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Abstract
Accurate accounting of aboveground biomass density (AGBD) is crucial for carbon cycle,
biodiversity, and climate change science. The Global Ecosystem Dynamics Investigation (GEDI),
which maps global AGBD from waveform lidar, is the first of a new generation of Earth
observation missions designed to improve carbon accounting. This paper explores the possibility
that lidar waveforms may not be unique to AGBD—that forest stands with different AGBD may
produce highly similar waveforms—and we hypothesize that non-uniqueness may contribute to
the large uncertainties in AGBD predictions. Our analysis integrates simulated GEDI waveforms
from 428 in situ stem maps with output from an individual-based forest gap model, which we use
to generate a database of potential forest stands and simulate GEDI waveforms from those stands.
We use this database to predict the AGBD of the 428 in situ stem maps via two different methods: a
linear regression from waveform metrics, and a waveform-matching approach that accounts for
waveform-AGBD non-uniqueness. We find that some in situ waveforms are more unique to AGBD
than others, which notably impacts AGBD prediction uncertainty (7–411 Mg ha−1, average of
167 Mg ha−1). We also find that forest structure complexity may influence the non-uniqueness
effect; stands with low structural complexity are more unique to AGBD than more mature stands
with multiple cohorts and canopy layers. These findings suggest that the non-uniqueness
phenomena may be introduced by the measuring characteristics of waveform lidar in combination
with how forest structure manifests at small scales, and we discuss how this complexity may
complicate uncertainty estimation in AGBD prediction. This analysis suggests a limit to the
accuracy and precision of AGBD predictions from lidar waveforms seen in empirical studies, and
underscores the need for further exploration of the relationships between lidar remote sensing
measurements, forest structure, and AGBD.

1. Introduction

One of the most pressing and open questions in cli-
mate science is the extent to which forests will act as
a net sink or source of carbon in the short- and mid-
term future [1, 2]. Accurate baselines of aboveground

biomass density (AGBD) within forests are crucial
to answering this question, making high resolution
mapping of AGBD an immediate need. The Global
EcosystemDynamics Investigation (GEDI) is the first
spaceborne lidarmission specifically intended tomap
global carbon stocks [3]. GEDI was launched to
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the International Space Station in December 2018
and provides waveform lidar measurements of forest
structure within footprints 25 m in diameter that
are used to predict aboveground biomass. Over the
course of its prime mission (April 2019–April 2021),
GEDI recorded over 10 billion land surface observa-
tions within the ISS’s orbital extent between 51.5 ◦N
and ◦S latitude.

The GEDI instrument transmits pulses of light
energy towards the Earth’s surface and records the
intensity of returned energy over time to produce a
vertical waveform. Photons reflected by the top of
the forest canopy surface are returned to the sensor
sooner than others that are reflected lower down in
the canopy or by the ground, and more vegetation
matter ata given canopy height will yield a larger
waveform amplitude at that height. Relative height
(RH) metrics are variables derived from the wave-
form that give the height above the ground at which a
certain quantile of returned energy is reached. These
metrics are correlated with AGBD [4] and are used as
predictors in GEDI’s biomass models [3, 5].

Although waveform lidar has proven to be effect-
ive for estimating biomass, there remains uncertainty
about the accuracies achievable at sub-hectare resol-
utions, and normalized calibration errors (nRMSE)
between 40% and 50% are common [6]. Others have
suggested various sources of this error, such as geo-
location errors [7, 8], tree crowns that overhang plot
boundaries [9], errors and uncertainty in allometric
equations [10–12] and differences in environmental
and edaphic conditions [13].

Entirely separate from these is the issue of wave-
form uniqueness with respect to AGBD. Here, we
define ‘waveform non-uniqueness’ as the possibility
that a specific waveform shapemay be associated with
substantially different AGBD values, and ‘waveform-
AGBD uncertainty’ as the likely range of AGBD asso-
ciatedwith a specific waveform shape. In other words,
the extent of a waveform’s non-uniqueness impacts
the magnitude of its AGBD uncertainty. In light of
this possibility a fundamental question arises: can dif-
ferent configurations of trees and their arrangement
spatially and vertically yield highly similarwaveforms,
yet have very different AGBD?

It is therefore of considerable interest to bet-
ter understand how uniquely waveforms relate to
AGBD. To what extent does non-uniqueness occur
and under what conditions? What are the implic-
ations for instruments such as GEDI, which rely
on the assumption that calibration equations con-
vert waveform metrics to AGBD in an unbiased and
accurate fashion? To answer these questions we apply
a model-data fusion concept using FORMIND, an
individual-based gap model [14] and the integration
of simulated GEDI waveforms with the FORMIND
simulations. Individual-based gap models, such as
FORMIND, are a powerful tool to interpret remote
sensing observations ecologically, as they allow a

direct link between a patch of forest (real or simu-
lated) and how it may appear to a remote sensing
instrument [15]. By using a large number of simula-
tions in conjunction with in situ plots, this link can be
studied across a wide range of real world conditions.
As such, our modeling framework bridges the gap
between spaceborne and ground-based estimates of
AGBD, and explores the relationship between AGBD
and lidar waveforms in a controlled and systematic
manner.

In this paper we examine the issue of wave-
formnon-uniquenesswith respect to temperate forest
AGBD within the Northeast USA. Our objectives are
to; (a) quantify the extent to which waveforms can
be non-unique with respect to AGBD within 400 m2

plots; (b) explain possible causes of waveform-AGBD
non-uniqueness; and (c) assess the implications of
our findings on efforts to predict AGBD from wave-
form lidar. Through GEDI-FORMIND fusion we
employ two distinct methods to estimate AGBD
from GEDI waveforms and in doing so characterize
the uniqueness of GEDI waveforms with respect to
AGBD. We compare the predictions and uncertain-
ties from bothmethods, and relate patterns in derived
AGBD uncertainty to forest stand attributes. Finally,
we discuss the relevance of these results onAGBDpre-
diction from lidar waveforms and the possible causes
of waveform-AGBD non-uniqueness.

2. Methods and data

Our methodological approach (figure 1) is a fusion
betweenGEDIwaveforms and the FORMINDmodel.
It uses forest simulations to gain new insights into
the relationship betweenGEDIwaveforms andAGBD
across a network of 428 field sites throughout the
northeast US. We calibrated FORMIND to simu-
late a database of 896 620 potential forest stands that
could exist throughout the Northeast US, using an
implementation mode called the FF [16]. We then
generated lidar point clouds for every simulated FF
stand, and simulated GEDI waveforms from each
point cloud using awaveform simulator [17]. The res-
ult was a database of 896 620 GEDI waveforms from
whichwe developed twodifferentmethods of predict-
ing AGBD within in situ forest plots. The first is an
ordinary least squares (OLS) linear regression model
to predict AGBD from lidar waveform RH metrics.
The second is a lookup table approach called wave-
form matching (WFM). For each in situ observation,
the WFM algorithm identifies the set of the 100 most
similar waveforms from the FF database, and infers
theAGBDof the in situ observation from the distribu-
tion of AGBD from those 100 FF stands. We applied
both methods (OLS and WFM) to predict the AGBD
of 428 in situ stem maps from those stands’ GEDI
waveforms, compared the predictions to one another
and to the observed AGBD calculated directly from
the inventory data, and contrasted the uncertainties
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Figure 1. This workflow integrates GEDI waveforms and FORMIND using a waveform simulator to enable fusion between
waveforms from in situ forest stands and those simulated by FORMIND’s Forest Factory (FF). The two rows of green boxes at the
top represent the in situ and FORMIND-simulated stem maps, point clouds, and GEDI waveforms that serve as the input data for
the analysis. The FF database of 896 620 GEDI waveforms is used to predict the AGBD of 428 in situ stem maps using two
different methods, an OLS regression (orange) and the WFM lookup table approach (blue). We quantify the uncertainty
associated with each set of predictions, and compare both sets of predictions and uncertainties to each other and to the observed
AGBD calculated from the in situ inventory data. Lastly, we identify the potential causes of WFM-derived AGBD prediction
uncertainty as a function of stand dynamics and structural complexity within temperate forests.

from these two methods. Finally, we performed a
regression tree analysis to explore the relationship
between the WFM-derived AGBD prediction uncer-
tainty and forest structure.

The following sections provide an overview of
our workflow, and more details are provided in the
accompanying supplementary information (available
online at stacks.iop.org/ERL/16/125013/mmedia).

2.1. Field sites
The Northeast US (figure 2) was chosen for this study
due to the high availability of inventory data (table 1),
the large range of potential AGBD values [22], and
importance to the global carbon budget through sec-
ondary forest regrowth [23, 24]. We use 428 stem
mapped forest plots that come from five different
research areas, four of which are projects within the
GEDI Forest Structure and Biomass Database [3].
Plot size and shape varied across the five areas, which
necessitated standardization to a common square plot
shape of 20 m × 20 m (such as clipping larger plots
to conform to the smaller square shape), however the
relative spatial position of all trees within the plot was
preserved. Trees greater than 12.7 cm (5 in) in dia-
meter at breast height were measured and their loca-
tions recorded within the plot.

2.2. FORMIND and the FF
FORMIND is a forest gap model that simulates
growth dynamics at the level of individual trees

[14]. It allows simulation of forest dynamics and
structure, including gap formation (falling down of
large trees) and succession. FORMIND simulates
all physiological processes (photosynthesis, respira-
tion, tree growth, mortality, regeneration, compet-
ition) at the tree level. Growth of a single tree is
calculated on the basis of a carbon balance and
depends on the tree size, climate conditions and
the shading of surrounding trees. Forests are rep-
resented as a collection of square patches (stands)
which may vary in successional and structural stage.
The size of these stands correspond with the light
competition range of trees, which in this case is
400 m2 [14].

We calibrated a regional version of FORMIND
to represent forest composition and structure char-
acteristic of the Northeast US, using all tree-level
data from the US Forest Service’s Forest Inventory
and Analysis (FIA) program’s most recent survey
of the Northeast USA. We segmented the region’s
27 most abundant species into nine different plant
function types (PFT) based on each species’ max-
imum size (height and stem diameter), growth rate,
and shade tolerance, and then calibrated a set of
tree geometry equations for each PFT so that forest
stands simulated in FORMIND represent gener-
alized structural characteristics of forests in this
region (table S1). We then validated these parameters
against the inventory data from the in situ field
sites.

3
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Figure 2. Our study uses five forest research sites and 428 stem map locations distributed throughout the northeast US.

Table 1. Site information for the five forest research sites which contribute stem maps to this analysis. N refers to the number of stem
maps at each site, ‘GEDI’ indicates whether the site is part of the GEDI Forest Structure and Biomass Database [3], and ‘YEAR’ is the
plot inventory year.

Abbr. Site name Approximate Lat Lon N Source GEDI Year

usme USA ME –70.02, 45.58 42 NASA CMS [18, 19] Yes 2015
harv Harvard Forest –72.18, 42.53 35 NEON [20] Yes 2015–2017
bart Bartlett Forest –71.29, 44.05 25 NEON [20] Yes 2016–2018
howl Howland

Research Forest
–68.73, 45.20 70 Univ. of Maine Yes 2015

hunt Huntington
Wildlife Forest

–74.22, 43.97 256 SUNY ESF [21] No 2011

FORMIND has an implementation mode called
the Forest Factory (FF), which simulates the structure
(not growth) of many unique, 400 m2 forest stands
[16, 25]. The purpose of the FF is to simulate the
diversity in forest structure within a region, based
on varying the PFT compositions and stem-size dis-
tributions across a large number of simulated forest
stands. We implemented the FF using the Northeast
US calibration of FORMIND to simulate a struc-
tural diversity database containing 896 620 unique
forest stands that could exist throughout the region.
This number of simulations ensured the database
covered a wide range of structural and compositional
diversity, given the potential occurrence of up to nine
different PFTs within a stand, and various potential
stem size distributions that have been observed across
successional and structural gradients in temperate
forests [16, 26]. This database serves as the basis for

the OLS and WFM AGBD prediction methods, as
it encompasses the myriad of forest stand structural
configurations and AGBDs that are possible through-
out the Northeast US.

2.3. Lidar simulations
This study is based on GEDI waveform comparisons
between real and simulated forests, so it was neces-
sary to standardize these data sources. This section
explains our standardization approach to simulate
GEDI waveforms for the 428 in situ stem maps and
all 896 620 stem maps in the FF database.

First we input each in situ stem map into FOR-
MIND using its initialization feature, and had the
model construct the stand’s structure according to the
stem map and previously calibrated allometric rela-
tionships. We implemented FORMIND’s lidar sim-
ulator to generate a point cloud representation of
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each stem map, according to Knapp et al [27], and
subsequently simulated a GEDI waveform from each
stemmap point cloud using the GEDI waveform sim-
ulator [17]. Thewaveform simulationsmirrorGEDI’s
calibration process (see Dubayah et al [3]), except
here the waveform footprint width was set to 20 m to
match the size of the 428 in situ and 896 620 FF stem
maps. The resultant 428 GEDI waveforms represent
FORMIND’s rendering of forest structure within 428
real forest stands throughout the Northeast US.

We used almost the same process as above to sim-
ulate a GEDI waveform from every stand in the FF
database. The only difference was an added step to
eliminate edge effects between FF stands. The FF out-
puts 100 stands at once in a 10× 10 grid, so we separ-
ated the stands when generating the lidar point clouds
to eliminate the influence of tree crowns that over-
hang plot boundaries (see Knapp et al [9] and sup-
plementary information for details).

The end result is that all 896 620 stemmaps in the
FF database have anAGBDvalue and a corresponding
GEDI waveform, calculated in the same exact manner
as the 428 field sites. If one of the FF stands were to
actually exist somewhere in a forest and was invent-
oried, the AGBD value calculated from the inventory
data would be same as the value in the FF database,
and ingesting the stem map into FORMIND (as was
done for the 428 in situ stands) would produce a point
cloud and simulated GEDI waveform identical to its
counterpart in the FF database. This is crucial to our
analysis because it ensures standardization between
all data from the in situ stands and FF database. This
approach removes allometric variability between tree
species and across sites, because all trees in the stem
maps (the 428 in situ and 896 620 FF database) were
constructed in our Northeast US regional parameter-
ization of FORMIND.

2.4. Deriving AGBD and its uncertainty from lidar
waveforms
We use two methods to predict forest stand AGBD
and estimate prediction uncertainty from GEDI
waveforms: ordinary least squares regression (OLS),
and a lookup table approachwe call waveformmatch-
ing (WFM). Both methods rely on the 896 620 GEDI
waveforms from the FF database to predict the AGBD
and uncertainty of each of the 428 in situ forest stands
from their respective GEDI waveforms.

2.4.1. OLS regression modeling
Weused an ordinary least squares (OLS) linear regres-
sion model to predict AGBD from GEDI waveform
RH metrics in 10% increments from RH10 to RH90,
with the addition of RH98 (a more stable indicator
of top of canopy height than RH100). We developed
a set of 18 candidate models based on relevant liter-
ature, using a square root transform on the response
[5, 28]. We trained each model on half of the FF data-
base (n = 448 310) so that the AGBD models were

derived from the same simulated forest stands used in
the WFM approach (section 2.4.2). To assess model
performance, we randomly split the remaining half
of the FF database not used for training into 500 dif-
ferent testing sets (each with n = 897), and applied
all 18 candidate models to all 500 testing sets. We
selected the final model (table S2, figure S1) based
on the lowest average RMSE across the 500 tests, and
applied it to the 428 in situ stem map GEDI wave-
forms to generate OLS-based predictions of AGBD
and the associated 90% prediction interval for each
site.

2.4.2. Waveform matching
WFM is a process that quantifies the similarity in
shape between two waveforms [29, 30]. Similarity is
defined as the relative overlapping area between two
waveforms, expressed as the ratio of area shared by
both waveforms to the entire area encompassed by
either waveform, as follows

r=
mch∑
h=0

min(Ex(h),Ey(h))

(
mch∑
h=0

max(Ex(h),Ey(h))

)−1

(1)

where r is the relative overlap, h is height above
ground in meters, mch is the maximum canopy
height between the waveforms, and Ex and Ey are the
returned waveform energies at a given value of h from
the stem map and FF-stand waveforms, respectively.
We used the same height step of 0.15 m as the wave-
form simulator [17].

We applied the WFM algorithm individually to
the 428 stem map waveforms, and identified the 100
FF-stand waveforms with the largest r for each.When
an in situ stand did not have 100 FF matches with
r > 0.75, we removed it from the rest of the analysis
to guarantee a high degree of similarity between each
in situ waveform and its FF matches. The result was
a set of 100 best matching FF stands for each in situ
stem mapped stand, based on waveform shape.

To derive the in situ stand’s WFM-predicted
AGBD value, we use the median AGBD value from
the set of 100 FF matches. We represent the WFM
AGBD prediction uncertainty as the range in AGBD
that encompasses the middle 90% of the 100 FF
AGBD values. We define this range as the mag-
nitude of uncertainty in AGBD associated with a stem
map’s waveform, which represents the extent of non-
uniqueness with respect to AGBD for each stem map
waveform.

2.5. Explaining AGBD uncertainty
WFM yields predicted values of AGBD for each stem
map, as well as the uncertainty around each estim-
ate. We performed a regression tree analysis, using
the rpart package in R [31], to identify the extent
to which forest structure variables explain patterns
in the WFM-derived AGBD uncertainty across the
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Figure 3. The distributions of AGBD (green) from the 100 matching waveforms (grey lines) for two example stem map
waveforms (blue lines) are highly variable. Waveform A has less variability in AGBD across its 100 matches than waveform B.
Waveform B has a larger uncertainty in WFM-derived AGBD than waveform A, despite similar variability in RH40 and RH98
across the 100 matches for these two examples. According to the WFMmethod, waveform A is more unique to AGBD than
waveform B. The vertical dotted lines represent the in situ stem mapped stand’s value for each variable.

in situ stem maps. The explanatory variables used
were waveform entropy and skewness, the standard
deviation in tree heights, standard deviation of tree
diameters, and stand basal area. To ensure a simple
and interpretable model, we set the maximum tree
depth to three, and only allowed a split from nodes
with at least 15% of the total sample. This means the
final model could have had a maximum of seven pos-
sible splits, and eight possible classes, and that a split
was not allowed if a node had less than 15% of the
total observations.

3. Results

3.1. Stemmap waveformmatches
Waveform matching (WFM) revealed 100 best
matches with r> 0.75 for 380 of the 428 stem maps
(figure S2). The distribution of biomass across these
380 in situ stands (figure S4A) is very similar to the
distribution of biomass across all 38 000 FF stands
that were identified as amatch to the 380 in situ stands
(figure S4B). Across these 380 sites, theWFM-derived
uncertainty in AGBD ranged from 7 to 411 Mg ha−1

(mean of 167Mg ha−1), and from 0.56 to 5.57 (mean
of 1.29) as a ratio relative to the WFM-predicted
AGBD. There was considerable variability in the
WFM-derived distributions of AGBD associated with
different waveform shapes (e.g. figure 3), as some
waveforms had a larger range of possible AGBD val-
ues than others (figure S3).

3.2. AGBD predictions and uncertainty
The OLS and WFM methods performed similarly
with respect to prediction accuracy (R2 of 0.64
and 0.66 respectively) and overall error (nRMSE of
32.1% and 31.6% respectively) (figures 4(A) and (B)).

The agreement between each set of predictions was
higher than between either set and the observed val-
ues, and there was substantial agreement between
the residuals (figures 4(C) and (D)). However,
the uncertainty associated with WFM- and OLS-
predicted AGBD were different (vertical lines in
figures 4(A) and (B)). Across these sites, AGBDuncer-
tainty was lower from WFM than from OLS, des-
pite a larger degree of variability and some extremely
large values in the WFM prediction uncertainty
(figure 5). When the AGBD prediction uncertainty
from each method was compared directly, and the
magnitude of uncertainty from WFM was lower
than from OLS at 313 of the 380 sites with 100 FF
matches.

3.3. WFMAGBD uncertainty as a function of forest
stand attributes
The regression tree analysis (R2 = 0.4) partitioned
the stem maps into five groups of increasing AGBD
uncertainty (derived from WFM) (figure 6). Total
stand basal area had the most explanatory power
with respect to predicting the AGBD uncertainty,
as stands with low basal area (<10 m2 ha−1) ten-
ded to have a smaller uncertainty than stands with
a larger basal area. Among stands with basal area
>10m2 ha−1, thosewithmore variation in tree height
(height standard deviation>4 m) tended to have lar-
ger AGBD uncertainty than stands with less variation
in tree height. Lastly, within each resulting group
(both above and below height standard deviation of
four meters), stands with more variation in tree dia-
meter tended to have larger AGBD uncertainty than
stands with less variation in tree diameter. Forest
attributes differed substantially across the five groups
(figure 7).
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Figure 4. Ordinary least squares (OLS) (A) and waveform matching (WFM) (B) perform similarly in AGBD prediction compared
to the observed values. There is strong agreement between the predicted values from both methods (C) and the residuals (D),
despite differences in reported uncertainty (grey lines in A and B).

4. Discussion

The outcome of the WFM analysis indicates that
lidar waveforms are not unique to AGBD, but instead
are associated with a distribution of possible AGBDs
(e.g. figure 3), and the median of this distribution
tends to be a reliable predictor of the observed AGBD
within the waveform footprint (figure 4(B)) when
compared to the OLS predictions. Additionally, the
WFM-derived distributions of AGBD associated with
different waveform shapes are themselves variable
(e.g. figure 3). Thus some waveforms are associated
with a wider range of possible AGBD than others
(figure 5). Our results also support that a specific
value of AGBD can be associated with multiple dif-
ferent waveform shapes. Two stands with different
tree configurations may have the same AGBD, yet
these stands would produce considerably different
waveforms (figure 8). This is evidenced by the over-
lapping AGBD uncertainties for different waveforms
(figures 4(A) and (B)). AGBD is not unique to a
specific waveform shape, perhaps because multiple
pathways of forest stand development can lead to a
given AGBD. In the following sections we discuss
how waveform-AGBD non-uniqueness may present
limitations in AGBD prediction from lidar, and we

provide a possible explanation for the observed pat-
tern in WFM-derived AGBD uncertainty across the
stem map field sites used in this analysis.

4.1. Limits to AGBD prediction and uncertainty
estimation from lidar
A consistent and perplexing issue associated with
modeling AGBD is the heteroscedastic predictions
and high nRMSEs in AGBD calibration equations
for small plot sizes [6]. While the community has
searched for solutions to this problem through the
inclusion of more andmore complex metrics [27, 32]
and fusion with other remote sensing data [33, 34],
the problem persists. Our results suggest the heteros-
cedasticitymay not be solvable; rather itmay be intro-
duced by the measurement properties of waveform
lidar at small scales.

Waveforms represent an aggregate measure of
vertical structure throughout the footprint, reducing
the information from multiple trees into a single
observation. There is no horizontal differentiation
within a waveform, as it represents the amount of
combined plant matter at a given canopy eleva-
tion across the entire footprint area. Further, the
laser pulse follows a Gaussian distribution within the
footprint, so vegetation matter at the center of the
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Figure 5. The WFM prediction uncertainty is typically lower than the OLS prediction uncertainty. The WFM prediction
uncertainty is the range of AGBD that encompases 90% of the 100 FF matches AGBD values for a given in situ waveform, and the
OLS prediction uncertainty is the width of the 90% prediction interval for each prediction. The solid line shows the 1:1
relationship, and the bin width for both histograms is 25 Mg ha−1.

Figure 6. The AGBD prediction uncertainty derived fromWFM is related to a stand’s basal area (m2 ha−1) and heterogeneity in
tree height, represented here as the standard deviation in tree height (m) and diameter (m). The regression tree (A) partitions the
stem maps into groups based on the influence of various forest stand attributes on WFM-derived AGBD uncertainty (B). The top
value in each terminal node of the tree is the group’s mean AGBD uncertainty, and the bottom number is the number of stands in
the group. The boxplot widths are weighted according to the square root of the number of observations in each group.
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Figure 7. Forest stand attributes differ across the groups of increasing AGBD uncertainty. Panels are: (A) AGBD, (B) mean tree
diameter, standard deviation of tree diameters (C) and heights (D), (E) RH50, (F) RH95. The boxes are colored according to
group, to match figure 6.

Figure 8. Forest stands (400 m2) with unique tree configurations can have similar AGBD yet different waveforms (A) and (B), or
different AGBD yet similar waveforms (B) and (C). The numbers in each tree represent its AGB Mg, and the reported densities
here have been scaled to 1 ha. These stands are only conceptual, used to illustrate the non-uniqueness phenomenon, and not
actual stands within our in situ or simulated databases.

footprint influences the waveform more than mat-
ter near the edges. We argue this aggregation across
space may introduce the heteroscedasticity between
waveform metrics and AGBD, and is more likely for
small plot sizes. It is generally known that variability
in AGBD increases with decreasing plot size, and that
smaller area plots may also have much larger AGBDs
than larger area plots. The scale-dependent variability

in forest structure and biomass may explain why, at
small scales, a specific waveform shape can be pro-
duced by stands with substantially different AGBDs.
A decrease in AGBD variability in larger scales would
decrease this effect, resulting in smaller ranges of
AGBD associated with a given waveform shape. This
would help explain the large decrease in nRMSEs
observed in biomass models as calibration plot size
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increases [6]. Indeed, Knapp et al [27] demonstrate
that as plot sizes increase, the ability of lidar struc-
tural metrics to predict AGBD increases concurrently
with a decrease in the variability in both AGBD and
structural metrics. In effect, the uniqueness between
LiDARmetrics andAGBDmay increasewith plot size.

The non-uniqueness effectmay complicate efforts
to estimate the uncertainty of AGBDpredictions from
statistical models. Uncertainty in regressionmodels is
often represented as a prediction interval, defined as
the range in which the predicted value from a new
observation will fall given what has been observed
in the model training sample, for any desired prob-
ability. In the case of OLS, the size of the predic-
tion interval for a new observation depends on the
training samplemean and variance, and how far from
the mean that new observation is. While statistically
valid, prediction intervals do not recognize that some
lidar waveforms may be more unique to AGBD than
others. As such, the OLS prediction interval meas-
ures something inherently different than the WFM-
derived AGBD uncertainty (the 90% range of pos-
sible AGBD associated with the 100 matches to a
given stem map’s waveform). The motivation for
WFM is to quantify the variability in AGBD asso-
ciated with a given waveform shape from a specific
forest stand, absent all other influences, especially
other forest stands’ waveforms and AGBDs. In doing
so this method accounts for the possibility that some
waveformsmay be associatedwithmuch larger ranges
of AGBD than others, something not accounted for in
OLS prediction intervals. This would help explain the
differences between the OLS prediction intervals and
WMF-derived uncertainty (figure 5).

In both WFM and OLS, a given waveform shape
will always result in the same predicted value of
AGBD—there is no stochasticity in either predic-
tion method. However, the knowledge that multiple
forest stands with different structures and waveform
shapes can have the same AGBD (e.g. figure 8) high-
lights another important difference between OLS and
WFM. In OLS, a predicted value of AGBD is unique
to the set of predictor values used in the regression
equation to make that prediction. In other words, the
number of waveform shapes that could result in a spe-
cific predicted AGBD is directly related to the number
of terms in themodel. In amodel that only uses RH98
to predict AGBD, a specific value of RH98 can only
result in one predicted AGBD value, and that pre-
diction is associated with a single prediction interval.
However this is not the case in WFM, in which the
prediction uncertainty is a function of the variab-
ility in AGBD associated with the matched set of
waveforms.

4.2. Drivers of waveform-AGBD uncertainty
A conceptual model may characterize forest structure
according to the interaction between three attributes:

(a) the number and spatial position of trees within a
stand (b) the sizes of the trees (e.g. maximum height,
crown shape, stem diameter), and (c) the variation
in tree sizes within the stand. A forest stand’s struc-
tural stage can then be classified according to these
attributes [22, 26, 35], and it has been shown that dis-
crete airborne lidar observations can effectively dis-
criminate between stands in various structural classes
[36, 37]. Our results indicate that the extent to which
lidar waveforms are unique to AGBD depends on the
structural stage of the forest stand.

The regression tree (figure 6) segmented the
in situ stands into in five groups of increasing WFM-
derived AGBDuncertainty, and themagnitude of that
uncertainty is related to a stands basal area and vari-
ation in tree sizes. Stands with larger basal area and
more variation in tree height and diameter tend to
produce waveforms that are less unique to biomass
than stands with smaller basal area and more homo-
geneous tree sizes. Together, the five groups of forest
stands represent a progression in structural complex-
ity driven by dynamic forest processes [35].

Investigations of temperate forest stand dynamics
have resulted inmultiple classifications of forest stand
structural development (e.g. [35, 38, 39]), however
the general trends in structural development over
time are consistent. Following a stand replacing dis-
turbance or at the start of old-field succession, the
stand-initiation phase is characteristic of open can-
opies with a single stratum of saplings, rapid growth,
small basal area, and low biomass density [35]. The
group with the lowest WFM-derived AGBD uncer-
tainty embodies these characteristics (figures 6 and 7).

Upon stand initiation, most available growing
space is quickly occupied and trees start to dir-
ectly compete for resources during the stem exclu-
sion phase [35]. Boles become larger and a dense
canopy shades the forest floor, precluding new seed-
lings and perpetuating a single stratum of homogen-
eous tree sizes. As individuals in the overstory start
to die, growing space becomes available and access to
resources lower down in the canopy enables a trans-
ition to the understory reinitiation stage. Overtime,
the canopy may stratify into various layers, and suc-
cessive mortality events sustain a multi-layered can-
opy composed of different cohorts, stems of various
sizes, and the potential for high biomass density in the
multi-strata stage [40]. Groups 2–5 embody a gen-
eral transition from young initiated stands through
the various stages of structural development to more
mature, mosaiced stands with established under-
stories and multiple canopy strata.

The characteristics of these five groups illustrate
how patterns of structural development within a
forest may impact the uniqueness of waveforms with
respect to AGBD. It appears that the ability of lidar
waveforms to uniquely represent biomass within the
footprint decreases as the structural complexity inside
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the footprint increases. A waveform that represents
a forest stand with a single, clearly defined canopy
layer and moderate ground return tends to map to a
small range of AGBD because the forest stands that
could produce such a waveformmust be composed of
trees of similar sizes that form a single canopy layer,
and those stands are similar in structure and AGBD
(figure 3(A)). Conversely, a waveform that indicates
multiple canopy strata and more canopy cover could
theoretically come from a set of stands with larger
compositional and structural variety, resulting in a
relatively wider range of AGBD (figure 3(B)). Wave-
forms capture a finite amount of structural inform-
ation about a stand, which is only a fraction of the
stand’s total structural information (e.g. maximum
height, crown shape, and stem diameter of every
tree in the footprint). We argue that this fraction
likely varies based on the structural complexity of the
observed stand, and in the context of AGBD predic-
tion, the higher the fraction of structural informa-
tion captured, the more unique a waveform may be
to AGBD.

4.3. Forest simulations
The heavy reliance on simulated data in this ana-
lysis is intentional, as this experiment would not be
possible using field data alone, and each stage of the
workflow has been extensively tested and validated
[14, 16, 17, 27, 30]. The use of FORMIND and the
FF allows us to systematically explore the relation-
ship between forest structure andAGBDacross a wide
range of structural conditions that exist in real forests,
and to make novel inferences about AGBD predic-
tion uncertainty. FORMIND captures general trends
in forest structure across time and space, and it is not
intended to predict the exact AGBD value of a single
stand. Instead, we use it to assess the likely variability
in AGBD predictions based on a given forest struc-
ture, rather than reporting our predicted AGBD val-
ues as truth. Additionally, FORMIND does not rep-
resent stochastic variability in tree allometry, or other
differences due to environmental gradients or other
factors known to influence forest structure (past dis-
turbances, land use transitions, etc). As such the point
cloud representation of the in situ forest stands do
not exactly reproduce the structural complexity of
these stands in the real world, as shrubs, downed trees
and debris, and small trees are not represented in
the stemmaps or FORMIND-generated point clouds,
nor are the potential impacts of topography repres-
ented in the point clouds or waveforms. However, all
of these aspects are absent from both the in situ and
FF stem maps and waveforms, ensuring a like-to-like
comparison.

We have attempted to reproduce results com-
mon to empirical studies (increasing variation in
predictions as AGBD increases and large calibra-
tion nRMSEs) in a modeling framework, and in
doing so expose waveform-AGBD non-uniqueness

as a contributing factor. Our experimental design
allowed for a controlled setting to explore this pos-
sibility, while eliminating various proposed causes
of heteroscedastic predictions and large calibration
nRMSEs, as follows. An unrepresentative training
sample is not likely a factor, as 896 620 FF stands were
used to train and test the OLS model, and expand-
ing the training sample would not act to reduce the
non-uniqueness effect. There is no geolocation error
between the FORMIND-generated point clouds and
the in situ or FF-derived stem maps, nor do any of
FF point clouds have tree crowns that overhang the
plot boundaries, both ofwhich have been suggested to
add to calibration equation error and prediction scat-
ter [7–9]. All the FF and in situ stands are constructed
according to the same set of PFT-specific allometric
equations, so there is no allometric variability within
a PFT or between stands, and the same equations used
to estimate the field biomass values of the stem maps
were used to obtain the biomass of the simulated FF
stands. We do not claim these factors have no influ-
ence on AGBD predictions from LiDAR waveforms
in general, however by controlling for their influence
in this analysis, we conclude that the non-uniqueness
effect may account for a substantial amount of AGBD
prediction uncertainty and error, and should not be
overlooked in future studies.

5. Conclusions

In this paper we used GEDI-FORMIND fusion to
explore the possibility that lidar waveforms are not
unique to AGBD. Our results support that lidar wave-
forms may instead be associated with a range of
potential AGBD values, and that this range varies
among waveform shapes. We have demonstrated that
within the study extent, the range of AGBD asso-
ciated with specific a waveform may be a function
of the stand’s structural characteristics. Forest stands
in early structural development tend to be relatively
homogeneous and similar to one another, resulting
in low biomass variation for a given structural sig-
nature (waveform shape). Over time, stand dynam-
ics drive changes in forest composition and structure.
This process of structural development over timemay
result in substantial differences in biomass between
structurally mature stands, yet due to the measure-
ment properties of waveform lidar, some stands may
still produce similar waveform shapes. The result is
that some waveform shapes are likely associated with
a small range of possible AGBD, while others may be
associated with a greater range of possible AGBD.

The phenomena of waveform non-uniqueness
with respect to AGBD presents challenges in the
context of traditional approaches to modeling
AGBD from lidar waveforms. However, these chal-
lenges are not new and are well documented [6].
Acknowledging this phenomena may help explain
the heteroscadasticity and large calibration errors
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present in empirical studies, although further invest-
igation into waveform-AGBD non-uniqueness across
scales is necessary. The non-uniqueness effect is
perhaps intuitive to some extent, however we have
attempted to isolate its influence from other factors
known to impact AGBD predictions. In doing so, this
work highlights limitations to AGBD prediction from
waveform lidar at fine scales.
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