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Coastal phytoplankton blooms expand and 
intensify in the 21st century

Yanhui Dai1,9, Shangbo Yang1,9, Dan Zhao1, Chuanmin Hu2, Wang Xu3, Donald M. Anderson4, 
Yun Li5, Xiao-Peng Song6, Daniel G. Boyce7, Luke Gibson1, Chunmiao Zheng1,8 & Lian Feng1 ✉

Phytoplankton blooms in coastal oceans can be beneficial to coastal fisheries 
production and ecosystem function, but can also cause major environmental 
problems1,2—yet detailed characterizations of bloom incidence and distribution are 
not available worldwide. Here we map daily marine coastal algal blooms between 
2003 and 2020 using global satellite observations at 1-km spatial resolution. We found 
that algal blooms occurred in 126 out of the 153 coastal countries examined. Globally, 
the spatial extent (+13.2%) and frequency (+59.2%) of blooms increased significantly 
(P < 0.05) over the study period, whereas blooms weakened in tropical and 
subtropical areas of the Northern Hemisphere. We documented the relationship 
between the bloom trends and ocean circulation, and identified the stimulatory 
effects of recent increases in sea surface temperature. Our compilation of daily 
mapped coastal phytoplankton blooms provides the basis for global assessments  
of bloom risks and benefits, and for the formulation or evaluation of management  
or policy actions.

Phytoplankton blooms are accumulations of microscopic algae in the 
surface layer of fresh and marine water bodies. Although many blooms 
can occur naturally, nutrients linked to anthropogenic eutrophication 
are expected to intensify their frequency globally2–4. Many algal blooms 
are beneficial, fixing carbon at the base of the food chain and support-
ing fisheries and ecosystems worldwide. However, proliferations of 
algae that cause harm (termed harmful algal blooms (HABs)) have 
become a major environmental problem worldwide5–7. For instance, 
the toxins produced by some algal species can accumulate in the food 
web, causing closures of fisheries as well as illness or mortality of marine 
species and humans8–10. In other cases, the decay of a dense algal bloom 
can deplete oxygen in bottom waters, forming anoxic ‘dead zones’ that 
can cause fish and invertebrate die-offs and ecosystem restructuring, 
with serious consequences for the well-being of coastal communities1,11. 
Unfortunately, algal bloom frequency and distribution are projected 
to increase with future climate change12,13, with some changes causing 
adverse effects on aquatic ecosystems, fisheries and coastal resources.

Owing to substantial heterogeneity in space and time, algal blooms 
are challenging to characterize on a large scale5,14, and thus present 
knowledge does not allow us to answer one of the most fundamen-
tal questions: whether algal blooms have changed in recent decades 
on a global basis6,15,16. For example, although HAB events have been 
compiled into the UNESCO (United Nations Educational, Scientific, 
and Cultural Organization) Intergovernmental Oceanographic Com-
mission Harmful Algae Event Database (HAEDAT) globally since 1985, 
bloom trends are difficult to resolve, owing to inconsistent sampling 
efforts and the diversity of the eco-environmental or socio-economic 
effects6. Alternatively, satellite data have been used to monitor the 

ocean surface continuously since 1997 and have enabled bloom detec-
tion in many coastal regions17–19. However, the technical difficulties in 
dealing with complex optical features across different types of coastal 
waters have so far prohibited their application globally20. To fill this 
knowledge gap, we developed a method to map global coastal algal 
blooms and used this tool to examine satellite images between 2003 
and 2020, addressing three fundamental questions: (1) where and how 
frequently global coastal oceans have been affected by phytoplankton 
blooms; (2) whether the blooms have expanded or intensified over the 
past two decades, both globally and regionally; and (3) the identity of 
the potential drivers.

Mapping global coastal phytoplankton blooms
We generated a satellite-based dataset of phytoplankton bloom occur-
rence to characterize the spatial and temporal patterns of algal blooms 
in coastal oceans globally. The dataset was derived using global, 1-km 
resolution daily observations from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) onboard NASA’s Aqua satellite, and all 
0.76 million images acquired by this satellite mission between 2003 and 
2020 were used. We developed an automated method to detect phyto-
plankton blooms using MODIS images (Extended Data Fig. 1) (Methods). 
In this study, we define a phytoplankton bloom as the accumulation of 
microscopic algae at the ocean surface that exhibits satellite-detectable 
fluorescence signals21. However, whether a bloom produces toxins or is 
harmful to humans or the marine environment is not distinguishable 
from satellite data. We delineated bloom-affected areas (that is, the areas 
where algal blooms were detected), and enumerated the bloom count 
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at the 1-km pixel level (that is, the number of detected blooms per pixel) 
(Fig. 1). We further estimated the bloom frequency (dimensionless) by 
integrating the bloom count and affected areas within 1° × 1° grid cells 
(see Methods), and this metric was used to examine temporal dynam-
ics in bloom intensity. Validation with independent satellite samples 
selected via several visual inspection techniques showed an overall accu-
racy level of more than 95% for our method, and comparisons using dis-
crete events in HAEDAT6 indicated that we successfully identified bloom 
counts for 79.3% of the historical HAB events in that database (Extended 
Data Figs. 2–6). We examined phytoplankton blooms in the exclusive 
economic zones (EEZs) of 153 coastal countries and in 54 large marine 
ecosystems (LMEs) (Extended Data Fig. 7). Our study area encompasses 
global continental shelves and outer margins of coastal currents, which 
offer the majority of marine resources available for human use (see Meth-
ods). Out of the 153 coastal countries examined, 126 were observed to 
have phytoplankton blooms (Fig. 1). The total bloom-affected area was 
31.47 million km2, equivalent to approximately 24.2% of the global land 
area and 8.6% of the global ocean area, with a median bloom count of 
4.3 per year during the past 2 decades (Fig. 1b). Europe (9.52 million 
km2—30.3% of the total affected area) and North America (6.78 million 
km2—21.5% of the total affected area) contributed the largest bloom 
areas. By contrast, the most frequent blooms were found around Africa 
and South America (median bloom counts of more than 6.3 per year). 
Australia experienced the lowest frequency (2.4 per year) and affected 
area (2.84 million km2—9.0% of the total affected area) of blooms.

Phytoplankton blooms occurred frequently in the eastern boundary 
current systems (that is, California, Benguela, Humboldt and Canary), 
northeastern USA, Latin America, the Baltic Sea, Northern Black Sea and 
the Arabian Sea (Fig. 1a). Five LMEs were found with the most frequent 
blooms (annual median bloom count over 15), including Patagonian 
Shelf, Northeast US continental Shelf, the Baltic Sea, Gulf of California 
and Benguela Current (Extended Data Fig. 7). These hotspots are often 
reported as having a high incidence of algal blooms, some of which are 
HABs, driven by either coastal upwelling or pronounced anthropogenic 

nutrient enrichment9,22–26. European LMEs showed mostly large propor-
tions of bloom-affected areas, and some also showed frequent bloom 
occurrences. By contrast, Asian LMEs exhibited mainly infrequent 
blooms, given their large affected areas. We identified more bloom 
events in estuarine regions than along coasts in regions without major 
river discharge (P < 0.05; Extended Data Fig. 8), highlighting the critical 
role of terrestrial nutrient sources in coastal algal blooms3.

Long-term trends
The total global bloom-affected area has expanded by 3.97 million km2 
(13.2%) between 2003 and 2020, equivalent to 0.14 million km2 yr−1 
(P < 0.05; Fig. 2). Furthermore, the number of countries with significant 
bloom expansion was about 1.6 times those with a decreasing trend. 
The global median bloom frequency showed an increasing rate of 59.2% 
(+2.19% yr−1, P < 0.05) over the observed period. Spatially, areas showing 
significant increasing trends (P < 0.05) in bloom frequency were 77.6% 
larger than those with the opposite trends (Fig. 2). Globally, our analysis 
revealed overall consistent fluctuations between the bloom-affected 
area and bloom frequency between 2003 and 2020 (Fig. 2b). However, 
there was no significant relationship between bloom extent and fre-
quency in 23 countries and 10 LMEs over the past two decades, under-
scoring the spatial and temporal variability of algal blooms and the 
importance of continuous satellite monitoring.

The entire Southern Hemisphere was primarily characterized by 
increased bloom frequency, although weakened blooms were also 
sometimes found. In the Northern Hemisphere, the low latitude 
(<30° N) coasts were mainly featured with strong bloom weakening 
(Fig. 2a), primarily in the California Current System and the Arabian 
Sea. Bloom strengthening was found in the northern Gulf of Mexico and 
the East and South China Seas, albeit at smaller magnitudes. At higher 
latitudes, weakening blooms were detected mainly in the northeastern 
North Atlantic and the Okhotsk Sea in the northwestern North Pacific. 
Globally, the largest increases in bloom frequency were observed in six 
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Fig. 1 | Global patterns of coastal phytoplankton blooms between 2003 and 
2020. a, The spatial distribution of annual mean bloom count based on daily 
satellite detections. b, Continental and global statistics for annual mean  
bloom count (South America (SA), n = 3,846,125; Africa (AF), n = 2,516,225; 
Europe (EU), n = 17,703,949; North America (NA), n = 10,034,286; Asia (AS), 
n = 5,371,158; Australia (AU), n = 2,781,998 pixel observations). The centre line 

represents the median value, bottom and top bounds of boxes are first and 
third quartiles, and the whiskers show a maximum of 1.5 times the interquartile 
range. c, Continental statistics for the long-term annual mean of bloom- 
affected areas (n = 18 years). The percentages show the corresponding 
contributions to the global total. The bars represent s.d. Open circles are  
the affected areas during different years. Map created using Python 3.8.
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major coastal current systems, including Oyashio (+6.31% yr−1), Alaska 
(+5.22% yr−1), Canary (+4.28% yr−1), Malvinas (+3.02% yr−1), Gulf Stream 
(+2.42% yr−1) and Benguela (+2.30% yr−1) (Figs. 2a and 3).

Natural and anthropogenic effects
Increases in sea surface temperature (SST) can stimulate bloom occur-
rence. We found significant positive correlations (P < 0.05) between the 
annual mean bloom frequency and the coincident SST (SST data were 

averaged over the growth window of algal blooms within a year (Meth-
ods and Extended Data Fig. 9)) in several high-latitude regions (>40° N), 
such as the Alaska Current (r = 0.44), the Oyashio Current (r = 0.48) and  
the Baltic Sea (r = 0.41) (Fig. 3). These findings agree with previous stud-
ies, in which the bloom-favourable seasons in these temperate seas 
have been extended under warmer temperatures27–29. However, this 
temperature-based mechanism did not apply to regions with inconsistent 
trends between SST and bloom frequency, particularly for the substantial 
bloom weakening in the tropical and subtropical areas (Figs. 2a and  3b).
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Fig. 2 | Trends of global coastal phytoplankton blooms between 2003 and 
2020. a, Spatial patterns of the trends in bloom frequency at a 1° × 1° grid scale. 
The latitudinal profiles show the fractions of grids with significant and 
insignificant trends (positive or negative) along the east–west direction.  

b, Interannual variability and trends in annual median bloom frequency and total 
global bloom-affected area. The linear slopes and P-value (two-sided t-test) are 
indicated. The shading associated with the bloom frequency data represents 
an uncertainty level of 5% in bloom detection. Map created using Python 3.8.
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Fig. 3 | Effects of climate change on phytoplankton blooms. a,b, Global 
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term changes in bloom frequency in the regions labelled in a and b, and their 
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the SST gradient (∇SST) are shown. Asterisks indicate statistically significant 
(P < 0.05) correlations. Maps created using ArcMap 10.4 and Python 3.8.
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Changes in climate can also affect ocean circulation, altering ocean 
mixing and the transport of nutrients that drive the growth of marine 
phytoplankton and bloom formation30–32. We used the spatial SST gradi-
ent (in °C m−1) as a proxy for the magnitude of oceanic mesoscale cur-
rents (the time-varying velocity of kinetic energy (also known as the eddy 
kinetic energy (EKE))) by following the methods of a previous study33, 
and examined its effects on algal blooms (Methods). The trend in the 
SST gradient appeared more spatially aligned to bloom frequency than 
SST. We found significant positive correlations (P < 0.05) between the 
SST gradient and bloom frequency for various coastal current systems, 
including the Canary (r = 0.84), Malvinas (r = 0.83), California (r = 0.81), 
Benguela (r = 0.73), Gulf Stream (r = 0.61) and Oyashio (r = 0.58) currents.

Trends in bloom frequency in subtropical eastern boundary upwelling 
regions (the California, Benguela and Canary currents) followed the 
changes in mesoscale currents (Fig. 3a,c). In the California Current Sys-
tem, the decrease in bloom frequency was probably due to the weakened 
upwelling (represented by a reduced SST gradient and increased SST) 
and thus lower nutrient supply25. Conversely, the Canary and Benguela 
currents were characterized by strengthened upwelling and increased 
bloom frequency. The two western boundary current systems at high 
latitudes (Malvinas and Oyashio)—although characterized by less pro-
nounced upwelling34—exhibited a similar mechanism to the subtropical 
eastern boundary regions. For the subtropical western boundary Gulf 
Stream current, the strengthened current jets (manifested as a larger SST 
gradient) brought more nutrients from the continental shelf35, trigger-
ing more algal blooms. Nevertheless, whether these changes in oceanic 
mesoscale activities were responses to wind, stratification, the shear of 
ocean currents or other factors33 requires region-based investigations.

Global climate events, represented as the multivariate El Niño– 
Southern Oscillation index36 (MEI), also showed connections with coastal 
bloom frequency. The minimum MEI in 2010 (a strong La Niña year)  
was followed by a low bloom frequency in the following year, and the 
largest MEI in 2015 (a strong El Niño year) was followed by the strongest 
bloom frequency in 2016 (Fig. 2b and Extended Data Fig. 10a).

Changes in anthropogenic nutrient enrichment may have also con-
tributed to the trends in blooms37. For example, the decline in bloom 
frequency in the Arabian Sea, without clear links to SST or SST gradient 
changes, could result from decreased fertilizer use in the surround-
ing countries (such as Iran) (Extended Data Fig. 10). By contrast, the 
bloom strengthening in some Asian countries could be attributed to 
surges in fertilizer use38. We examined trends in fertilizer usage (either 
nitrogen or phosphorus) and bloom frequency and found high positive 
correlations in China, Iran, Vietnam and the Philippines. Paradoxi-
cally, decreased fertilizer uses and increased bloom frequency were 
identified in some countries, suggesting that nutrient control efforts 
might have been counterbalanced by the stimulatory effects of climate 
warming or other factors. Furthermore, the intensified aquaculture 
industry in Finland, China, Algeria, Guinea, Vietnam, Argentina, Russia 
and Uruguay may also be linked to their increased bloom incidence, 
as suggested by the significant positive correlations (r > 0.5, P < 0.05) 
between their aquaculture production and bloom frequency. A similar 
relationship between aquaculture expansion and positive trends in HAB 
incidence was reported from an analysis of HAEDAT data6. However, 
analogous positive feedbacks for fertilizer or aquaculture were not 
found in many other countries. Thus, an ecosystem model incorporat-
ing terrestrial and oceanic nutrient transport and nutrient–plankton 
relationships of different species39 is required to quantify the contribu-
tions of natural and anthropogenic factors to algal blooms14.

Future implications
We acknowledge that our criteria for a detectable bloom event is 
operationally defined by sensor sensitivities and other factors, and 
that the bloom count metric used here may underestimate algal 
bloom incidence, particularly compared to harmful events entered in 

HAEDAT. For example, in a recent global analysis of the HAEDAT events,  
Hallegraeff et al.6 report a dozen or more events per year for each of nine 
regions over a 33-year study period, compared to the global median 
bloom count of 4.3 in this study. There are several possible explana-
tions for this discrepancy, such as the many low-cell-concentration 
HABs that are not detectable from space but that can still cause harm, 
as well as sensor sensitivities and algorithm thresholds. Furthermore, 
our bloom count was averaged over all 1-km pixels within the EEZs, 
whereas HAEDAT entries are based on discrete sampling regions. This 
underestimation does not, however, alter the trends and other conclu-
sions of this study, as the metrics used here were constant across time 
and space. Underestimates would have been uniform across regions 
globally. In this regard, it is of note that the study of Hallegraeff et al.6 
found a significant link between the number of HAEDAT events over 
time and the global expansion of aquaculture production, similar to 
findings in our study.

The major contribution of our study is to provide a spatially and 
temporally consistent characterization of global coastal algal blooms 
between 2003 and 2020. Globally, increasing trends in algal bloom 
area and frequency are apparent. Regionally, however, trends were 
non-uniform owing to the compounded effects of changes in climate 
(such as changes in SST and SST gradient and climate extremes), 
anthropogenic eutrophication and aquaculture development. Our 
daily mapping of bloom events offers valuable baseline information 
to understand the mechanisms underlying the formation, mainte-
nance, and dissipation of algal blooms5,40. This could aid in developing 
forecasting models (on either global or regional scales) that can help 
minimize the consequences of harmful blooms, and can also help in 
policy decisions relating to the control of nutrient discharges and 
other HAB-stimulatory factors. Noting again that many blooms are 
beneficial, particularly in terms of their positive effects on ecosystems 
as well as on wild and farmed fisheries, the results here can also con-
tribute toward policies and management actions that sustain those 
beneficial blooms.
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Methods

Data sources
MODIS on the Aqua satellite provides a global coverage within 1–2 
days. All images acquired by this satellite mission from January 2003 
to December 2020 were used in our study to detect global coastal 
phytoplankton blooms, with a total of 0.76 million images. MODIS 
Level-1A images were downloaded from the Ocean Biology Distributed 
Active Archive Center (OB.DAAC) at NASA Goddard Space Flight Center 
(GSFC), and were subsequently processed with SeaDAS software (ver-
sion 7.5) to obtain Rayleigh-corrected reflectance (Rrc (dimensionless), 
which was converted using the rhos (in sr−1) product (rhos × π) from 
SeaDAS)41, remote sensing reflectance (Rrs (sr−1)) and quality control 
flags (l2_flags). If a pixel was flagged by any of the following, it was then 
removed from phytoplankton bloom detection: straylight, cloud, land, 
high sunglint, high solar zenith angle and high sensor zenith angle 
(https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/). MODIS level-3 
product for aerosol optical thicknesses (AOT) at 869 nm was also 
obtained from OB.DAAC NASA GSFC (version R2018.0), which was 
used to examine the impacts of aerosols on bloom trends.

We examined the algal blooms in the EEZs of 153 ocean-bordering 
countries (excluding the EEZs in the Caspian Sea or around the  
Antarctic), 126 of which were found with at least one bloom in the past 
two decades. The EEZ dataset is available at https://www.marinere-
gions.org/download_file.php?name=World_EEZ_v11_20191118.zip. 
The EEZs are up to 200 nautical miles (or 370 km) away from coast-
lines, which include all continental shelf areas and offer the majority of 
marine resources available for human use. Regional statistics of algal 
blooms were also performed for LMEs. LMEs encompass global coastal 
oceans and outer edges of coastal currents areas, which are defined 
by various distinct features of the oceans, including hydrology, pro-
ductivity, bathymetry and trophically dependent populations42.  
Of the 66 LMEs identified globally, we excluded the Arctic and Ant-
arctic regions and examined 54 LMEs. The boundaries of LMEs were 
obtained from https://www.sciencebase.gov/catalog/item/55c7772
2e4b08400b1fd8244.

We used HAEDAT to validate our satellite-detected phytoplankton 
blooms in terms of presence or absence. The HAEDAT dataset (http://
haedat.iode.org) is a collection of records of HAB events, maintained 
under the UNESCO Intergovernmental Oceanographic Commission 
and with data archives since 1985. For each HAB event, the HAEDAT 
records its bloom period (ranging from days to months) and geoloca-
tion. We merged duplicate entries when both the recorded locations 
and times of the HAEDAT events were very similar to one another, and a 
total number of 2,609 HAEDAT events were ultimately selected between 
2003 and 2020.

We used the ¼° resolution National Oceanic and Atmospheric 
Administration Optimum Interpolated SST (v. 2.1) data to examine the 
potential simulating effects of warming on the global phytoplankton 
trends. We also estimated the SST gradients following the method of 
Martínez-Moreno33. As detailed in ref. 33, the SST gradient can be used 
as a proxy for the magnitude of oceanic mesoscale currents (EKE). 
We used the SST gradient to explore the effects of ocean circulation 
dynamics on algal blooms.

Fertilizer uses and aquaculture production for different countries 
was used to examine the potential effects of nutrient enrichment 
from humans on global phytoplankton bloom trends. Annual data 
between 2003 and 2019 on synthetic fertilizer use, including nitrogen 
and phosphorus, are available from https://ourworldindata.org/fer-
tilizers. Annual aquaculture production includes cultivated fish and 
crustaceans in marine and inland waters, and sea tanks, and the data 
between 2003 and 2018 are available from https://ourworldindata.
org/grapher/aquaculture-farmed-fish-production.

The MEI, which combines various oceanic and atmospheric variables36,  
was used to examine the connections between El Niño–Southern 

Oscillation activities and marine phytoplankton blooms. The dataset 
is available from https://psl.noaa.gov/enso/mei/.

Development of an automated bloom detection method
A recent study by the UNESCO Intergovernmental Oceanographic 
Commission revealed that globally reported HAB events have 
increased6. However, such an overall increasing trend was found to 
be highly correlated with recently intensified sampling efforts6. Once 
this potential bias was accounted for by examining the ratio between 
HAB events to the number of samplings5, there was no significant 
global trend in HAB incidence, though there were increases in certain 
regions. With synoptic, frequent, and large-scale observations, satel-
lite remote sensing has been extensively used to monitor algal blooms 
in oceanic environments17–19. For example, chlorophyll a (Chla) con-
centrations, a proxy for phytoplankton biomass, has been provided as 
a standard product by NASA since the proof-of-concept Coastal Zone 
Color Scanner (1978–1986) era43,44. The current default algorithm used 
to retrieve Chla products is based on the high absorption of Chla at 
the blue band45,46, which often shows high accuracy in the clear open 
oceans but high uncertainties in coastal waters. This is because, in 
productive and dynamic coastal oceans, the absorption of Chla in the 
blue band can be obscured by the presence of suspended sediments 
and/or coloured dissolved organic matter (CDOM)47. To address this 
problem, various regionalized Chla algorithms have been developed48. 
Unfortunately, the concentrations of the water constituents (CDOM, 
sediment and Chla) can vary substantially across different coastal 
oceans. As a result, a universal Chla algorithm that can accurately 
estimate Chla concentrations in global coastal oceans is not currently 
available.

Alternatively, many spectral indices have been developed to iden-
tify phytoplankton blooms instead of quantifying their bloom bio-
mass, including the normalized fluorescence line height21 (nFLH), 
red tide index49 (RI), algal bloom index47 (ABI), red–blue difference 
(RBD)50, Karenia brevis bloom index50 (KBBI) and red tide detec-
tion index51 (RDI). In practice, the most important task for these 
index-based algorithms is to determine their optimal thresholds 
for bloom classification. However, such optimal thresholds can be 
regional-or image-specific20, due to the complexity of optical fea-
tures in coastal waters and/or the contamination of unfavourable 
observational conditions (such as thick aerosols, thin clouds, and 
so on), making it difficult to apply spectral-index-based algorithms 
at a global scale.

To circumvent the difficulty in determining unified thresholds for 
various spectral indices across global coastal oceans, an approach 
from a recent study to classify algal blooms in freshwater lakes52 was 
adopted and modified here. In that study, the remotely sensed reflec-
tance data in three visible bands (red, green and blue) were converted 
into two-dimensional colour space created by the Commission Interna-
tionale del’éclairage (CIE), in which the position on the CIE chromaticity 
diagram represented the colour perceived by human eyes (Extended 
Data Fig. 1a). As the algal blooms in freshwater lakes were manifested 
as greenish colours, the reflectance of bloom-containing pixels was 
expected to be distributed in the green gamut of the CIE chromaticity 
diagram; the stronger the bloom, the closer the distance to the upper 
border of the diagram (the greener the water).

Here, the colour of phytoplankton blooms in the coastal oceans 
can be greenish, yellowish, brownish, or even reddish53, owing to 
the compositions of bloom species (diatoms or dinoflagellates) and  
the concentrations of different water constituents. Furthermore, the 
Chla concentrations of the coastal blooms are typically lower than 
those in inland waters, thus demanding more accurate classification 
algorithms. Thus, the algorithm proposed by Hou et al.52 was modified 
when using the CIE chromaticity space for bloom detection in marine 
environments. Specifically, we used the following coordinate conver-
sion formulas to obtain the xy coordinate values in the CIE colour space:

https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/
https://www.marineregions.org/download_file.php?name=World_EEZ_v11_20191118.zip
https://www.marineregions.org/download_file.php?name=World_EEZ_v11_20191118.zip
https://www.sciencebase.gov/catalog/item/55c77722e4b08400b1fd8244
https://www.sciencebase.gov/catalog/item/55c77722e4b08400b1fd8244
http://haedat.iode.org
http://haedat.iode.org
https://ourworldindata.org/fertilizers
https://ourworldindata.org/fertilizers
https://ourworldindata.org/grapher/aquaculture-farmed-fish-production
https://ourworldindata.org/grapher/aquaculture-farmed-fish-production
https://psl.noaa.gov/enso/mei/
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(1)

where R, G and B represent the Rrc at 748 nm, 678 nm (fluorescence 
band) and 667 nm in the MODIS Aqua data, respectively. By contrast, 
the R, G and B channels used in Hou et al.52 were the red, green and blue 
bands. We used the fluorescence band for the G channel because, for a 
given region, the 678 nm signal increases monotonically with the Chla 
concentration for blooms of moderate intensity21, which is similar to the 
response of greenness to freshwater algal blooms. Thus, the converted 
y value in the CIE coordinate system represents the strength of the 
fluorescence. In practice, for pixels with phytoplankton blooms, the 
converted colours in the chromaticity diagram will be located within 
the green, yellow or orange–red gamut (see Extended Data Fig. 1a); the 
stronger the fluorescence signal is, the closer the distance to the upper 
border of the CIE diagram (larger y value). By contrast, for bloom-free 
pixels without a fluorescence signal, their converted xy coordinates will 
be located in the blue or purple gamut. Therefore, we can determine 
a lower boundary in the CIE two-dimensional coordinate system to 
separate bloom and non-bloom pixels, similar to the method proposed 
by Hou et al.52.

We selected 53,820 bloom-containing pixels from the MODIS Rrc data 
as training samples to determine the boundary of the CIE colour space. 
These sample points were selected from nearshore waters worldwide 
where frequent phytoplankton blooms have been reported (Extended 
Data Fig. 2); the algal species included various species of dinoflagellates 
and diatoms20. A total of 80 images was used, which were acquired from 
different seasons and across various bloom magnitudes, to ensure that 
the samples used could almost exhaustively represent the different 
bloom conditions in the coastal oceans.

We combined the MODIS FLHRrc (fluorescence line height based on 
Rrc) and enhanced red–green–blue composite (ERGB) to delineate 
bloom pixels manually. The FLHRrc image was calculated as:

R F R F R F

R F

FLH = × − [ × + ( ×

− × ) × (678 − 667)/(748 − 667)]
(2)Rrc rc678 678 rc667 667 rc748 748

rc667 667

where Rrc667, Rrc678 and Rrc748 are the Rrc at 667, 678 and 748 nm, respec-
tively, and F667, F678 and F748 are the corresponding extraterrestrial solar 
irradiance. ERGB composite images were generated using Rrc of three 
bands at 555 (R), 488 (G) and 443 nm (B). Although phytoplankton-rich 
and sediment-rich waters have high FLHRrc values, they appear as dark-
ish and bright features in the ERGB images (Extended Data Fig. 3), 
respectively21. In fact, visual examination with fluorescence signals 
and ERGB has been widely accepted as a practical way to deline-
ate coastal algal blooms on a limited number of images21,54,55. Note 
that the FLHRrc here was slightly different from the NASA standard  
nFLH product56, as the latter is generated using Rrs (corrected for both 
Rayleigh and aerosol scattering) instead of Rrc (with residual effects of 
aerosols). However, when using the NASA standard algorithm to further 
perform aerosol scattering correction over Rrc, 20.7% of our selected 
bloom-containing pixels failed to obtain valid Rrs (without retrievals 
or flagged as low quality), especially for those with strong blooms (see 
examples in Extended Data Fig. 4). Likewise, we also found various 
nearshore regions with invalid Rrs retrievals. By contrast, Rrc had valid 
data for all selected samples and showed more coverage in nearshore 
coastal waters. The differences between Rrs and Rrc were because the 
assumptions for the standard atmospheric correction algorithm do 
not hold for bloom pixels or nearshore waters with complex optical 
properties57. In fact, Rrc has been used as an alternative to Rrs in various 
applications in complex waters58,59.

We converted the Rrc data of 53,820 selected sample pixels into 
the xy coordinates in the CIE colour space (Extended Data Fig. 1a). 
As expected, these samples of bloom-containing pixels were located 
in the upper half of the chromaticity diagram (the green, yellow and 
orange–red gamut) (Extended Data Fig. 1a). We determined the lower 
boundary of these sample points in the chromaticity diagram, which 
represents the lightest colour and thus the weakest phytoplankton 
blooms; any point that falls above this boundary represents stronger 
blooms. The method to determine the boundary was similar to Hou 
et al.52: we first binned the sample points according to the x value in 
the chromaticity diagram and estimated the 1st percentile (Q1%) of 
the corresponding Y for each bin; then, we fit the Q1% using two-order 
polynomial regression. Sensitivity analysis with Q0.3% (the three-sigma 
value) resulted in minor changes (<1%) in the resulting bloom areas for 
single images. Notably, sample points were rarely located near white 
points (x = 1/3 and y = 1/3, represent equal reflection from three RGB 
bands) in the diagram, and we used two polynomial regressions to 
determine the boundaries for x values greater and less than 1/3, which 
can be expressed as:

y x x x= 4.8093 − 3.0958 + 0.8357 <
1
3

(3)1
2

y x x x= 4.9040 − 3.5759 + 0.9862 >
1
3

(4)2
2

Based on the above, if a pixel’s xy coordinate (converted from Rrc 
spectrum) satisfies the conditions of (x < 1/3 AND y > y1) or (x > 1/3 AND 
y > y2), it is classified as a ‘bloom’ pixel.

Depending on the local region and application purpose, the mean-
ing of ‘phytoplankton bloom’ may differ. Here, for a global applica-
tion, the pixelwise bloom classification is based on the relationship 
(represented using the CIE colour space) between Rrc in the 667-, 678- 
and 754-nm bands derived from visual interpretation of the 80 pairs 
of FLHRrc and ERGB imagery. Instead of a simple threshold, we used a 
lower boundary of the sample points in the chromaticity diagram to 
define a bloom. In simple words, a pixel is classified as a bloom if its 
fluorescence signal is detectable (the associated xy coordinate in the 
CIE colour space located above the lower boundary). Histogram of the 
nFLH values from the 53,820 training pixels demonstrated the minimum 
value of ~0.02 mW cm−2 μm−1 (Extended Data Fig. 1a), which is in line 
with the lower-bound signal of K. brevis blooms on the West Florida 
shelf21,47. Note that, such a minimum nFLH is determined from the global 
training pixels, and it does not necessarily represent a unified lower 
bound for phytoplankton blooms across the entire globe, especially 
considering that fluorescence efficiency may be a large variable across 
different regions. Different regions may have different lower bounds 
of nFLH to define a bloom, and such variability is represented by the 
predefined boundary in the CIE chromaticity diagram in our study. Cor-
respondingly, although the accuracy of Chla retrievals may have large 
uncertainties in coastal waters, the histogram of the 53,820 training 
pixels shows a lower bound of ~1 mg m−3 (Extended Data Fig. 1a). Simi-
larly to nFLH, such a lower bound may not be applicable to all coastal 
regions, as different regions may have different lower bounds of Chla 
for bloom definition.

Although the MODIS cloud (generated by SeaDAS with Rrc869 < 0.027) 
and associated straylight flags can be used to exclude most clouds, we 
found that residual errors from thin clouds or cloud shadows could 
affect the spectral shape and cause misclassification for bloom detec-
tions. Thus, we designed two spectral indices to remove such effects:

R R R RIndex1 = n − n − (n − n ) × 0.5 (5)rc488 rc443 rc555 rc443

R R R RIndex2 = n − n − (n − n ) × 0.5 (6)rc555 rc469 rc645 rc469



where Index1 and Index2 were used to remove cloud shadows and 
clouds, respectively. The nRrc443, nRrc488 and nRrc555 in index1 are the 
normalized Rrc, obtained by normalizing Rrc488. Similar calculations 
were performed for index2. The purpose of normalizations is to elimi-
nate the effect of the absolute magnitude of the reflectance, so that 
the thresholds of these two indices are influenced by only the relative 
magnitude (spectral shape). We determined thresholds for Index1 
(>0.12) and Index2 (<0.012) through trial-and-error and ensured that 
the misclassifications caused by residual errors from clouds and cloud 
shadows could be effectively removed. After applying the cloud/cloud 
shadow and various other masks that are associated with l2_flags, we 
obtained an annual mean valid pixel observation (Nvobs) of ~2.0 × 105 
for global 1° × 1° grid cells, and the fluctuation patterns and trends of 
Nvobs, either annually or seasonally, are different from that of the global 
bloom frequency and affected areas (see Supplementary Fig. 1).

Assessments of the algorithm performance
In addition to phytoplankton blooms, macroalgal blooms (Sargassum 
and Ulva) frequently occur in many coastal oceans60–63. To verify 
whether our CIE-fluorescence algorithm could eliminate such impacts, 
we compared the spectra between micro-and macroalgal blooms (see 
Extended Data Fig. 1b). We found that the spectral shapes of Sargassum 
and Ulva are substantially different from those of microalgae, particu-
larly for the three bands used for CIE coordinate conversion. The con-
verted xy coordinates for macroalgae were located in the purple–red 
gamut of the CIE diagram, which was far below the predefined bound-
ary (Extended Data Fig. 1). Moreover, our algorithm is not affected by 
highly turbid waters for the following two reasons: first, extremely high 
turbidity tends to saturate the MODIS ocean bands64, which can be eas-
ily excluded; second, without a fluorescence peak, the reflectance of 
unsaturated turbid waters, after conversion to CIE coordinates, will be 
located below the predefined boundary (see example in Extended Data 
Fig. 1b). We also confirmed that the spectral shapes of coccolithophore 
blooms are different from dinoflagellates and diatoms (see example in 
Extended Data Fig. 1b), and thus they are excluded from our algorithm.

Three different types of validation methods were adopted to dem-
onstrate the reliability of the proposed CIE-fluorescence algorithm for 
phytoplankton bloom detection in global coastal oceans, including 
visual inspections of the RGB, ERGB and FLHRrc images, verifications 
using independent manually delineated algal blooms, and comparisons 
with the reported HAB events from the HAEDAT dataset.

First, we selected MODIS Aqua images from different locations where 
coastal phytoplankton blooms have been recorded in the published 
literature. We visually compared the RGB, ERGB, and FLHRrc images, and 
our algorithm detected bloom patterns (see examples in Extended Data 
Fig. 3). Comparisons from various images worldwide showed that our 
algorithm could successfully identify regions with high FLHRrc values 
and brownish-to-darkish features on the ERGB images, which can be 
considered phytoplankton blooms.

Second, we delineated additional 15,466 bloom-containing pixels 
from 35 images covering different coastal areas, using the same visual 
inspection and manual delineation method as for the training sample 
pixels. Moreover, we also selected 14,149 bloom-free pixels (bright or 
turquoise green colours on ERGB images or low FLHRrc values) within 
the same images as bloom-containing images. We applied our algo-
rithm to all these pixels, and compared the algorithm-identified and 
manually delineated results. Our CIE-fluorescence algorithm showed 
high values in both producer and user accuracies (92.04% and 98.63%) 
(Supplementary Table 1), and appeared effective at identifying bloom 
pixels and excluding false negatives (blooms classified as non-blooms) 
and false positives (non-blooms classified as blooms).

Third, we validated the satellite-detected phytoplankton blooms 
using in situ reported HAB events from the HAEDAT dataset. For each 
HAB event in the HAEDAT dataset, we obtained all MODIS images over 
the reported bloom period (from days to months). Within each year, we 

estimated the ratio between the number of satellite images with ‘bloom 
detected’ against the number of valid images (see definition above) 
during the bloom periods across the entire globe (Supplementary 
Table 1). Moreover, we calculated the number of events with at least 
one successful satellite bloom detection (Ns), and then estimated the 
ratio between Ns and the total HAB events for each year. Results showed 
that substantial amounts (averaged at 51.2%) of satellite observations 
acquired during the HAB event periods were found with phytoplank-
ton blooms by our algorithm. Overall, 79.3% of the global HAB events 
were successfully identified by satellite. The discrepancies between 
satellite and in situ observations could be explained by the following 
reasons: first, our study focused only on the phytoplankton blooms 
that are resolvable by satellite fluorescence signals; other types of HAB 
events in the HAEDAT dataset may not have been detectable by satellite 
observations, such as events with lower phytoplankton biomass but 
high toxicity, occurrences at the subsurface layers, or fluorescence 
signals overwhelmed by suspended sediments65–67. Second, although 
the HAEDAT recorded HAB events could be sustained for long periods, 
high biomass of surface algae may not have occurred every day within 
this period due to the changes in stratification, precipitation, wind, ver-
tical migration of cells, and many other factors68. Third, the spatial scale 
of certain HAB events may have been too small to be identified using 
the 1-km resolution MODIS observations. Fourth, a reduced MODIS 
satellite observation frequency by the contaminations of clouds and 
land adjacency effects69. Therefore, we believe the underestimations 
of satellite-detected blooms compared to the in situ reported HAB 
events were mainly due to inconsistencies between the two observa-
tions rather than uncertainties in our algorithm.

Because Rrc depends not only on water colour but also on aerosols 
(type and concentration) and solar and viewing geometry, a sensitivity 
analysis was used to determine whether such variables could impact 
bloom detection. Aerosol reflectance (ρa) with different AOTs at 869 
nm was simulated using the NASA-recommended maritime aerosol 
model (r75f02, with a relative humidity of 75% and a fine-mode frac-
tion of 2%). Then, ρa of each MODIS band was added to Rrc images, and 
the resulting bloom areas with and without added ρa were compared. 
Results showed that even with a change of 0.02 in AOT at 869 nm, the 
bloom areas showed minor changes (<2%) in the tested images; minor 
changes were also found when we used different aerosol models to 
conduct ρa simulations70. Note that 0.02 represents the high end of 
the AOT intra-annual variability in coastal oceans (see Extended Data 
Fig. 5), and the associated interannual changes are much smaller. 
Thus, the use of Rrc instead of the fully atmospherically corrected 
reflectance Rrs could have limited impacts on our detected global 
bloom trend.

We also tried various index-based algorithms developed in previ-
ous studies. However, results showed that all these methods require 
image-specific thresholds to accurately determine algal bloom bounda-
ries for different coastal regions (see Extended Data Fig. 6). By con-
trast, although our CIE-fluorescence algorithm may lead to different 
bloom thresholds for different regions, it can identify bloom pixels 
without adjusting the coefficients and, therefore, is more suitable for 
global-scale bloom assessment efforts.

We acknowledge that our satellite-detected algal blooms represent 
only high amounts of phytoplankton biomass on the ocean surfaces 
without distinguishing whether such blooms produce toxins or are 
harmful to marine environments. Furthermore, with only limited 
spectral information from MODIS, it is difficult to discriminate the 
phytoplankton species of algal blooms; such information could help 
to improve our understanding of the impacts of these phytoplankton 
blooms. However, we expect these challenges to be addressed soon with 
the scheduled launch of the Plankton, Aerosol, Cloud, ocean Ecosystem 
(PACE) mission by NASA in 2024, where the hyperspectral measure-
ments over a broad spectrum (350–885 nm) will make species-level 
classifications possible71.
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Exploring the patterns and trends of global coastal 
phytoplankton blooms
We applied the CIE-fluorescence algorithm to all MODIS Aqua level-2 Rrc 
images, and a total number of 0.76 million images between 2003 and 
2020 were processed. We mapped all detected blooms into 1-km daily 
scale level-3 composites. The number of bloom counts within a year 
for each location can be easily enumerated, and the long-term annual 
mean values were then estimated (Fig. 1a). We further calculated the 
total global bloom-affected area (the areas where algal blooms were 
detected at least once) for each year and examined their changes over 
time (Fig. 2b).

We defined bloom frequency (dimensionless) to represent the den-
sity of phytoplankton blooms for a year by integrating the bloom count 
and bloom-affected areas within 1°×1° grid cells within that year, which 
is expressed as:

∑n
N

MBloom frequency = (7)
i

n

i
=1

where Mi is the enumerated bloom count for each 1-km resolution pixel 
in a year within one 1° × 1° grid cell, and n represents the associated 
number of bloom-affected pixels in the same cell (the number of pixels 
with Mi > 0), and N is the total number of 1-km MODIS pixels in this grid 
cell. We estimated the bloom frequency for each year between 2003 and 
2020, and determined the long-term trend over global EEZs through a 
linear least-squares regression (see Fig. 2a).

Continental and country-level statistics were performed for bloom 
count, bloom-affected areas, and bloom frequency (Fig. 1b,c and 
Supplementary Table 2), using boundaries for the EEZs of different 
ocean-bordering countries (see above). Similar statistics were also con-
ducted for 54 LMEs (Extended Data Fig. 7 and Supplementary Table 3).

Correlations with SST and SST gradient
To assess the impacts of climate change on long-term trends in coastal 
phytoplankton blooms, we correlated the annual mean bloom fre-
quency and the associated SST and SST gradient in various coastal 
current systems for grid cells with significant changes in bloom fre-
quency (Fig. 3c). The SST and SST gradient were averaged over the 
growth window within a year, assuming that the changes within the 
growth window, either in water temperatures or ocean circulations, 
play more important roles in the bloom trends compared to other 
seasons32.

We determined the growth window of phytoplankton blooms for 
each 1° × 1° grid cell (Extended Data Fig. 9a) using the following method: 
first, we estimated the proportion of cumulative bloom-affected pixels 
within the grid cells for a year. Second, a generalized additive model72 
was used to determine the shape of the phenological curves (Extended 
Data Fig. 9b), where a log link function and a cubic cyclic regression 
spline smoother were applied73,74. Third, the timing of maximum 
bloom-affected areas (TMBAA) was then determined by identifying 
the inflection point on the bloom growth curve (Extended Data Fig. 9c). 
To facilitate comparisons across Northern and Southern Hemispheres, 
the year in the Southern Hemisphere was shifted forward by 183 days 
(Extended Data Fig. 9c). We characterized the similarity of the bloom 
growth curve between different grid cells and grouped them into three 
distinct clusters using a fuzzy c-means cluster analysis method75,76. 
We found uniform distributions of the clusters over large geographic 
areas. Cluster I is mainly distributed in mid-low latitudes (<45° N and 
<30° S), where the maximum bloom-affected areas were expected in the 
early period of the year. Cluster II was mostly found in higher latitudes, 
with bloom developments (quasi-) synchronized with increases in SST. 
Cluster III was detected along the coastlines, where the bloom-affected 
areas increase throughout the entire year. In practice, the growth win-
dow for clusters I and III was set as the entire year, and that for cluster II 

was set from day 150 to day 270 within the year. We further found that 
the TMBAA for cluster II showed small changes over the entire period 
(Extended Data Fig. 9d), indicating relatively stable phenological cycles 
for those phytoplankton blooms32,77.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The satellite-based dataset of global coastal algal bloom at 1-km resolu-
tion and the associated code are available at https://doi.org/10.5281/
zenodo.7359262. Source data are provided with this paper.
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Extended Data Fig. 1 | Development of the CIE-fluorescence algorithm to 
detect phytoplankton blooms using MODIS satellite imagery. (a). A1: The 
density plot of manually delineated bloom-containing pixels in the CIE 
coordinate system (n = 53,820), and their distribution in the CIE color space 
(box in A2). A3: Histograms of nFLH and Chla for the delineated pixels, obtained 
using NASA standard algorithms47,57. (b) MODIS true color composites and 

selected spectra for phytoplankton blooms, macroalgal blooms (Ulva and 
Sargassum), coccolithophore blooms, and sediment-rich turbid waters. The x-y 
numbers indicate their corresponding positions in the CIE coordinate system. 
The black rectangular boxes in the three lower panels highlight different 
spectral shapes between phytoplankton blooms and other features near the 
fluorescence band. Maps created using ArcMap 10.4.



Extended Data Fig. 2 | MODIS-detected bloom count within certain years 
for several coastal regions with frequently reported blooms. The MODIS 
observational year is annotated within each panel, and overlaid points indicate 
in situ recorded harmful algal bloom events from the Harmful Algae Event 

Database (HAEDAT) within the same year. The lower right panel shows the 
locations of all the HAEDAT records that were used for algorithm validations in 
this study (Supplementary Table 1), which also demonstrates the increase in 
sampling effort in the most recent years. Created using ArcMap 10.4.
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Extended Data Fig. 3 | Performance of the CIE-fluorescence algorithm for 
phytoplankton bloom detection in 12 selected coastal oceans. From left  
to right are the RGB-true color composite, ERGB composite, FLHRrc, and the 

bloom area (green pixels) detected by the CIE-fluorescence algorithm. Created 
using ArcMap 10.4.



Extended Data Fig. 4 | Examples showing disadvantages of using NASA 
standard Rrs (i.e., with the removal of both Rayleigh and aerosol scattering) 
in algal bloom detection. From left to right are the RGB composites, ERGB, 
nFLH, and the bloom areas (green pixels) detected by the CIE-fluorescence 
algorithm (based on Rrc, without the removal of aerosol scattering). Substantial 

amounts of invalid Rrs retrievals can be observed in the red-encircled areas in 
which severe blooms can be found. Additionally, nFLH shows high values at 
cloud edges (yellow-encircled areas), making it challenging to use a simple 
threshold to classify blooms. However, such problems can be circumvented in 
our CIE-fluorescence algorithm. Created using ArcMap 10.4.
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Extended Data Fig. 5 | Sensitivity analysis of the impacts of aerosols on 
bloom detection. (a) Responses of bloom area (BA) to changes in aerosol 
optical thickness (AOT). Aerosol reflectance (ρa) with AOTs of 0.01 and 0.02 at 
869-nm is simulated and added to the MODIS images, and the resulting bloom 
areas (green pixels) with and without added ρa are compared. The left columns 

show the RGB composites, and the right three columns show the bloom areas 
under different AOTs. The percentages of BA changes are annotated in the 
panels. (b) The standard deviation between the 12 monthly mean values of AOT 
in global coastal waters (i.e., 66.7% of the intra-annual variability), and the 
histogram is shown in (c). Maps created using ArcMap 10.4.



Extended Data Fig. 6 | Comparison of different index-based algorithms in 
algal bloom detection in various coastal regions. Image-specific thresholds 
(annotated within the panels) are required (labeled within the panels) for RI50, 
ABI (estimated with FLHRrc)48, RBD51, KBBI51, and RDI52 to delineate accurate 

bloom areas (i.e., high nFLH values, which appear as bright and darkish features 
on the ERGB images). The left panels are the bloom areas (green pixels) 
extracted using our CIE-fluorescence algorithm. The RGB-true color and ERGB 
composites are shown in Extended Data Fig. 3. Created using ArcMap 10.4.
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Extended Data Fig. 7 | Annual median bloom count and the proportion of 
bloom-affected areas for large marine ecosystems (LMEs). (a) Annual 
median bloom count, (b) proportion of bloom-affected areas. The data are 

ordered from the largest to the smallest. The LMEs are grouped by continent, 
and their names, numbers, and locations are shown in (a) and (b). Map created 
using Python 3.8.



Extended Data Fig. 8 | Comparison of bloom counts in the estuarine and 
non-estuarine regions. Boxplots for long-term mean bloom count in the 
estuarine (n = 13,622 pixel observations) and non-estuarine (n = 361,604 pixel 
observations) regions. Comparison analysis was performed by two sided 
Welch’s t-test (P < 0.001).Upper and lower bounds are first and third quartiles, 
the bar in the middle represents the median value, and the whiskers show the 
minimum and maximum values. Sixty-two estuarine zones from large rivers 
were selected, and the boundary of each zone was manually delineated 
according to high-resolution satellite images.
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Extended Data Fig. 9 | Clusters of different bloom growth paths. (a) The 
spatial distribution of different clusters. The fractions of different clusters 
across different latitudes are summarized. (b) The development of the 
maximum bloom-affected areas within a year within 1° × 1° grid cells, where  
all global grid cells are grouped into three distinct clusters according to the 
similarity of the bloom growth curve. The colored bond curves represent the 
mean values of all the grid cells, and their mean SST and associated standard 

deviations are shown with dashed lines and gray shading. The proportions of 
different clusters in the global bloom-affected areas are annotated. (c) and (f) 
The mean timing of the maximum bloom-affected areas (TMBAA) and the 
associated standard deviations between 2003 and 2019. The whole year in the 
Southern Hemisphere is shifted forward by 183 days in (c). Maps created using 
Python 3.8.



Extended Data Fig. 10 | Changes in climate extremes, global fertilizer uses, 
and fishery production over the past two decades. (a) Changes in the 
bi-monthly Multivariate El Niño–Southern Oscillation (ENSO) index (MEI) 
between 2002 and 2020. Positive and negative MEI values represent EI Niño 

and La Niña events, respectively. The dots show annual mean values.  
(b–c) Trends of nitrogen and phosphorus from 2003 to 2019 for different 
countries. (d) Trends of fishery production from 2003 to 2018. Gray indicates 
no data. Maps created using ArcMap 10.4.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection The satellite data were obtained from the U.S. National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC).

Data analysis SeaDAS (Version 7.5) were used to analyze the satellite images.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
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- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The MODIS Aqua data can be obtained from the U.S. National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC).  
The in situ reported HAB data are available from events from http://haedat.iode.org. 
The Exclusive economic zones (EEZs) dataset is available at https://www.marineregions.org/download_file.php?name=World_EEZ_v11_20191118.zip. 
The boundaries of large marine ecosystems (LMEs) were obtained from https://www.sciencebase.gov/catalog/item/55c77722e4b08400b1fd8244. 
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Annual data between 2003 and 2019 on synthetic fertilizer use, including nitrogen and phosphorus, are available from https://ourworldindata.org/fertilizers. 
Annual aquaculture production includes cultivated fish and crustaceans in marine and inland waters, and sea tanks, and the data between 2003 and 2018 are 
available from https://ourworldindata.org/grapher/aquaculture-farmed-fish-production. 
The dataset is available from https://psl.noaa.gov/enso/mei/.
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study design whether sex and/or gender was determined based on self-reporting or assigned and methods used. Provide in the 
source data disaggregated sex and gender data where this information has been collected, and consent has been obtained for 
sharing of individual-level data; provide overall numbers in this Reporting Summary.  Please state if this information has not 
been collected. Report sex- and gender-based analyses where performed, justify reasons for lack of sex- and gender-based 
analysis.

Population characteristics Describe the covariate-relevant population characteristics of the human research participants (e.g. age, genotypic 
information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study 
design questions and have nothing to add here, write "See above."

Recruitment Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and 
how these are likely to impact results.

Ethics oversight Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description This study developed a novel method to map global coastal algal blooms and used this tool to examine satellite images between 
2003 and 2020, addressing three fundamental questions: 1) where and how frequently have global coastal oceans been affected by 
phytoplankton blooms? 2) have the blooms expanded or intensified over the past two decades, both globally and regionally? and 3) 
what are the potential drivers?

Research sample Three separate samples were selected. 1) MODIS Aqua images were used to develop the phytoplankton bloom extraction algorithm,  
2) MODIS Aqua images and were used to verify the reliability of the algorithm and the accuracy of the phytoplankton bloom 
extraction results, and 3) in situ reported HAB events from the HAEDAT dataset were used to validate the accuracy of the 
phytoplankton bloom extraction results.

Sampling strategy A total of 115 MODIS Aqua images were selected from the different locations where coastal phytoplankton blooms have been 
recorded in the published literature, of which 80 were used for algorithm development and 35 were used for algorithm validation. A 
total number of 2609 HAB events that occurred in the coastal area were selected from the HAEDAT dataset.

Data collection The HAEDAT dataset is a collection of records of harmful algal bloom (HAB) events , maintained under the UNESCO 
Intergovernmental Oceanographic Commission and with data archives since 1985.

Timing and spatial scale The satellite data were acquired from different seasons and across various phytoplankton bloom magnitudes between 2003 and 
2020, and HAB data from 2003 to 2020 in the HAEDAT dataset were used. 

Data exclusions No data were excluded from analysis.

Reproducibility Our results could easily be reproduced with existing datasets.

Randomization Excluding data affected by clouds, a total of 0.76 million MODIS Aqua images from 2003 to 2020 were used to extract phytoplankton  
blooms in global coastal area.

Blinding Not applicable in our study.
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