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The recent availability of high spatial and temporal resolution (HSTR) remote sensing data (Formosat-2, and
future missions of Venμs and Sentinel-2) offers new opportunities for crop monitoring. In this context, we
investigated the perspective offered by coupling a simple algorithm for yield estimate (SAFY)with the Formosat-2
data to estimate crop production over large areas. With a limited number of input parameters, the SAFY model
enables the simulation of time series of green area index (GAI) and dry aboveground biomass (DAM). From 2006
to 2009, 95 Formosat-2 images (8 m, 1 day revisit) were acquired for a 24×24 km² area southwest of Toulouse,
France. This study focused on two summer crops: irrigatedmaize (Zea mays) and sunflower (Helianthus annuus).
Green area index (GAI) time serieswere deduced fromFormosat-2NDVI time series andwere used to calibrate six
major parameters of the SAFY model. Four of those parameters (partition-to-leaf and senescence function
parameters) were calibrated per crop type based on the very dense 2006 Formosat-2 data set. The retrieved
values of these parameters were consistent with the in situ observations and a literature review. Two of themajor
parameters of the SAFYmodel (emergenceday and effective light-use efficiency)were calibrated perfield relative
to crop management practices. The estimated effective light-use efficiency values highlighted the distinction
between the C4 (maize) and C3 (sunflower) plants, and were linked to the reduction of the photosynthesis rate
due to water stress. The model was able to reproduce a large set of GAI temporal shapes, which were related to
various phenological behaviours and to crop type. The biomass was well estimated (relative error of 28%),
especially considering that biomass measurements were not used for the calibration. The grain yields were also
simulated using harvest index coefficients and were compared with grain yield statistics from the French
Agricultural Statistics for the department of Haute-Garonne. The inter-annual variation in the simulated grain
yields of sunflowerwas consistentwith the reported variation. Formaize, significant discrepancieswere observed
with the reported statistics.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Soil carbon sequestration has been identified by the Intergovern-
mental Panel on Climate Change as one of the options for the
mitigation of greenhouse gases (Hutchinson et al., 2004). Agricultural
lands cover approximately 35% of the land surfaces and through
photosynthesis and biomass production, agriculture can act as carbon
sinks (Ceschia et al., 2010; Kutsch et al., 2010). However, many
factors impact photosynthesis, including crop type, crop management
practices, soil properties and climate. Thus, crop production is highly
variable in both space and time. This variability should be quantified
to improve the management of agricultural lands and to refine
regional carbon balance estimates.
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Land surfaces have been studied formany years using remote sensing
reflectances and vegetation indices (Asrar et al., 1984; Baret & Guyot,
1991; Basso et al., 2001; Bastiaanssen et al., 2000; Duchemin et al.,
2008a; Faivre et al., 2004;Moulin et al., 1998; Pinter et al., 2003; Scotford
& Miller, 2005). Crop fields of South-West of France are often of small
size and they experience high temporal dynamics due to plant growth
and management practices (soil tillage, sowing, irrigation and harvest).
Remote sensing satellites providing high frequency observations at a
high spatial resolution are thus well designed to monitor cropping
systems. Until recently, high spatial and temporal resolutions have not
been attainable because of technological limitations. Currently, the
Formosat-2 Taiwanese satellite has the unique capability of taking daily
images at 8 m spatial resolutionwith a constant viewing angle (Chern et
al., 2006). The high temporal resolution of the monodirectional
Formosat-2 data allows the acquisition of very accurate surface re-
flectances and vegetation indices time series (Hagolle et al., 2008, 2010).

Previously, only a small number of agro-meteorological studies have
been performed using both high spatial and temporal resolution images
ass estimation in southwest France using high spatial and temporal
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with constant viewing angles such as Formosat-2 data. Duchemin et al.
(2008a) have presented a preliminary evidence of the usefulness of
such data for land use mapping and agricultural water management for
wheat crops in Morocco. Numerous studies (Bsaibes et al., 2009;
Courault et al., 2008; Fieuzal et al., 2011; Hadria et al., 2010) have
shown its utility for capturing the spatiotemporal variability of two key
biophysical variables: albedo and green leaf area index. Hadria et al.
(2009) have demonstrated the convenience of this type of data for the
detection of agricultural operations such as ploughing or irrigation at
the beginning of the cropping season. In this study, we analysed the
potential for the use of high spatial and temporal resolution images to
provide regular estimates of crop production over large areas. We used
Formosat-2 data in combination with a simple algorithm for yield
estimate (SAFY, Duchemin et al., 2008b).

Crop models were originally designed to simulate crop growth on
agricultural fields where soil, climate and agricultural practices were
well known and spatially homogeneous. They have been used in a
wide range of agro-environmental issues. However, the application of
crop models over large areas is still challenging because the soil
properties, the climatic variables and the agricultural practices are
highly variable in space and time (Boote et al., 1996; Faivre et al.,
2004; Moulin et al., 1998; Wit de et al., 2005). In confronting this
challenge, we have distinguished three categories of crop models:

i) Complex models that simulate a large set of agro-environmental
variables through the description of numerous coupled pheno-
logical and physiological processes, such as photosynthesis,
respiration, evapotranspiration and nitrogen uptake (e.g., AFRC-
WHEAT2, CERES, Sirius, SUCROS2, STICS, SWHEAT, see Jamieson
et al., 1998 and Brisson et al., 2003 for reviews). These models
require a large number of parameters and input data. This
information may be available during scientific experiments, or it
may be available from some farmers at a local scale, but it is
generally not available over large areas.

ii) In contrast, very simple models calculate biomass as an
empirical sum of vegetation indices derived from remote
sensing observations (Dong et al., 2003; Tucker & Sellers,
1986; Wessels et al., 2006). These models are all based on the
light-use efficiency (LUE) theory (Monteith, 1977). These
models are uncomplicated to parameterise over large areas
using time series of remote sensing data with low spatial
resolution data acquired at 10-day or monthly intervals. They
provide estimates of net primary production for natural
ecosystems such as forests (e.g., Dong et al., 2003) or
grasslands (e.g., Loseen et al., 1995; Prince, 1991; Tucker et
al., 1983; Wylie et al., 1991). However, these models appear
less suited for crop monitoring because they do not accurately
account for crop type and management (Faivre et al., 2004).

iii) The third category of crop models gathers the descriptions of
the main biophysical processes (biomass accumulation, leaf
partition, leaf senescence,…) and empirical parameterisations.
These models combine the LUE theory with a simulation of the
successive plant phenological stages. This semi-empirical
approach, in which the number of formalisms and parameters
is limited, enables studies over larger areas. Maas (1993) has
demonstrated the value of such a model for simulating time
series of leaf area index and dry aboveground biomass for
maize and wheat crops. Lobell et al. (2003) and Liu et al.
(2010), who worked on the combination of such semi-
empirical models and remote sensing data, have underlined
the need for high temporal and spatial resolution satellite data
to improve model predictions.

The SAFY model (Duchemin et al., 2008b) belongs to this third
category of semi-empirical models. It was specifically designed for
large-scale studies because it describes the main biophysical processes
using climatic data. Previous studies have shown that the SAFY model,
Please cite this article as: Claverie, M., et al., Maize and sunflower biom
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once calibrated with green leaf area index time series, resulted in
accurate estimates of dry aboveground biomass for irrigated wheat
cultivated in semi-arid regions (Duchemin et al., 2008a; Fieuzal et al.,
2011; Hadria et al., 2009).

The objective of this study was to evaluate the coupling between
high spatial and temporal resolutions remote sensing data with a
simple crop model to estimate crop production at regional scale. An
example is shown using Formosat-2 images combined with the SAFY
model applied to sunflower (Helianthus annuus) and maize (Zea
mays) in southwest France. The experiment was performed during
four successive agricultural seasons (2006–2009) with a focus on
maize and sunflower crops, which are the two dominant summer
crops cultivated in the southwest of France. Time series of Formosat-2
observations were used to calibrate parameters of the SAFY model
over a region covering approximately 600 km2. Evaluation of the
model used an in situ data set collected from 2006 to 2009 and
regional grain yield statistics.

2. Materials and methods

2.1. Study area

The study area is a 24×24 km2 area located near Toulouse, in
southwest France (1°10′ E, 43°27′ N, Fig. 1). The climate is temperate
continental with hot (daily mean temperature approximately 22.5 °C)
and dry (38 mm/month of rainfall) summers. Arable lands cover up to
60% of the study area, of which 40% is cultivated during summer,
predominantly with irrigated maize (grain and silage) and sunflower
crops. The southeastern and thewestern parts of the study area are hilly
landscapes with small fields (approximately 10 ha); the centre of the
study area, near the Garonne River, is nearly flat with larger fields
(approximately 25 ha).

In the study area, maize fields are sown from mid-April to
beginning of June, and last until September–October. Most of maize
fields are irrigated during hottest month (July and August). Sunflower
fields are sown from end of March to end of June and are mainly non-
irrigated.

2.2. Field data

The study was performed during from 2006 to 2009 on maize and
sunflower crops. Four types of in situ data were measured: the dry
aboveground biomass (DAM), the specific leaf area (SLA), the green
area index (GAI) and the fraction of absorbed photosynthetically
active radiation (FAPAR). The DAM and the SLA were estimated with
a destructive method. The GAI and the FAPAR were estimated from
hemispherical photographs.

The main characteristics of the field measurements are shown in
Fig. 1 and Table 1. Two protocols were used to collect the data:

(i) Transect sampling protocol: the measurements of DAM were
performed from 2006 to 2008 along two transects crossing the field.
This protocol was applied in two fields belonging to the CarboEurope-
IP Regional experiment (Dolman et al., 2006). These two fields are
hereafter referred to as “Lamothe” and “Auradé”. They belong to an
experimental farmmanaged by the Purpan Engineering School and to
a farmers association (http://www.agriculteurs-aurade.fr/). Thirty
plants were harvested 6 to 9 times per growing season (Table 1).
For each plant, leaf biomasses were measured independently and leaf
areas were measured using a planimeter (Licor 3100 Lincoln Inc.,
Nebraska) in order to derive the specific leaf area (SLA).

(ii) Elementary sampling unit (ESU) protocol: the measurements
of DAM, GAI and FAPAR were performed within a 20 m sided square
area. Eleven fields located near the “Lamothe” farm were sampled
(back squares in Fig. 1 and Table 1). These fields are hereafter referred
to as the ESU fields. The locations of the ESUs were recorded with a
GPS. GAI and FAPAR were measured in 2008 using digital
ass estimation in southwest France using high spatial and temporal
doi:10.1016/j.rse.2012.04.005
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Fig. 1. The study area as observed in a Formosat-2 image in July 2008. The areas where field data were collected are shown in a) and b) frames; the black symbols indicate the
locations of the elementary sampling units (11 ESUs near Lamothe), and the blue disks indicate the fields for which the farmers provided grain yield data (12 fields near Lamothe, 16
fields near Auradé). The so-called Lamothe (frame c) and Auradé (frame d) fields (delimited with black lines) are experimental fields that belong to the CarboEurope-IP
experiment; biomass measurements were performed along transects (in yellow). Black crosses indicate the SAFRAN meteorological grid. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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hemispherical photographs (DHPs). Each ESU was sampled with 13
DHPs applying the VALERI spatial sampling protocol (http://w3.
avignon.inra.fr/valeri). The in situ data were collected 7 to 10 times
during the growing season, yielding to 23 GAI and FAPAR estimations
for maize and 19 for sunflower (Table 1). The DAM was estimated
from 10 plants collected near the ESUs in 2008 and 2009, leading to
14 DAM estimations for maize and 11 for sunflower. In 2009, only one
biomass measurement was performed per ESU during the growing
season.

The concept of green area index (GAI, Baret et al., 2010)
corresponds to the photosynthetically active plant area without
organ distinctions. It is related to FAPAR and can be derived from
DHPs. In our study, the DHPs were taken with a Nikon CoolPix 8400
camera equipped with a FC-E8 fisheye lens. The camera was put at the
top of a pole to keep the viewing direction (looking downward) and
the canopy-to-sensor distance constant (~1.5 m) throughout the
growing season. This protocol allowed the reduction of errors in the
directional gap fraction estimates and thus in the FAPAR and GAI
Table 1
In situ measurements data description, including crop type, year of in situ
measurements, and number of data collected for GAI, FAPAR and DAM. The sampling
scheme is given in the two last columns: ESU (with the number of sampled field under
bracket) or transect (Lamothe and Auradé). GAI and FAPAR were estimated from
hemispherical photographs and DAM was estimated from destructive measurements.

Crop type Year GAI/FAPAR DAM

Maize 2006 Lamothe: 6
2008 ESU (3): 23 ESU (1): 9

Lamothe: 6
2009 ESU (5): 5

Sunflower 2007 Auradé: 7
2008 ESU (2): 19 ESU (2): 9
2009 ESU (2): 2

Please cite this article as: Claverie, M., et al., Maize and sunflower biom
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estimates (Demarez et al., 2008). The DHPwere processed using CAN-
EYE V5 (http://www4.paca.inra.fr/can-eye), which provides esti-
mates of the daily FAPAR and of the “effective” and “true” GAI
(Baret et al., 2010; Demarez et al., 2008). In this study, we used the
effective GAI (GAIeff,CAN-EYE), which is highly correlated with remote
sensing observations and the daily FAPAR (FAPARdaily,CAN-EYE).

In addition to these measurements, several farmers provided grain
yield estimates for maize (4 estimates) and sunflower (37 estimates)
for 12 fields located near Lamothe and for 16 fields located near
Auradé (blue disks in Fig. 1).

2.3. Meteorological data

Meteorological data were generated by the mesoscale atmospher-
ic analysis system SAFRAN, which is operational at Météo-France
(Durand et al., 1993). Among other variables, SAFRAN simulates air
temperature at 2 m above the ground (Ta), incoming global radiation
(Rg) and precipitation (P) based on a combination of measurements
(weather stations) and modelling. The data are available every 6 h
over a grid with an 8 km spatial resolution (plus symbols in Fig. 1).

The SAFRAN meteorological variable data were processed to
compute daily mean Ta and cumulated daily Rg and P for each
Fomosat-2 pixel (8 m) of the study area. The spatial oversampling
was performed using a bilinear spatial interpolation.

The evaluation performed by Quintana-Segui et al. (2008) all over
the France have shown that Rg (RRMSE=60%) and Ta (RRMSE=13%)
are accurately estimated by SAFRAN, while the accuracy of P was found
lower (RRMSE=100%), especially in mountainous areas.

The analysis of the meteorological variables over the Formosat-2
footprint revealed differences between the years. The driest and
hottest years were 2006 and 2009; the cumulated daily precipitation
for the summer growing season, from DoY (day of year) 125 to 250,
was 147 mm in 2006 and 152 mm in 2009, whereas it reached
ass estimation in southwest France using high spatial and temporal
doi:10.1016/j.rse.2012.04.005
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Fig. 3. Map of delimitation of Homogenous Unit (black lines). The background
corresponds to a Formosat-2 image in July 2008, displayed using a false colour composite.
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248 mm in 2008 and 273 mm in 2007. The cumulated air temperature
during the same period was approximately 2570 °C in 2006 and 2009
and approximately 2370 °C in 2007 and 2008.

2.4. Formosat-2 data

Formosat-2 is a high spatial (8 m) and temporal (daily revisit
time) resolution satellite with four spectral bands (488, 555, 650 and
830 nm) and a 24 km field of view (Chern et al., 2006). Formosat-2
takes images at a constant viewing angle. Ninety-five images were
taken of our study area from 2006 to 2009 (Fig. 2). In 2006, the
images were scheduled at a high priority level with a nominal time
step of 3 days. The 2006 data set contained 51 images, including 27
images that were almost totally cloud-free. After 2006, only images
with a cloud cover less than 20% were purchased. Thus, 14 images
were available in 2007, 11 images in 2008 and 19 in 2009. In 2008, no
cloud-free images were available from February 11 to June 19.

All of the Formosat-2 images were pre-processed for geometric,
radiometric and atmospheric corrections and the filtering of clouds and
shadows (Hagolle et al., 2008, 2010). This processing resulted in surface
reflectances images and associated cloud-masks. The absolute location
accuracy was 0.4 pixels, i.e., 3.2 m (Baillarin et al., 2008), which is quite
satisfactory with respect to both the field and ESU sizes.

2.5. Land cover

Maize and sunflowerwere identified using classification and segmen-
tation methods applied to Formosat-2 surface reflectances images. This
processing was performed each year using all images acquired from
January to December. The classification method was performed using a
fuzzy contextual algorithmof the Iterative ConditionalMode type based
on a Markovian model (Idbraim, 2009). The segmentation algorithm
was based on a watershed method (Fjortoft et al., 1999) and leaded to
homogenous units (called HU hereafter), corresponding to homoge-
nous radiometric zones. The parameters used for the segmentation
were chosen such that the agricultural fields were split in the case of
high intra-field variability. As a result, an agriculturalfield corresponded
to one or several HU (see Fig. 3). Only HU larger than 640 m2 (10
Formosat-2 pixels) and covered by aminimumof 80% of eithermaize or
sunflower pixels were considered in this study.

Each year, this processing provided 40 land use classes, from
which maize (grain and silage) and sunflower were extracted. The
analysis of the mapped HU showed that:

(i) Sunflower and maize crops covered approximately 21% of the
study area.

(ii) Maize was primarily cultivated in the centre of the Formosat-2
images, near the Garonne River. It covered approximately
7700 ha in 2006, 6500 ha in 2007, 7400 ha in 2008 and 6600 ha
in 2009. The maize crops were segmented into HU of 2 ha on
average. Approximately 95% of these HU were identified as
grain maize, the remaining 5% being silage maize.
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(ii) Sunflower was cultivated throughout the study area and was
dominant over the hill landscapes at the eastern and western
part of the study area. Sunflower crops covered approximately
6300 ha in 2006, 5100 ha in 2007, 7200 ha in 2008 and 7200 ha
in 2009. Sunflower was segmented into smaller HU than maize
of approximately 0.7 ha on average. This was expected as
sunflower crops were not irrigated and were often cultivated
on hills. Thus, these crops exhibited a higher intra-field
variability due to the variation in soil properties and water
availability.

2.6. Time series of Green Area Index (GAI)

Many studies have demonstrated the link between spectral
vegetation indices (e.g., NDVI, SAVI and EVI) derived from remote
sensing observations and the green leaf area index (e.g., Colombo et
al., 2003; Duchemin et al., 2006; Myneni & Williams, 1994; Walthall
et al., 2004; Weiss et al., 2002). In our study, the green area index
(GAIeff,F2) was estimated from the Formosat-2 images using the NDVI
and the following exponential relationship (Eq. (1)):

GAIeff ;F2¼ k1 × ek2�NDVI�k3 ð1Þ

The coefficients of Eq. (1) were estimated using theminimisation of
the root mean square error (RMSE) between GAIeff,CAN-EYE estimated
from the DHPs from the ESUs and GAIeff,F2 estimated from Eq. (1). The
GAIeff,CAN-EYE measurements taken more than 4 days after or before the
Formosat-2 acquisitions were eliminated from the data set. The NDVI-
GAIeff,CAN-EYE scatterplot is presented in Fig. 4. A single relationship (the
black line in Fig. 4) was used for both crops (coefficients k1=0.35,
k2=2.86, k3=0.24 in Eq. (1)). The RMSE between GAIeff,CAN-EYE and
GAIeff,F2 was equal to 0.38 m2.m−2 and the relative RMSE (RRMSE) was
equal to 20%. The formulation of the equation differed from more
commonly used logarithmic formulation. Nevertheless, the current
formulation fitted correctly with the in situ measurements of effective
GAI. With the current set of coefficients, the GAI estimate could not
2007 2008

f cloud-free and shadow-free pixels. Thick black lines represent the standard summer

ass estimation in southwest France using high spatial and temporal
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Table 2
List of the SAFY input parameters and initial values estimated from the literature for εC,
Tmin, Topt, Tmax, β and DAM0, from measurements of Kext and SLA from the calibration
procedure for the crop specific (Pla, Plb, Rs, Stt) and field specific (D0, ELUE)
parameters.

Parameter type
and name

Notation Unit Range Grain
maize

Silage
maize

Sunflower

Constant (literature)
Climatic efficiency εC – 0.48a 0.48a 0.48a

Initial dry
aboveground mass

DAM0 g.m−2 4.2 4.2 6.9

Temperature for
growth [minimal,
optimal, maximal]

Tmin,
Topt, Tmax

°C [8 30
45]b

[8 30
45]b

[8 28.5
42]c

Polynomial degree β – 2 2 3
Constant (measured)
Light-interception
coefficient

Kext – 0.63 0.63 0.63

Specific leaf area SLA m2.g−1 0.024 0.024 0.012
Calibrated
(crop-specific)

Partition-to-leaf
function: par a

Pla – [0.05
0.5]

0.35 0.34 0.13

Partition-to-leaf
function: par b

Plb – [10−5

10−2]
0.0026 0.0027 0.0033

Rate of senescence Rs °C.day [0 105] 7410 457 5787
Temperature sum for
senescence

Stt °C [0
2000]

1028 1002 713

Calibrated
(field-specific)

Day of
plant emergence

D0 DoY [90
250]

Effective light-use
efficiency

ELUE g.MJ−1 [0.5 6]

a Varlet-Grancher et al. (1982).
b Drouet and Pages (2003).
c Stics website (http://www.avignon.inra.fr/agroclim_stics/).
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exceed 5.9 m2.m−2, whichwas sufficient as it corresponded to effective
GAI.

This relationship was then applied to all Formosat-2 pixels. This
processing resulted in a time series of effective Formosat-2 GAI
(called hereinafter GAIF2), which were spatially averaged over the HU
labelled as maize (silage or grain) and sunflower. During the
calculation, all of the data with cloudy or shadowed pixels were
excluded.

2.7. Calibration of the SAFY model

The simple algorithm for yield estimates (SAFY) is a daily time step
model that simulates time series of leaf area index anddry aboveground
biomass from the air temperature and the global incoming radiation. An
overview of the model is provided in Appendix A; a full description is
available in Duchemin, Maisongrande, Boulet and Benhadj (2008).

The model was parameterised for each HU labelled as maize
(silage or grain) or sunflower using meteorological data derived from
SAFRAN. The thirteen parameters of the SAFY model are listed in
Table 2. Initial values were put based on a literature review and field
measurements for eight parameter and the six major parameters,
identified by Duchemin, Maisongrande, Boulet and Benhadj (2008),
were calibrated using time series of green area index derived from
Formosat-2 images (GAIF2).

2.7.1. Calibration of parameters through literature review and field
measurements

The common value of 0.48 was used for the climatic efficiency
(Varlet-Grancher et al., 1982). As in Duchemin et al. (2008b), the
initial dry aboveground biomass was set arbitrarily to correspond
with a GAI of 0.1 m2.m−2.

The three critical temperature values (Tmin, Tmax, Topt, Eq. (3) in
Appendix A) and the degree of the polynomial function (β) that
defines the stress temperature function for each crop were obtained
from Drouet and Pages (2003) and from the STICS website (http://
www.avignon.inra.fr/agroclim_stics/).

The light-extinction coefficient (kext) was computed by inverting
Beer's law (Eq. (5) in Appendix A) using the fraction of absorbed
photosynthetically active radiation (FAPARdaily,CAN-EYE) and the effec-
tive green area index (GAIeff,CAN-EYE) from CAN-EYE. The specific leaf
area (SLA) were estimated frommeasurements of leaf biomass and leaf
area done at Lamothe in 2006 (maize) and at Auradé in 2007
(sunflower). Only measurements before the maximum GAI were
considerate.
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2.7.2. Calibration of parameters based on remote sensing data
The remaining parameters (Pla, Plb, Stt, Rs, D0 and ELUE) were all

retrieved using GAIF2 time series derived from Formosat-2 images. To
limit compensation during the optimisation procedure (see Duchemin
et al., 2008b), we classified the parameters in two groups: crop-specific
and field-specific parameters. Two corresponding phases were used for
the calibration. The methodology of the calibration is described in the
Fig. 5. The four crop specific parameters (Pla, Plb, Stt, Rs), which
constrain the shape of the GAIF2 time course, were calibrated, on phase
1, separately for sunflower, grain maize and silage maize. The two field
specific parameters (D0 and ELUE) were calibrated, on phase 2, for each
HU.

Prior to the calibration procedure, a delimitation of the growing
period was needed (Fig. 6). The day of maximum GAIF2 (DoY 218 in
Fig. 6) was first identified. Then, the algorithm seeks backward and
forward from this day to determine the starting (DoY 156 in Fig. 6)
and ending (DoY 288 in Fig. 6) of the growing period. The GAIF2
values that did not belong to the identified growing period were
excluded (plus symbols in Fig. 6).

The calibration of SAFY was then performed by minimising the
Root Mean Square Error (RMSE) between the “cleaned” GAIF2 time
series and the GAI simulated by SAFY. The minimisation procedure
was based on an adapted version of the simplex method (Lagarias et
al., 1998), which was run 50 times with a random determination of
initial values to avoid stops in local minima. Intervals of acceptable
values were defined for each parameter (Table 2). These intervals
were constant for all of the parameters except the date of emergence,
for which the interval was established independently for each HU to
plus or minus 20 days around the start of the growing period.

The crop-specific parameters were estimated, on phase 1 of the
calibration (see Fig. 5), using the 2006 Formosat-2 data set. This data
set was preferred as it contained a high number of images regularly
distributed during the whole growing season. This lead to 6032 GAIF2
ass estimation in southwest France using high spatial and temporal
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time series computed from the HU. Depending on the HU, 18 to 28
cloud-free images were available from May to September. HU with
maximum GAIF2 less than 1 m2.m−2 or that lead to RMSE superior to
0.38 m2.m−2 were not kept in our analysis as they were considered
to be incorrectly classified. However, an important set (5721) of crop-
specific parameters (Pla, Plb, Stt, Rs) was available for each crop: 1980
for grain maize, 97 for silage maize and 3644 for sunflower. A median
value was then computed for each crop and used on phase 2 of the
calibration (see Fig. 5) to estimate the field-specific parameters (D0

and ELUE). They were estimated per year and per different spatial
units (fields, transect and ESU) to allow comparison with in situ data.
The minimisation procedure of phase 2 was based on a regular
simplex method because there is no compensation between these
two parameters (Duchemin et al., 2008b).

3. Results and discussion

In this section, results of the calibration and the validation are
discussed. The two parameters, estimated from in situ measurements
0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

3.5
Growing period

GAI
max

GAI
min

GAI
min

GAImin+ 0.1
GAImin+ 0.1

G
A

I [
m

2 .
m

−
2 ]

DoY

endbegin
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are first discussed. The parameters, estimated from the GAIF2 are then
described: crop-specific (Pla, Plb, Stt and Rs) and field-specific (ELUE
and D0). Finally, the validations at local and regional scales are
described in the two last sections.
3.1. Light-extinction coefficient and Specific Leaf Area

Fig. 7 displays the relationship between the fraction of absorbed
photosynthetically active radiation (FAPARdaily,CAN-EYE) and the effec-
tive green area index (GAIeff,CAN-EYE). A single relationship was used for
both crops. The best agreement was obtained using a light-extinction
coefficient (Kext) of 0.63 (see Eq. (5) in Appendix A). The RMSE between
FAPAR derived from this relationship and FAPARdaily,CAN-EYE was 0.033.

The relationship between the leaf area and leaf mass is displayed
in Fig. 8. These two variables were linearly related. SLA values
corresponding to the slopes of the relationships (Fig. 8) were used in
the SAFY simulations: 0.012 m2.g−1 for sunflower and 0.024 m2.g−1

for maize.
0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FAPAR = 1 − e−0.63 × GAI

RMSE = 0.047

F
A

P
A

R
C

A
N

−
E

Y
E

,d
ai

ly

GAICAN−EYE,eff [m
2.m−2]

Fig. 7. Relationship between the daily fraction of absorbed photosynthetically active
radiation (FAPARdaily,CAN-EYE) and effective green area index (GAIeff,CAN-EYE) derived
from the hemispherical photographs. Pluses and circles indicate maize and sunflower
crops, respectively.

ass estimation in southwest France using high spatial and temporal
doi:10.1016/j.rse.2012.04.005

http://dx.doi.org/10.1016/j.rse.2012.04.005


0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Leaf Mass [g]

Le
af

 A
re

a 
[m

2 ]

Maize       : LA = 0.024 × LM
Sunflower : LA = 0.012 × LM

Fig. 8. Relationship between leaf area (LA) and leaf mass (LM) estimated from
destructive measurements. Pluses and circles indicate maize and sunflower crops,
respectively. The slopes of the solid lines correspond to the SLA (m2.g−1) values.

7M. Claverie et al. / Remote Sensing of Environment xxx (2012) xxx–xxx
3.2. Crop-specific parameters

Fig. 9 shows the box and whiskers plots of the distributions of the
crop specific parameters (Pla, Plb, Stt and Rs) for maize (grain: M and
silage: SM) and sunflower (SF) based on phase 1 of the calibration
applied on the 5721 HU of the 2006 Formosat-2 data set. Their
median values are reported in Table 2 and the distributions appeared
very scattered. As previously suggested by Duchemin et al. (2008b),
part of this scattering may be due to parameter compensations
occurring during the minimisation procedure. The parameters
appeared more scattered for sunflower than for maize likely because
sunflower crops, that are not irrigated, are muchmore sensitive to the
spatial distribution of rainfall and to soil water content than maize.
They thus exhibited larger variations in the GAIF2 time series.

“Typical”maize (grain and silage) and sunflower GAIF2 time series
computed from three HU of the 2006 Formosat-2 data set are plotted
on Fig. 10. The analysis of Figs. 9, 10 and Table 2 revealed that
significant information could be derived from the distributions of the
crop specific parameters:
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Fig. 9. Distributions of crop-specific parameters of maize (grain: M and Silage: SM) and su
Formosat-2 data set (1980 for grain maize, 97 for silage maize and 3644 for sunflower). Low
from each end of the boxes) show the extent of the rest of the data, excluding outliers (no
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(i) The dry aboveground biomass allocated to the leaf at plant
emergence (1−Pla) was 65% for grain maize, 66% for silage
maize and 84% for sunflower (Fig. 9). These values were
consistentwith the ratios of the leafmass to the dry aboveground
biomass derived from in situ measurements at the beginning of
the agricultural season, which were 75% for maize (Lamothe in
2006) and 83% for sunflower (Auradé in 2007).

(ii) No significant difference was observed between the grain and
silage parameters, except the rate of senescence (Rs in
Table 2), which was approximately 15 times higher for silage
maize. This very high rate of senescence for silage maize
corresponded with the sudden drop of GAIF2 due to harvesting
as illustrated in Fig. 10. Silage maize is used to feed animals and
thus it is harvested earlier than grain maize, when grain
humidity reaches 80%.

(iii) Senescence began earlier for sunflower than for maize. The
threshold of cumulated temperature to initiate senescence was
estimated to be 70% lower for sunflower than for maize (Stt in
Table 2). This difference is well illustrated in the GAIF2 time
series (Fig. 10) and was previously shown by Andrade (1995).

3.3. Field specific parameters

The cumulated distribution of the effective light-use efficiency
(ELUE) and the emergence dates (D0) estimated for the sunflower
and maize crops of the Formosat-2 footprint are presented in Fig. 11
(a to d). Numbers of HU used to compute the cumulated distribution
are shown in the Fig. 11 (a and b). The cumulated distributions of the
maximum GAI (GAImax), the rainfall and the temperature stress factor
are also plotted (Fig. 11 e to j). The rainfall was cumulated from
30 days before emergence to senescence. The temperature stress
factor corresponds to the average of the FT function (Eq. (3) in
Appendix A) from emergence to senescence.

The median value of the ELUE averaged over the four years was
3.3 g.MJ−1 for maize (Fig. 11a) and 2.0 g.MJ−1 for sunflower (Fig. 11b).
The SAFY model thus appeared adequate to reproduce the basic
difference in photosynthetic rate between maize (C4 plant) and
sunflower (C3 plant). The ELUE values for sunflower increased from
2006 to 2008 in relation with increasing values of GAImax (Fig. 11f). A
similar positive correlationwas observed between themedian values of
cumulated rainfall (Fig. 11g) and GAImax. This reveals that the lack of
rainfall, inducingwater stresses, reduced the GAImax values leading thus
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to low ELUE values. In contrast, the maize inter-annual variation of
GAImax and thus ELUE were not related to the rainfall. This is consistent
as maize is irrigated to avoid water stress. On the contrary, GAImax

values of maize are more related to temperature stresses factor (FT,
Fig. 11i). Two groups were highlighted: 2006/2009 (high FT and high
GAImax) and 2007/2008 (low FT and low GAImax). In 2009, the GAImax

(Fig. 11e) values were similar to those of 2006 despite lowers
temperatures inducing higher temperature stress factors (Fig. 11i).
However, the ELUE values were higher in 2009. Indeed, as GAI values
were similar in 2009 and 2006, the calibration procedure lead to highest
a

c

e

g

i

Fig. 11. Cumulative distribution function (CDF) of ELUE (a and b), D0 (c and d) and maximum
in 2006 (black), 2007 (red), 2008 (green) and 2009 (blue) over the whole Formosat-2 footp
the senescence. The mean temperature stress (i and j) was cumulated from emergence
interpretation of the references to color in this figure legend, the reader is referred to the w
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ELUE values in 2009 (Fig. 11a) to compensate the limiting effect of low
temperatures. The same trendwas observedwhen comparing 2007 and
2008. These results revealed that: (i) the GAImax and ELUE seem to be a
good indicator of water stresses for non-irrigated sunflower; (ii) the
combination ELUE/ GAImax seem to be a good indicator of temperature
stresses for irrigated maize.

The emergence dates (D0) were also significantly different between
maize (Fig. 11c) and sunflower (Fig. 11d). For maize, the median value
was stable over the years and was approximately 164 (June, 13). The
plant emergence always occurred within a limited time period; each
b

d

f

h

j

GAI (GAImax, e and f) simulated for maize (left column) and sunflower (right column)
rint. The rainfall (g and h) was cumulated from 30 days before emergence to the start of
to the start of the senescence. The amount of data used is shown in a and b. (For
eb version of this article.)
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year, 90% of all of the D0 values were within +/−15 days of the annual
median value. For sunflower, D0 was more variable and 90% of the D0

values were within +/−45 days of the annual median value. This was
consistent with the crop managements as maize is irrigated contrary to
sunflower. Sunflower crops are thus more sensitive to rainfall
occurrences and soil properties leading to higher spatial and temporal
variability.

3.4. Evaluation of the simulated GAI and DAM time series at local scale

Aquantitative evaluation of themodel was performed by comparing
the dry aboveground biomass (DAM) simulated by SAFY with those
estimated from field measurements. The spatial pattern used for the
validation corresponded to the pixels of the footprint of in situ data:
transect, ESU and field. The model was calibrated using the GAIF2 time
series averaged over the pixels that encompassed transects (sunflower
at Auradé in 2007 and maize at Lamothe in 2006 and 2008), over a
3×3 pixel window centred on the ESUs (2008 and 2009) or over the
pixels that encompassed fields where grain yields were collected. The
Fig. 13. Hemispherical photographs taken in 2008 on July 17 (A) an
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GAIF2 and DAM time series from 2006 to 2008 resulting from this
processing are displayed in Fig. 12.

The analysis of the simulated GAI time series confirmed that the
SAFY model was able, after calibration, to reproduce the large set of
GAIF2 time series. The maximum GAIF2 values of maize were quite low
(b3.5 m2.m−2), which is expected as effective values are proven to
underestimate destructive values. This underestimation could reach
30% for themaize and 16% for the sunflower as shown by Demarez et al.
(2008). The continuous GAI increase during leaf growth appeared to be
accurately reproduced for all of the crops. The difference observed in the
time duration of maximal GAI between the sunflower and the maize is
also well reproduced. Finally, the GAI decrease during the senescence
period was correctly simulated for all crops except for the sunflower
crop in 2008 (case 6, Fig. 12); the observed sudden decrease was not
simulated by the SAFY model. Hemispherical photographs (Fig. 13)
taken in 2008 on July 17 and 24 (referred to as A and B in Fig. 12)
revealed that the NDVI and GAI decrease corresponded with flowering.

The temporal dynamics of DAM were correctly reproduced in
most of cases. Most of the simulated values ranged within the
d July 24 (B) over the ESUs corresponding to case 6 of Fig. 12.
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averages plus or minus the standard deviation of the field measure-
ments. However, some discrepancies were noted:

(i) In 2008, themaximumDAMproduced by the grainmaize (case 3,
Fig. 12) was underestimated by approximately 29% in relative terms.
The deviation may be explained by the lack of consideration of an
increase of the light use efficiency (LUE) allocated to shoot biomass at
the end of the cycle, due to the cessation of root growth. At the opposite,
the simulated LUE (FT×ELUE) decreases from September as the air
temperature decreases, suggesting that FT is overestimated. If FT is
removed, the maximum DAM would be underestimated by approxi-
mately 17% in relative terms.

(ii) Contrary to the maize, the maximum DAM produced by
sunflower (cases 4 and 6 in Fig. 12) were overestimated. Themaximum
dry aboveground biomass was unfortunately not measured for case 5.
Recent work by Lecoeur et al. (2011) performed with similar sunflower
varieties showed that ELUE decreases from the flowering phase,
probably in favour of lipids production. The slight decrease in DAM
observed before senescence in the measured biomass was due to
measurement errors.

The global comparison between simulated andmeasured DAM from
2006 to 2009 is presented on Fig. 14 and Table 3. There is a good
agreement between simulations and field measurements, with a high
correlation (r²=0.92, p-valueb0.001), almost no bias (− 0.02 kg.m−2)
and an error (RMSE) of 0.21 kg.m−2. The correlation is higher for silage
maize (r²=0.96; RRMSE=11%) than for grain maize (r²=0.86;
RRMSE=26%) and sunflower (r²=0.78; RRMSE=39%). The global
accuracy of simulations (RRMSE=28% on Fig. 14) was satisfactory
considering that the most sensitive parameters of the model were only
Table 3
Statistics derived from the comparison of the SAFY simulated and the measured dry
aboveground mass (DAM).

Maize Sunflower All crops

N 26 18 44
RMSE (kg.m−2) 0.252 0.145 0.215
RRMSE (%) 24.67 39.11 28.44
Bias (kg.m−2) −0.070 0.049 −0.021
r² 0.91 0.78 0.92
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calibrated with remote sensing observations. This accuracy was
comparable to that of studies using more complex models with a
large in situ data set. They found accuracy of 14% and 32% for maize
using SWATRER-SUCROS and CERES (Xevi et al., 1996), 16% using STICS
(Brisson et al., 2002) and 23% using EPIC (Cabelguenne et al., 1999). An
accuracy of 21%was found for sunflower using EPIC (Cabelguenne et al.,
1999).

The SAFY model was also run for fields for which farmers provided
grain yields. The in situ grain yields were compared with the
maximum simulated DAM (Fig. 15). The data for sunflower were
highly scattered. This was partially due to the overestimations of the
SAFY biomass and partially due to uncertainties in the in situ grain
yields. For maize, too few measurements were available to exhibit a
trend. Despite these limitations, a mean harvest index (HI) was
computed for each crop as the ratio of in situ grain yields to the
maximum DAM. This index was 0.48 for grain maize and 0.25 for
sunflower. The HI calculated for maize appeared consistent with
those from previous experimental or modelling studies; Cabelguenne
et al. (1999) reported a value of 0.5. Due to the SAFY biomass
overestimation, the HI calculated for sunflower was very low
compared with the in situ values given by Casadebaig (2008),
which varied between 0.35 and 0.45.
3.5. Evaluation of the simulated DAM and grain yield over the Formosat-
2 footprint

The distributions of the maximum aerial dry biomass (DAMmax)
estimated over the whole Formosat-2 footprint are presented in
Fig. 16. For sunflower, the maximum DAM values (Fig. 16b) were
reached during the wettest year (2008, Fig. 11h). In 2007, despite the
strong rainfall, the DAMmax values were not as high as in 2008. In
2007, we noticed that the period of emergence was quite long, up to
200 days (Fig. 11d). This was due to heavy rains during the spring,
which limited plant emergence, particularly in clay soils, and thus
limited the crop production. For maize, the highest maximum DAM
values were reached during the hottest years (Fig. 11i).
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Maize        : yield = 0.48 × DAM
max
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Fig. 15. Relationship between simulated maximum dry aboveground mass (DAMmax)
and grain yields in 2006, 2007 and 2008, provided by farmers for 28 maize (+) and
sunflower (o) crops. The slopes of the dashed lines correspond to the mean harvest
index.
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The DAMmax values averaged over four years were equal to
approximately 19.5 t.ha−1 for maize and 9.6 t.ha−1 for sunflower.
The grain yields calculated from these averaged DAMmax values using
the harvest index previously estimated (0.48 for maize and 0.25 for
sunflower) were 10.1 t.ha−1 for maize and 2.4 t.ha−1 for sunflower
and were in agreement with the values given by the French
Agricultural Statistics for the whole department of Haute-Garonne,
which were 10.2 t.ha−1 for maize and 2.3 t.ha−1 for sunflower
(Fig. 17, Agreste, 2011). The accuracy of the sunflower grain yield
estimation was due to compensation between the overestimated
biomass and the underestimated harvest index. Nevertheless, the
inter-annual variations of the estimated sunflower grain yields were
highly correlated with the reported statistics (r=0.97, p-valueb0.03,
Fig. 17). The lowest simulated grain yields were found in 2006 which
was the driest year (Fig. 11h) like in the reported statistics; the
highest simulated grain yields were found in 2008 which was the
wettest year like in the reported statistics.

In contrast with sunflower, the inter-annual variation in the maize
grain yields did not match the reported grain yield statistics (r=
−0.81, Fig. 17). The lowest simulated grain yields were found in
2008, which was the year with the highest reported grain yields. The
highest simulated grain yields were estimated for 2009, which had
the lowest reported grain yields. As discussed previously, there was a
clear effect of temperature on maize leaf and biomass production. We
may notice that the reported statistics are given for the entire
department of Haute-Garonne, which covers an area much larger
than the Formosat-2 footprint. In contrast with the sunflower crops,
which are mainly located in the northern part of the department, the
maize crops are distributed throughout the department, which
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exhibits a strong spatial gradient in air temperatures. The mean air
temperatures were cumulated during the growing period using the
SAFRAN data. They varied from 2419 °C (in 2007) to 2646 °C (in
2006) in the northern part of the department and from 2001 °C (in
2007) to 2202 °C (in 2006) in the southern part of the department.
The differences observed in cumulative temperature between the
northern and the southern part of the department could reach 400 °C.
The Formosat-2 footprint was located in the northern part of the
department with a cumulative air temperature varying from 2353 °C
(in 2007) to 2600 °C (in 2006). Thus, the SAFY simulations performed
over the maize crops were considered to not be representative of the
entire department of Haute-Garonne and thus unfortunately not
comparable with the reported statistics.

4. Conclusion

In this study, we evaluated the combined use of high spatial and
temporal resolutions remote sensing data and a simple crop model to
estimate maize and sunflower crops production. A semi-empirical
crop model (SAFY, Duchemin et al., 2008b) was calibrated with high
temporal and spatial resolution Formosat-2 data available from
4 years (2006 to 2009). The results revealed that the high temporal
frequency of the 2006 Formosat-2 time series appeared to be
mandatory to calibrate 4 of the 13 parameters of the SAFY model
(Pla, plb, Stt and Rs), which are crop dependent. Once calibrated, these
parameters were used to calibrate effective light-use efficiency
(ELUE) and emergence dates (D0), and to simulate biomass from
2006 to 2009. From 2007 to 2009, fewer images were available, but
the method remained robust because it relied on the pre-calibration
2008 2009

2008 2009

r the French department of Haute-Garonne and the yield simulated for the study area.
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of the phenological parameters using the 2006 high temporal
resolution data set. Analysis of the ELUE values showed that the
SAFY model was able to reproduce the basic difference in photosyn-
thetic rate between maize (C4 plant) and sunflower (C3 plant). The
results also showed that the maximum GAIF2 value was a good
indicator of the canopy water stress for non-irrigated crops such as
sunflower. The simulation of D0 revealed higher temporal variability
for non-irrigated crops. The SAFY model was also able to reproduce
the temporal variability of GAIF2 shape and dry aboveground biomass
through the 4 studied years. The errors retrieved from the compar-
ison between destructive sampling and simulated biomass were
consistent (RMSE=0.22 kg.m−2; RRMSE=29%) in comparison with
the values given by authors who used more complex models.
However, this approach faced some limitations. First, the use of the
2006 Formosat-2 data set to calibrate phenological parameters (Pla,
plb, Stt and Rs) might be a potential source of error. Indeed, the
unusual hot at dry meteorological conditions of 2006 could impact
the values of the calibrated parameters and, thus, the estimations of
biomasses. An analysis of the optimal dataset combining optimal
FORMOSAT-2 time series and representative meteorological condi-
tions should be further investigated. Secondly, in the SAFY model, the
ELUE is constant all over the phenological cycle, which could lead to
errors in the dry aboveground biomass estimations especially during
the senescence phase as shown by Lecoeur et al. (2011) for sunflower.
A temporal variation of ELUE after flowering might be investigated.

Finally, inter-annual variation in grain yields over the entire
Formosat-2 data set of images (24×24 km²) was estimated using
maize and sunflower and compared with grain yield statistics given
by the French Agricultural Statistics for the entire department of
Haute-Garonne (6300 km²). The SAFY model was able to correctly
reproduce the inter-annual variation in the grain yield of sunflower
(r²=0.89). In contrast, the inter-annual variation of maize grain yield
was not correctly reproduced because of the lack of spatial represen-
tativeness of our simulations. Indeed, contrary to the sunflower crops,
the FORMOSAT-2 footprint was not representative of the maize
behaviours encountered over the whole department.

This study demonstrates the great potential for the use of high
spatial and temporal resolution remote sensing data for large-scale
crop monitoring. Future satellite missions such as Venμs (Dedieu et
al., 2006) and Sentinel-2, which will provide high spatial and
temporal resolution images with a 4/5 days revisiting period and
with a high number of spectral bands (12/13 spectral bands), will
offer new perspectives for such applications.
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Appendix A. Overview of the SAFY model

The simple algorithm for yield estimates (SAFY, Duchemin et al.,
2008b) is a daily time-step model that simulates time series of leaf
area index (LAI) and dry aerial mass (DAM) from the air temperature
Please cite this article as: Claverie, M., et al., Maize and sunflower biom
resolution remote sensing data, Remote Sensing of Environment (2012),
(Ta) and the global incoming radiation (Rg). The simulations begin on
the plant emergence day (D0). D0 depends on agricultural practices
(in particular sowing date and depth) and on the pedoclimatic
conditions and constrains the phase of the LAI time course.

Daily DAM production (ΔDAM) is calculated through the approach
of Monteith (1977, Eq. (2)) using an effective light-use efficiency
(ELUE), a daily temperature stress factor (FT) and the daily photosyn-
thetically active radiation absorbed by plants (APAR). The ELUE
expresses the conversion of the APAR into DAM. It is supposed to
account for all agri-environmental stresses, such as water and nitrogen
supplies, except for temperature. It constrains the amplitude of the GAI
time course. The temperature stress function is a classical Polynomial
(Eq. (3)) of β Degree defined by an optimal daily mean air temperature
(Topt) for maximum crop functioning and two extreme temperatures
(Tmin and Tmax) beyond which the plant growth stops (after Brisson et
al., 2003). The APAR (Eq. (4)) is computed using the daily incoming
global radiation (Rg), the climatic efficiency (εC) and the fraction of the
photosynthetically active portion of solar radiation absorbed by green
plants (FAPAR). In the SAFY model, the FAPAR is estimated using Beer's
law (Eq. (5)), where kext defines the light-extinction coefficient (Monsi
and Saeki, 1953).

ΔDAM¼ ELUEñFT TaÞAPARð ð2Þ

FT Tað Þ ¼ 1� Topt � Ta
Topt�Tmin

 !β

if TminbTabTopt

FT Tað Þ ¼ 1� Topt � Ta
Topt�Tmax

 !β

if Tmax > Ta > Topt

FTðTaÞ ¼ 0 if TabTmin ORTa > Tmax

8>>>>>><
>>>>>>:

ð3Þ

APAR ¼ FAPAR� εC � Rg ð4Þ

FAPAR ¼ 1−e−kext�LAI ð5Þ

During plant growth, a fraction of the daily plant DAM production
is partitioned to the dry leaf biomass. This fraction is calculated using
the partition-to-leaf function Pl (Eq. (6), after Maas, 1993), which
varies from 0 to 1. Pl is a function of the daily air temperature
cumulated from plant emergence (SMT: sum of temperature, Eq. (7))
and two parameters: Pla and Plb. It should be noted that (1−Pla)
defines the rate of biomass allocation to leaves at plant emergence.
Daily leaf mass production (ΔDAM×Pl) is converted into daily leaf
area growth (Δ+

LAI) based on the specific leaf area (SLA, Eq. (8)). Leaf
senescence (Δ−

LAI) begins when the SMT reaches a given threshold
(Stt, sum of temperature for senescence). It is modelled by a function
(Eq. (9)) based on the rate of senescence coefficient (Rs). The LAI is
updated from the balance of Δ+

LAI and Δ−
LAI (Eq. (10)).

Pl ¼ 1� Plae
Plb × SMT ð6Þ

SMT ¼
Xt
D0

Tat�Tminð Þdt ð7Þ

If Pl > 0;Δþ
LAI¼ ΔDAMPlSLA ð8Þ

if SMT > Stt;Δ�
LAI¼ LAI

SMT� Stt
Rs

ð9Þ

LAIt¼ LAIt�1þ Δþ
LAI � Δ�

LAI ð10Þ
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