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[1] Over the past decade, much research has been carried out on the utilization of
advanced geospatial technologies (remote sensing and geographic information systems)
in the fire science and fire management disciplines. Recent advances in these technologies
were the focus of a workshop sponsored by the EARSEL special interest group (SIG) on
forest fires (FF-SIG) and the Global Observation of Forest and Land Cover Dynamics
(GOFC-GOLD) fire implementation team. Here we summarize the framework and the key
findings of papers submitted from this meeting and presented in this special section. These
papers focus on the latest advances for near real-time monitoring of active fires, prediction

of fire hazards and danger, monitoring of fuel moisture, mapping of fuel types, and

postfire assessment of the impacts from fires.
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1. Introduction

[2] Fire is a natural process in many ecosystems that have
a long history of fire disturbance. Most developed countries
have well-established procedures and the physical and
human infrastructure to carry out fire suppression in order
to protect lives and property [ Goldammer and Stocks, 2000;
Grissom et al., 2000; Keeley and Fotheringham, 2001;
Ward and Mawdsley, 2000]. As a result, the fire regime in
many ecosystems has been altered. For example, the sup-
pression of many small, low-intensity fires has led to a
growing accumulation of fuel, which have resulted in larger
and more intense fires over the long term. In this regard, a
comparison between fire regimes in the United States and
Mexican sides of California shows very distinct patterns
[Minnich, 1983]: For similar ecosystems, the number of
fires is much lower in the United States than in Mexico, but
the total burned area is fairly similar.

[3] Results from similar studies have shown that fire
policy needs to be reviewed and several countries are
currently using prescribed burning to reduce fuel loads, or
have adopted a “let them go” policy for fires that have
natural causes [Grissom et al., 2000; Ward and Mawdsley,
2000]. In other countries, such as most of Europe where
forest fires have a great impact, fire is still considered
harmful, and society demands additional means of fire
suppression and fire risk estimation [Vélez, 2004]. On the
other hand, as many developing countries have not devel-
oped the infrastructure for fire suppression, most fires are
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allowed to burn without intervention, even though they are
mainly human caused.

[4] Any environmental policy requires the timely gen-
eration of reliable information to support decision making.
For fire management, this information includes maps of
(1) historical patterns of fire ignitions, sources, and burned
area; (2) the location of buildings, homes, roads, railroads
and utility corridors; (3) vegetation type and fuel loads;
(4) fuel condition, in particular the moisture content of live
and dead vegetation; (5) topography; (6) the potential
damage to the landscape and human values resulting from
fire (e.g., fire vulnerability); and (7) the impacts of the fire
on vegetation regrowth, erosion, and other environmental
characteristics (associated with burn severity). In addition
to the data itself, methods are required to integrate data
from multiple sources and provide information in a timely
fashion. Managers require the means and approaches to
integrate these information products into assessments of
fire risk and probability.

[s] Fire statistics are rather poor in most fire-affected
countries. Most fires are georeferenced very coarsely or not
at all, although in recent years the growing use of global
positioning system (GPS) technology has improved the
situation in developed countries. Fire danger ratings are
generated in many countries using meteorological data
[Stocks et al., 1989], which is very coarse in many areas
of the tropical and boreal regions, the most affected globally
by biomass burning.

[6] Information derived from satellite and airborne remote
sensing systems provide a sound alternative to derive critical
information for fire scientists and decision makers. This
information is spatially comprehensive, provides the capa-
bility for periodical updating, and information can be directly
derived from land-surface characteristics, instead from sur-
rogates (like atmospheric conditions, as in the case of
meteorological data). The most challenging issues for the
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operational use of remotely sensed data in fire-related
research and management are associated with the current
status of satellite sensor technology (including the genera-
tion and provision of information in a timely fashion), the
present status of satellite missions that lack the spatial,
spectral or temporal resolution required for operational
needs, and further developing the geospatial technology
and analytical approaches required for the delivery of
information products.

2. Summary and Context of the Papers of the
Special Section

[7] In June of 2005 the 5th international workshop on
remote sensing and GIS applications to forest fire man-
agement: fire effects assessment was hosted by the Uni-
versity of Zaragoza in Zaragoza, Spain. This workshop was
coorganized by the EARSEL special interest group (SIG)
on forest fires (FF-SIG) and the Global Observation of
Forest and Land Cover Dynamics (GOFC-GOLD) fire
implementation team. This workshop focused on reviewing
research on the uses of remotely sensed data for fire
science and fire management, with a specific focus on
the following topic areas: (1) global burned scar mapping
projects; (2) atmospheric effects of fire; (3) environmental
dynamics after fire (regeneration, fire soil effects, land-
scape patterns, etc.); (4) new sensors for fire detection
(UAV, geostationary satellites, fire-dedicated satellites,
etc.); and (5) modeling efforts for fire danger and risk
estimation.

[8] In this special section, ten papers are presented that
deal with using geospatial technologies (remote sensing and
geographic information systems (GIS)) for fire science and
management. In the following sections, we summarize the
findings of these papers in the context of the current state-
of-the-science.

2.1. Active Fire Detection From Space

[o] Satellite observation of active fires is based on two
different physical principles. On the one hand, fire produces
light, and therefore can be detected on nocturnal satellite
imagery using the visible wavelengths of the electromag-
netic spectrum [Cahoon et al., 1992; Elvidge, 2001]. On the
other, the high temperatures that fires generate greatly
increases the radiance emitted in the middle infrared bands,
with those centered on the 3.7 ym being most suitable for
active fire detection.

[10] The detection of fire lights has been achieved using
the optical landscan sensor (OLS) on board the Defense
Meteorological Satellite Program satellite series. The spatial
and temporal resolution of the OLS is rather coarse, but this
system has provided accurate data on the spatial patterns of
fire occurrence through differentiating between stable lights
(cities, power stations) and dynamic lights (mostly fires)
[Elvidge, 2001].

[11] The detection of active fires has been most commonly
achieved from the analysis of middle infrared data. The
first information products were based on data collected by
the AVHRR (Advanced Very High Resolution Radiometer)
on board the NOAA meteorological satellite, the first of
which was launched in 1979. Although channel 3 (centered
at 3.7 um) of this sensor has low sensitivity (it saturates at
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320 K), and therefore produces frequently false alarms
[Robinson, 1991], the daily coverage of AVHRR has provided
useful information on fire patterns in many regions of the
world [Flannigan and Vonder Haar, 1986; Kaufman et al.,
1990; Stroppiana et al., 2000] and has been used in an
operational mode in several regions [Fraser et al., 2000;
Sukhinin et al., 2004]. Fire discrimination from AVHRR data
has been achieved through establishing global and regional
thresholds from the middle and thermal infrared channels
mainly, and it is more accurate at night time than at daytime,
especially in semiarid regions with high soil temperatures
[Flasse and Ceccato, 1996]. The Joint Research Center
(JRC) of the European Commission supported a worldwide
project to obtain active fires globally, by using a decentralized
network of AVHRR receiving antennas with a common
processing chain (the results of this project, named world fire
web, are available on the Internet (http:/www-tem.jrc.it/
Disturbance by _fire/products/fire_occurrence/global-fire-
product1996-99.htm)).

[12] The European Space Agency’s Data User Program
created a similar project to map globally active fires from
the ATSR (Along Track Scanning Radiometer), on board
the ERS-1 and 2 and the Envisat (in this case an improved
version of ATSR) satellites. The ESA World Fire Atlas
detects fires in ATSR images using two algorithms based on
simple thresholds of the 3.7 um channel at nighttime
acquisitions. The detected fires since 2000 are freely avail-
able in the web page of the project (http://dup.esrin.esa.it/
ionia/wfa/index.asp).

[13] Since 2000, global fire detection has been greatly
improved on the basis of data collected by MODIS (Mod-
erate resolution Imaging Spectroradiometer). This sensor
includes several bands in the thermal and middle infrared
that were specifically defined for detecting fire anomalies,
and therefore it provides higher accuracy than AVHRR data.
Fire detection is based on a set of rules applied to different
spectral bands, including contextual criteria [Giglio et al.,
2003, 2006]. Detected active fires are recorded daily and
made freely accessible in the internet through the MODIS
rapid response team web page (http://rapidfire.sci.gsfc.
nasa.gov/firemaps/). Input data are based on both Terra
and the Aqua satellites.

[14] New sensors are being planned to more readily fulfill
the specific needs of operational fire detection and fire
growth monitoring. The most innovative projects in this
regard are the BIRD program of the German DLR [Briess et
al., 2001] and the Fuegosat of the Spanish company Insa
[Martinez et al., 2000].

[15] While existing and planned orbiting satellite systems
provide valuable information on the location and extent of
active fires, the temporal frequency of sampling from these
systems (at best 2 times per day) is low for many fire
management activities. To overcome this limitation, data
from the Geostationary Operational Environmental Satellite
(GOES) system can be used. The utility of these data for fire
monitoring was first demonstrated for fires in South Amer-
ica by Prins and Menzel [1992]. The GOES satellite
systems can detect fires within their field of view every
30 minutes, and have proven to be useful for monitoring
active fires [Prins et al., 1998]. Recently, scientists have
begun to explore the utility of GOES data from other
regions for fire monitoring. In this special section, the paper
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by Calle et al. [2006] evaluated the utility of data collected
by the SEVIRI (Spinning Enhanced Visible and Infrared
Imager) instrument onboard the European MSG (Meteosat
Second Generation) satellite for fire detection. Calle et al.
[2006] not only validated that SEVIRI could detect fires as
small as 0.7 ha in size, but showed that the radiant energy
detected by SEVIRI was proportional to the energy being
emitted by individual fire events. This demonstration is an
important step for implementing the operational use of data
collected by the GOES system on an operational basis.

2.2. Mapping Fuel Types and Fuel Conditions and
Assessing Fire Risk

[16] The term “fire danger” is widely used in forest fire
literature and refers to the ““process of systematically
evaluating and integrating the individual and combined
factors that determine the ease of a fire starting and
spreading, difficulty of control and some immediately
evident fire impacts (e.g., crown scorch, depth of burn)
based on an assessment of ignition risk, the fire environ-
ment (i.e., fuels, weather, topography) and values-at-risk™
(Countryman [1966], as quoted by Lee et al. [2002]).
Following a broader definition taken from the natural
disasters literature, the prefire assessment should also con-
sider the potential effects of fire once it occurs (the
likelihood of damage) [Jones, 1992; Jain, 2004]. Within
this context, fire risk should consider both fire danger and
fire vulnerability. The former should consider the probability
of fire ignition and fire propagation, while the latter should
take into account the values at stake, both human (properties,
recreation, wood value, etc.) and ecological (soil erosion
potential, damage to endemic species, plant resilience, and so
on).

[17] Fire danger estimation requires constant updating of
climate and fuel moisture information that is spatially
distributed. The role of remote sensing focuses on generating
some of the required input variables for fire ignition and fire
propagation estimation [Chuvieco et al., 2003b]. The most
relevant variables in this context are the estimation of fuel
moisture content (FMC) and fuel loads and distribution.
2.2.1. Fuel Type Mapping

[18] Description of fuel properties is critical in all phases
of fire management and fire science: prevention, fire danger
estimation; suppression: fire behavior modeling; fire effects
assessment: trace gas emissions; and vegetation recovery
after fire [Chuvieco et al., 2003c]. Several fuel character-
istics are critical for fire propagation studies: crown bulk
density, crown base height, canopy height, canopy closure,
surface area to volume ratio, vertical and horizontal conti-
nuity, dead and live fuel loads, live woody loads, and size of
particles in reference to vegetation geometry. In addition,
fuel moisture (see Section 2.2.2 below) is related to vege-
tation physiology and variations in climate. Since the
combination of fuel properties of vegetation species are
almost infinite, the description of those properties relevant
to fire danger estimation and fire propagation studies is
based on fuel types, defined as “‘an identifiable association
of fuel elements of distinctive species, form, size, arrange-
ment, and continuity that will exhibit characteristic fire
behavior under defined burning conditions” [Merrill and
Alexander, 1987]. Vegetation type can provide a clue type
the morphology, dead woody debris, and surface litter
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properties [Keane et al., 2001], but are not necessarily a
determinant for fire management, since the same vegetation
type may present completely different fire propagation rates
if their fuel load, density, vertical continuity, compactness,
or surface area to volume ratio characteristics, among
others, change over time [Anderson, 1982; Andrews,
1986; Deeming et al., 1978].

[19] Several fuel type classification schemes have been
proposed. The best-known classification system was devel-
oped by the U.S. Forest Service’s Northern Forest Fire
Laboratory (NFFL) of Missoula for the development of the
Behave fire propagation model [A4/bini, 1976; Anderson,
1982]. This scheme was based on the type of vegetation
covering the forest understory: herbaceous, shrub, dead
leaves, slash residues and basal accumulation material.
The main difficulty in classifying these fuel types from
remotely sensed data is in the estimation of fuel height
(which is critical in fuel load assessment) since passive
optical sensors only provide 2-D information. An additional
problem relies on the emphasis of the NFFL classification
on surface fuels. Surface vegetation may be covered by the
forest canopy, and therefore will not be directly sensed from
satellite images.

[20] In spite of these difficulties, researchers have carried
out fuel type mapping from medium and high-resolution
sensors, primarily using Landsat-TM and MSS data
[Anderson et al., 1993; Fazakas et al., 1999; Riario et al.,
2002]. The results were good (above 80% accuracy) for
some categories (grasses, dense forest, dense shrub), but
failed for those that require height estimations for discrim-
ination (models 4, 5 and 6 of the NFFL system) or were
under the canopy layer (model 7).

[21] Radar and Lidar sensors provide a possible alterna-
tive to the two difficulties previously stated. On one hand,
L or C-band radar data may provide additional information
on the forest understory, thanks to their canopy penetration
capability. Numerous studies based on ERS-1, JER-1 and
Radarsat data have been undertaken to predict forest attrib-
utes that are critical for fuel type mapping, such as foliar
biomass, tree volume, tree height and canopy closure
[Hyyppa et al., 2000; Ranson et al., 1997; Toutin and
Amaral, 2000]. However, current limitations of active
microwave data preclude their use for accurate estimation
of canopy height, since the uncertainty in the estimation is
greater than 5 m [Hyyppa et al., 2000; Toutin and Amaral,
2000]. Another limitation is that radar is insensitive to high
biomass levels [Kasischke et al., 1997]. The estimation of
3D attributes that are required for fuel type discrimination
may be achievable from active optical sensors (Lidar),
which are able to measure distances in the vertical spatial
domain [Peterson et al., 2003]. From Lidar measurements,
researchers have generated critical parameters for fuel
parameterization, such as crown height and crown bulk
density [Naesset and Okland, 2002; Peterson et al., 2003;
Riafio et al., 2003; Riafio et al., 2004]. Unfortunately, this
technology is still very expensive and covers small areas,
since only airborne systems are available.

[22] In this special section, several papers explore the use
of satellite remote sensing data for mapping of vegetation
cover for use in wildfire danger assessment. Cheret and
Denux [2007] developed an approach for assessing wildfire
danger using maps of vegetation cover derived from an
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analysis of coarse resolution SPOT-Vegetation data. These
data were combined with information on topography, fire
ignitions, and climatic indices, derived from analysis of time
series SPOT-Vegetation data (see section 2.2.2 below).
These parameters were combined within a model to esti-
mate spatially explicit estimates of fire severity. Often, fire
managers require finer-resolution maps of fuel types for
decision making, in particular in making decisions with
respect to deployment of resources during actual suppres-
sion events. Arroyo et al. [2006] explored the utility of high-
resolution (4 m) satellite imagery for the production of fuel
type maps. In this study, Arroyo et al. [2006] explored a new
data processing approach, object-oriented classification,
which allows for considering spatial context of adjacent
pixels in the eventual generation of the fuels map. It was
concluded that this approach produced higher accuracies
than would have been generated using traditional maximum
likelihood classifiers. Finally, the paper by Perez-Cabello et
al. [2006] explores the use of satellite imagery for identify-
ing erosion-sensitive areas following wildfires. They found
that the most important variables for predicting erosion
potential were site aspect and the prefire vegetation green-
ness (NDVI) derived from satellite imagery.

2.2.2. Mapping of Fuel Moisture

[23] The estimation of FMC has been based on several
methods, including field sampling, meteorological indices,
and remote sensing techniques. Field sampling is the most
direct method, but it is also the most difficult and costly.
Most operational fire danger rating systems base their
estimation of fuel moisture conditions on meteorological
data [Stocks et al., 1989]. Most commonly, those meteoro-
logical danger indices try to estimate fuel water content of
dead materials present in the forest understory or lying on
the forest floor, which are the driest and most likely to
ignite. In spite of the relevance of also estimating the FMC
of live fuels, few models explicitly include such estimation.

[24] The spatial and temporal coverage provided by
remote sensing systems makes this data source a useful
alternative to estimate FMC for a whole area at regular time
intervals. Unlike meteorological indices, which refer to the
specific conditions where the weather stations are located,
remote sensing data are spatially comprehensive, covering
the whole territory at various spatial resolutions, from few
meters to few kilometers, depending on the sensor. More-
over, remote sensing data result from the vegetation con-
ditions (reflectance or temperature) at the time of imaging,
whereas meteorological indices measure FMC indirectly,
through the analysis of atmospheric characteristics from
which vegetation water status is estimated. Several authors
have shown the potentials of remote sensing data to estimate
water content of plants, both using simulation models
[Ceccato et al., 2001, 2003; Fourty and Baret, 1997,
Zarco-Tejada et al., 2003], and empirical data [Chuvieco
et al., 2002, 2003a, 2004; Peters et al., 2002; Sims and
Gamon, 2003; Tian et al., 2001].

[25] Most authors working on radiometric measurements
and simulations based on radiative transfer models (RTM)
have shown that reflectance in the SWIR (1000—2500 nm)
is greatly affected by the amount of water content, espe-
cially at the leaf level [Ceccato et al., 2001; Hunt et al.,
1987; Sims and Gamon, 2003]. However, at the canopy and
plot levels, other variables such as leaf area index or fraction
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of vegetation cover may prevail over the water signal, thus
creating severe difficulties for retrieval of water content,
especially in cases where these variables cannot be estimated
from other sources [Zarco-Tejada et al., 2003]. Most simu-
lation studies have been based in the equivalent water
thickness (EWT), defined as the amount of water per leaf
area. However, in forest fire danger estimation, EWT has
never been considered, and the key water variable related to
fire ignition (ignition delay, ignition potential) or fire behav-
ior is the amount of water per dry mass unit (named fuel
moisture content, FMC). The conversion between EWT and
FMC may be based on the specific leaf weight, which implies
that the estimation of FMC from reflectance measurements is
required to estimate the effect of dry matter variations on
reflectance, which is species dependent.

[26] The use of thermal data to estimate water content has
also been tested by several authors [Jackson et al., 1981;
Vidal et al., 1994]. The relations between water and tem-
perature are governed by the rate of evapotranspiration from
plants, which use part of the incoming radiation to convert
liquid to gaseous water (latent heat), as a mechanism of
thermal regulation.

[27] Several authors have shown good empirical relations
between FMC and satellite derived variables in several
ecosystems. FMC for grasslands was more efficiently esti-
mated than for other fuels [Chladil and Nunez, 1995;
Chuvieco et al., 2002; Hardy and Burgan, 1999; Paltridge
and Barber, 1988], because water variations in grasslands
have a greater effect on other variables that critically affect
plant reflectance (such as chlorophyll content or leaf area
index), and are more sensitive to seasonal variations than
shrubs or trees. Experiences with ecosystems that contain
shrubs have been less successful, with diverse trends
regarding the different species analyzed [Alonso et al.,
1996]. Satellite variables most commonly used are the
Normalized Difference Vegetation Index (NDVI) and Sur-
face Temperature (ST) or a combination of the two [Leblon,
2001; Chuvieco et al., 2004]. Most of the referred studies
were based on NOAA-AVHRR data, which provides a long-
time series and a proper spatial and temporal resolution for
regional studies. Recent sensors, such as SPOT-Vegetation
and Terra-MODIS provide an alternative for FMC estima-
tion, since they provide data in the SWIR and therefore
direct estimation of EWT may be achievable [Ceccato et al.,
2003]. Finally, several researchers have demonstrated a
relationship between fuel moisture and variations in
radar backscatter recorded by the ERS-1 SAR satellite
[Bourgeau-Chavez et al., 1999; Leblon et al., 2002].

[28] Several papers in this special section explore the use
of remotely sensed data for the estimation of fuel moisture.
To assess the potential use of satellite data for this purpose,
De Santis et al. [2006] used laboratory-based studies, which
included manipulations of the moisture of a single tree
species (Holm oak) and measurements by two spectral
radiometer systems. These studies identified suitable chan-
nels for discrimination between effects caused by moisture
variations and those caused by variations in canopy back-
ground conditions, and provided insights for scaling up
from ground to airborne/spaceborne observations. Roberts
et al. [2006] carried out field-based observations of fuel
moisture in a California shrubland ecosystem in order to
assess the potential of AVIRIS hyperspectral and MODIS
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multispectral imagery for assessing fuel moisture. They
were able to find significant correlations between live fuel
moisture and indices derived from both remotely sensed
data sets. Finally, Cheret and Denux [2007] used seasonal
vegetation greenness indices (NDVI) derived from SPOT —
Vegetation data to produce meteorological index of drought
potential for predicting wildfire danger.
2.2.3. Assessing Long-Term Fire Risk

[29] The generation of new and more accurate informa-
tion layers as well as the availability of geographic infor-
mation makes it possible for fire scientists and managers to
have access to and utilize new data sources not previously
available. However, challenges still remain in the effective
utilization of these data, in particular in integrating these
data within models and decisions support systems. In this
special section, Amatulli et al. [2006] explore these chal-
lenges in the context of predicting long-term fire risk at a
local scale. They utilize an approach that incorporates
classification and regression tree analyses in order to be
able to use different classes of independent variables (e.g.,
categorical and continuous).

2.3. Mapping of Burned Area and Fire Effects

[30] The use of remote sensing methods in fire effects
assessment has grown notably in the last decade, using both
high and low-resolution satellite sensors [Ahern et al.,
2001]. For global applications, the use of NOAA-AVHRR
data was extensively tested in the 1990s. Most commonly,
burn scar areas were discriminated from a multitemporal
comparison of NDVI or other spectral indices [Kasischke
and French, 1995; Martin and Chuvieco, 1995; Pereira,
1999], although some combination of thermal and optical
channels have also been undertaken [Fraser et al., 2000;
Sukhinin et al., 2004].

[31] More recently, other sensors with greater sensitivity
for mapping burned scars have been used to create a global
inventory of burned areas. In 2000, two worldwide projects
were developed, one based on SPOT-Vegetation data,
named GBA2000 and the other one based on ATSR-2
images, named Globscar. The former was coordinated by
the Joint Research Center and created a global product of
burn scars from several regional algorithms that intended to
be better adapted to ecosystem variability. The final product
has not been fully assessed, but first results show good
agreement with expected trends [Zansey et al., 2004]. The
Globscar project is an initiative of the ESA, and it is based
on ERS-2 ATSR images, using two global algorithms based
on multiple thresholds [Simon et al., 2004]. The bottle neck
of these global approaches is the assessment of results,
which is very complex and costly. However, the importance
of undertaking a proper assessment of global products is
becoming increasingly important in order to reduce uncer-
tainties when using them as an input to other estimation
models. The example on using burned land maps in the
estimations of gaseous emissions derived from biomass
burning in a clear example. Finally, the MODIS program
plans to release soon a standard product on burned land
areas at global scale, which will be based on a multi-
temporal change detection approach to analyze differences
between modeled and actual reflectance, and to take into
account BRDF corrections [Roy et al., 2002, 2005].
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[32] At local scale, a great number of papers have been
published, mainly based in Landsat-TM/ETM data [Koutsias
etal., 1999]. The range of techniques used for discriminating
burn scars is very wide, covering simple ratios and vegeta-
tion indices [Chuvieco and Congalton, 1988; Lopez Garcia
and Caselles, 1991], to linear transformations (tasselled cap,
principal component analysis [Siljestrém and Moreno,
1995]), spectral unmixing [Caetano et al., 1996], and a
whole range of classification systems [Gitas et al., 2004;
Kushla and Ripple, 1998; Sunar and Ozkan, 2001].

[33] While the discrimination of burned/unburned areas
has been achieved with reasonable good results, even from
low-resolution satellite data, burn severity estimation
remains a challenge, although several studies have explored
this issue in the recent literature [Epting et al., 2005; Key
and Benson, 2005; van Wagtendonk et al., 2004]. Burn
severity is a critical parameter for fire assessment, both from
an ecological and atmospheric point of view, since the
amount and distribution of biomass burned has a direct
impact on gas emission estimation and is critical for
projecting fire recovery after fire. Burn severity is rarely
evaluated, even from field data. Considering the large field
effort that burn severity requires, several papers in this
special section further explore this potential.

[34] In this special section, Chuvieco et al. [2006] provide
a theoretical assessment of the potential of using visible,
near IR, and SWIR data assessing fire effects. They use a
radiative transfer model to predict how damage from fires
will alter the spectral reflection from a vegetated surface,
and used the composite burn index (CBI) as a basis to
estimate fire effects. This study showed that fire alters
different regions of the electromagnetic spectrum, with the
greatest impact occurring in the near IR region, followed by
the SWIR and red regions. The study demonstrated that
there are multiple wavelength regions where spectral indices
produce correlations with CBI.

[35] Field-based assessments of satellite data sets were
carried out in two papers. Walz et al. [2007] evaluated the
differenced normalized burn index (INBR) using both Land-
sat TM and MODIS imagery in a subtropical forest in
southwest Australia. They concluded that in this region, burn
severity derived from MODIS provided a good first-order
assessment of fire severity. In contrast, Roldan-Zamarron et
al. [2006] evaluated a number of different techniques for
analysis of burn severity using Landsat TM, MERIS, and
MODIS imagery in a Mediterranean ecosystem in Spain.
They found that the NBR was the least accurate method for
mapping burn severity, following matched filtering and linear
spectral unmixing approaches.

[36] Finally, while Perez-Cabello et al. [2006] considered
using post fire burn severity measures (NBR and dNBR) to
assess potential for postfire erosion, the most accurate
model they developed included neither of these parameters.

3. Discussion and Conclusions

[37] In spite of the recent increase of scientific dealing
with remote sensing and fire-related topics as a result of
important of research in this direction, there are still few
operational systems that use routinely remotely sensed data
in any of the three phases of fire management: estimation of
fire danger conditions, detecting active fires and assessing
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postfire effects. This fact may be caused by the lack of
satellite missions oriented toward the fire community or the
immaturity of some estimation approaches. The former is
evident in the fire suppression phase, because none of the
current Earth observing systems provides enough spatial
and temporal resolution for operational fire detection. The
latter is clear in some critical fire products, such as fuel type
maps that require additional efforts to provide accurate
estimations of fuel spatial variability.

[38] Recent advances in image processing of medium and
low-resolution satellite data makes it possible to foresee the
operational use of those data very close. This is the case, for
instance of the burn scar mapping, which is already under-
taken in some countries. Discrimination of burn severity
requires more research, to tackle the different effects of fire
damages on postfire reflectance, especially when forest is
stratified in different vertical layers. Water content of fuels
is also close to being operationally estimated, although more
problems are expected when water needs to be computed as
a function of dry weight and not of leaf areca. The growing
availability of data from new sensors, such as Lidar or
interferometric radar may also solve the current problems
with fuel type maps.

[39] Most fire scientists recognize the need of more
updated and more accurate spatial information to improve
current decisions for prefire planning and postfire mitiga-
tion. Most environmental decision makers acknowledge the
importance of fire for atmospheric, hydrological, edapho-
logical and vegetation management. New Earth Observation
missions should tackle current technical limitations of
available sensors if we intend to use remotely sensed data
operationally. Additionally, we should maintain the effort of
providing validated products that are properly integrated
with other sources of information for comprehensive fire
risk and fire effects assessment.
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