation future 
intelligent earth observation satellites (FIEOSs, [46]) 
where the operational automatic near-real time RS-
IUS software proposed herein can be mounted on 
board. The same consideration holds for ground 
receiving stations which could be provided with an 
operational automatic “intelligent” data processing 
chain. 

• Dissemination of advanced EO expertise, science and 
technology capacity in developing countries and 
emerging countries. 

9. RELATED PATENT REVIEW 

 As already mentioned in Section 1, to the best of this 
author's knowledge SIAM™ provides the first example of an 
operational automatic (turnkey, good-to-go, press-and-go) 
multi-sensor multi-resolution EO system of systems in line 

Table 7. Legend of the Post-Classification SIAM™-Based Automatic Bi-Temporal Change/No-Change Detection Map 

 

 
(for interpretation of the references to color in this table caption, the reader is referred to the web version of this paper). 

1 Constant vegetation
2 Vegetation decrease
3 Vegetation increase
4 Vegetation total gain from bare soil or built-up or fire
5 Vegetation total loss into bare soil or built-up
6 Vegetation total gain from water (or shadow)
7 Vegetation total loss into water (or shadow)
8 Single-date vegetation (affected by data noise at either T1 or T2)
9 Bare soil or built-up total gain from water (or shadow)
10 Bare soil or built-up total loss into water (or shadow)
11 Constant water (or shadow)
12 Single-date water (or shadow) (affected by data noise at either T1 or T2)
13 Constant bare soil or built-up
14 Within-bare soil or built-up change
15 Single-date bare soil (affected by data noise at either T1 or T2)
16 Constant cloud or single-date cloud (affected by noise at either T1 or T2)
17 Constant snow (or bright bare soil/built-up or cloud in VHR imagery)
18 Single-date snow (or shadowed snow) (affected by data noise at either T1 or T2)
19 Snow total gain
20 Vegetation from snow
21 Bare soil or built-up from snow
22 Water (or shadow) from snow
23 Constant shadowed snow
24 Single-date shadowed snow (affected by data noise at either T1 or T2)
25 Constant shadow
26 Constant flame
27 Single-date flame (affected by data noise at either T1 or T2)
28 Active flame
29 Constant unknown or noisy
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with the visionary goal of the GEOSS international research 
program [6, 7]. In terms of operational QIs (refer to Section 
2), SIAM™ scores high in real-world operational contexts 
(see Table 6), such as RS image mapping applications at 
national, continental and global scale (refer to Section 6), 

other than toy-problems. As a consequence, the SIAM™ 
application domain, which encompasses a wide range of 
interdisciplinary research and market opportunities (refer to 
Section 8), overlaps with that of several recent patents on 
space technology as discussed below. 

 

Fig. (13a). Zoomed area of a Landsat 7 ETM+ image of Colorado, USA (path: 128, row: 021, acquisition date: 2000-08-09), depicted in 

false colors (R: band ETM5, G: band ETM4, B: band ETM1), 30m resolution, radiometrically calibrated into TOARF values (for 

interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper). 

 

Fig. (13b). Stratified topographic correction of Fig. (13a), based on an L-SIAM
™

 16-class preliminary spectral map and the Shuttle Radar 

Topography Mission (SRTM) Digital Elevation Model (DEM) (for interpretation of the references to color in this figure caption, the reader is 

referred to the web version of this paper). 
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Fig. (14a). Mosaic of four radiometrically calibrated Landsat 7 

ETM+ images: Emilia-Romagna, Veneto, Friuli regions in 

Northern Italy. Spatial resolution: 30 m. An image boundary effect 

is clearly visible (for interpretation of the references to color in this 

figure caption, the reader is referred to the web version of this 

paper). 

 

Fig. 14(b). Mosaic of four preliminary output maps, depicted in pseudo 

colors, extracted from the four images shown in Fig. (14a) by L-

SIAM
™

. Map legend: refer to Table 4. A map boundary effect is clearly 

visible (for interpretation of the references to color in this figure 

caption, the reader is referred to the web version of this paper). 

 The SIAM-based semantic querying system of large-
scale multi-source RS image databases (refer to Section 8) is 
alternative to the non-semantic image database retrieval 
system based on a selected query image as proposed in [48] 
and [55]. 

 

Fig. (14c). Mosaic of the four radiometrically calibrated Landsat 7 

ETM+ images shown in Fig. (14a) after semantic-driven (stratified) 

histogram matching between a “master” image (say, Veneto) and 

the remaining “slave” images (Emilia-Romagna and Friuli). No 

image boundary effect is now visible (for interpretation of the 

references to color in this figure caption, the reader is referred to the 

web version of this paper). 

 The sole SIAM™ requirement is to employ as input RS 
images radiometrically calibrated into TOARF or SOARF 
values (refer to Section 2). A radiometric calibration sub-
system of a spaceborn optical imaging system is proposed in 
[56]. 

 In [49], semantic nets are generated from ontologies. 
These prior knowledge-based semantic nets can be adopted 
at the context-sensitive second stage of a two-stage 
automatic stratified hierarchical hybrid RS-IUS employing 
SIAM™ as its preliminary classification first stage (refer to 
Fig. 2). The same consideration holds for the multi-band 
texture feature extractor proposed in [53]. 

 The mutually exclusive and totally exhaustive SIAM™ 
decision-tree classifier, which includes as output the parent 
spectral category 'clouds', is alternative to the empirically-
derived land cover-dependent thresholds for classifying 
pixels as either cloud or non-cloud using visible, near-
infrared and short wavelength infrared data proposed in [51]. 
Whereas SIAM™ includes a cloud detector, in [50] a pixel is 
classified as either shadow-covered or non-shadow covered 
based on the comparison of at least one visible, one near-
infrared and one short wavelength infrared data vector with a 
spectral data threshold. In [52], a pixel is classified as a sub-
visible cloud point if the a cirrus-band reflectance value 
exceeds a sub-visible cirrus band reflectance threshold. 

 In [54], the structure of a decision-tree classifier is 
mapped into a 3-D decision-tree visualization system. 

 In [57] a decision-tree provides a description of the 
sensitivity of a model (such as SIAM™) in subspaces of the 
input space. 



102   Recent Patents on Space Technology, 2011, Volume 1, No. 2 Andrea Baraldi 

 

Fig. (15a). Zoomed area of a Landsat 7 ETM+ image of Virginia, 

USA (path: 16, row: 34, acquisition date: 2002-09-13), depicted in 

false colors (R: band ETM5, G: band ETM4, B: band ETM1), 30 m 

resolution, radiometrically calibrated into TOARF values (for 

interpretation of the references to color in this figure caption, the 

reader is referred to the web version of this paper). 

 

Fig. (15b). Preliminary output map, generated from Fig. (15a) by 

L-SIAM™, depicted in pseudo colors. Map legend: refer to Table 4 

(for interpretation of the references to color in this figure caption, 

the reader is referred to the web version of this paper). 

 

Fig. (15c). 2nd-stage classification in series with the SIAM first 

stage, see Fig. (9b), generated from Fig. (15a). This 2nd-stage map 

consists of 11 vegetated land cover classes (in black: non-vegetated 

pixels), depicted in pseudo-colors, including: cropland or grassland, 

broad-leaf forest, needle-leaf forest, mixed forest and shrubland. 

Input features are: colors (mapped by SIAM™ into a discrete and 

finite set of spectral categories), brightness and multi-scale isotropic 

texture (for interpretation of the references to color in this figure 

caption, the reader is referred to the web version of this paper). 

 

 

 

Fig. (15d). 2nd-stage classification map generated as a semantic-

driven aggregation of vegetated land cover classes found in Fig. 

(15c). It consists of 7 vegetated land cover classes (in black: non-

vegetated pixels), depicted in pseudo-colors, including: cropland or 

grassland, broad-leaf forest, needle-leaf forest, mixed forest and 

shrubland according to the International Geosphere-Biosphere 

Programme (IGBP) DISCover Land Cover taxonomy [60] (for 

interpretation of the references to color in this figure caption, the 

reader is referred to the web version of this paper).  

 Finally, it is noteworthy that SIAM™, where all input 
bands are investigated simultaneously, is alternative the RS 
multi-spectral image classifier proposed in [58]. The latter 
requires as input different selections of three bands including 
one near-infrared, one mid-infrared and one visible band. 
Each three-band input data set is mapped onto a ternary 
diagram (equivalent to an equilateral triangle) where the 
three input variables (also called spectral end-members) are 
related in a manner such that they sum to unity. In this 
ternary diagram vegetation and mineral clusters are separated 
effectively. Schemas can be constructed to classify an image 
into themes. 

10. CONCLUSIONS AND FUTURE DEVELOPMENTS 

 This patent review summarizes the degrees of novelty of 
SIAM™, an operational automatic (turnkey, good-to-go, 
press-and-go) prior knowledge-based decision-tree classifier 
adopted as the preliminary classification first stage in a novel 
two-stage stratified hierarchical hybrid RS-IUS architecture, 
refer to Fig. (2). 

 SIAM™ is a deductive inference system. In literature, 
deductive inference systems are also called inference 
systems capable of learning-by-rules, top-down, coarse-to-
fine, model-driven, prior knowledge-based, driven-by-
knowledge, physical models, physical pattern recognition 
systems [15]. Physical models are abstracts of reality. They 
consist of prior knowledge concerning the physical laws of 
the (3-D) world which is available before (prior to) looking 
at the objective sensory data at hand. In particular, cognitive 
systems driven-by-prior-knowledge are well posed, but 
subjective in nature (in fact terms semantic and subjective 
are synonyms). 

 Physical models follow the physical laws of the real (3-
D) world to establish cause-effect relationships. They have 
to be learnt by a human expert based on intuition, expertise  
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Fig. (16a). Zoom of an L-SIAM
™

 preliminary classification map 

depicted in pseudo colors, generated from a Landsat-5 TM imagery 

acquired on 1986-08-10, covering an area of Brazil (path: 231, row: 

068), spatial resolution: 30 m. Map legend: refer to Table 4 (for 

interpretation of the references to color in this figure caption, the 

reader is referred to the web version of this paper). 

 

Fig. (16b). Zoom of an L-SIAM
™

 preliminary classification map 

depicted in pseudo colors, generated from a Landsat-5 TM imagery 

acquired on 2006-07-16, covering an area of Brazil (path: 231, row: 

068), spatial resolution: 30 m. Map legend: refer to Table 4 (for 

interpretation of the references to color in this figure caption, the 

reader is referred to the web version of this paper). 

 

Fig. (16c). Zoom of a Bi-Temporal change detection map generated 

from the preliminary classification map pair shown in Fig. (16a) 

and Fig. (16b). Change/no-change map legend: refer to Table 7 (for 

interpretation of the references to color in this figure caption, the 

reader is referred to the web version of this paper). 

 

Fig. (16d). Zoom of a continuous greenness index change ( GR) 

image where: (i) GR < 0 if (GR2 < GR1); (ii) GR > 0 if(GR2 > 

GR1); and (iii) dumb negative value (= - 150) if((GR1 == 

0)AND(GR2 == 0)), equivalent to the “never vegetation” condition. 

and evidence from data observation. Thus, unfortunately, it 
takes a long time for human experts to learn physical laws of 
the real (3-D) world and tune physical models [21, 30]. For 
example, the development of SIAM™ dates back to the year 
2002. On the other hand, physical models are more intuitive 
to debug, maintain and modify than statistical models (also 
called inductive data learning systems). In particular, if the 
initial physical model does not perform well, then the system 
developer knows exactly where to improve it by 
incorporating the latest knowledge and information. For 
example, in a non-adaptive decision-tree classifier the node 
responsible for a misclassification error is easy to detect. In 
practice, a non-adaptive decision-tree classifier is well posed 
(i.e., every data sample is assigned with a semantic label 
according to a specific rule set), but subjective (i.e., different 
system developers may generate different non-adaptive 
decision-tree classifiers in the same application domain: in 
fact the terms semantic and subjective are synonyms, refer to 
this text above). 

 To summarize, after 10 years of research and 
development, the learning curve of the prior knowledge-
based SIAM™ has reasonably reached a stable asymptote. 
As a consequence, future developments will focus mainly on 
the development of the second-stage battery of stratified 
hierarchical context-sensitive application-dependent modules 
for class-specific feature extraction and classification in the 
two-stage stratified hierarchical RS-IUS shown in Fig. (2). 
Some of these new developments have already been 
accomplished as described in Section 7. Additional 
directions of research and development are sketched in 
Section 8. 
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Fig. (17).  Seamless integration of sensory digital RS imagery with semantic vector geographic information systems (GIS) through SIAM
™

. 

In particular, SIAM
™

 bridges two major gaps between sensory digital RS data and semantic vector GIS information by transforming: (a) sub-

symbolic data into symbolic information and (b) raster data into vector 2-D objects (for interpretation of the references to color in this figure 

caption, the reader is referred to the web version of this paper). 

 

Fig. (18). Preliminary spectral map, depicted in pseudo colors, generated by L-SIAM
™

 from a 30 m resolution Landsat 7 ETM+ image of the 

Veneto region, Italy, radiometrically calibrated into TOARF values. Map legend: refer to Table 4. The L-SIAM
™

 map is transformed into the 

kml data format and loaded as a thematic layer in a commercial 3-D earth viewer (e.g., Google Earth) (for interpretation of the references to 

color in this figure caption, the reader is referred to the web version of this paper). 
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