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[1] The uncertainty in carbon emissions from fire was estimated for the boreal region of
Alaska over the 50 years of recorded wildfire. Building on previous work where carbon
emissions were estimated using a geographic information systems-based model, the
uncertainty attached to the different parameters of the basic equation was assessed and
propagated through the equation using Monte Carlo simulation. The result is a distribution
of possible values for total carbon and three carbon-based gases (CO2, CO, and CH4) that
provides a measure of the uncertainty in the output estimates. Additionally, the relative
impact of each input parameter on the output uncertainty has been quantified (sensitivity
analysis). Assumptions were made in building the uncertainty model regarding the shape
of the distribution of each model parameter since this information is unavailable. Because
of the lack of information on the precision of input parameter estimates, a range of
possible spread values for the probability distributions, as defined by the coefficient of
variation (CV; standard deviation/mean), was considered. Using the ‘‘best guess’’ values
for input CVs, the resulting estimate of total annual carbon emission can be as high as
10.6 TgC or as low as 1.1 TgC, a CVof 24%. Lowering the input CVs to 5% results in an
output CV of 4.2% for total carbon emissions. For the three carbon-based gases the CV
of simulated carbon distributions for the ‘‘best guess’’ scenario ranges from 23 to 27%.
The sensitivity analysis reveals that ground-layer fraction consumed, bg, is the most
important parameter in terms of output uncertainty. The results of this work emphasize that
current estimates of carbon emission from biomass burning are not well constrained
because input data sets are incomplete and lack adequate error information. Furthermore,
we conclude that although burn area estimates are improving, more effort is needed in
quantifying fuel and consumption variables at fire sites if accurate estimates of carbon
emissions from fire are to be made. INDEX TERMS: 0315 Atmospheric Composition and Structure:

Biosphere/atmosphere interactions; 1615 Global Change: Biogeochemical processes (4805); 1694 Global

Change: Instruments and techniques; KEYWORDS: biomass burning, carbon cycling, Monte Carlo simulations
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1. Introduction

[2] In recent years, attention has been paid to understand-
ing the impact of wildland fire on atmospheric carbon
[Conard et al., 2002; Dixon et al., 1994; FIRESCAN
Science Team, 1996; Harden et al., 2000; Hinzman et al.,
2003; Kajii et al., 2002; Kasischke and Bruhwiler, 2002;
Kasischke et al., 1995a; Kasischke and Stocks, 2000; Stocks
et al., 2002]. Both the immediate and long-term effects of
fire are seen as important factors in carbon cycling, by
directly influencing levels of carbon-based gas in the

atmosphere. Although the problem of quantifying direct
emissions from wildland fire has received attention, very
little has been done to assess the uncertainty in the resulting
estimates. In studying the impact of fire on atmospheric
carbon, variations in vegetation structure, vegetation type,
soil carbon, weather, fuel moisture, and fire behavior need
to be considered. Models used in estimating carbon and
carbon-based gases released during biomass burning need to
account for these variables, either by directly including the
variable in the model or by acknowledging the inherent
variation within each model parameter.
[3] Much of the recent effort to improve estimates of

fire’s impact on the atmosphere has focused on improving
the estimates of how much land is subjected to fire (area
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burned) [Eva and Lambin, 1998; Fraser et al., 2000; A.I.
Sukhinin et al., unpublished manuscript, 2004]. In some
biomes, such as tropical savannahs, the amount of area that
is subjected to fire during a given time period is the greatest
unknown; vegetation and fire conditions in these regions are
such that variations are small in fuel and fire type. Boreal
forest ecosystems, however, support a broad range of fuel
types, with various densities and that burn in a variety of
severities depending on time of season, climate, etc. [Amiro
et al., 2001; Shvidenko and Nilsson, 2000; Stocks and
Kauffman, 1997]. Boreal fires are generally large and
relatively easy to map, and the larger fires represent 98%
of the total area burned within a year [Kasischke et al.,
2002;Murphy et al., 2000; Stocks et al., 2002]. In the boreal
regions, therefore, the largest uncertainties are likely the fuel
and fire conditions, which are more difficult to measure and
quantitatively characterize than area burned.
[4] In the study presented in this paper, we have

endeavored to quantify the uncertainty in estimates of
emissions from wildfire in Alaska based on the uncertainty
present in the model inputs. Such a propagation of
uncertainty extends the work presented in the work of
French et al. [2002] where GIS-based estimates of carbon
and carbon-based gases released from fire in Alaska were
described. The basic model used for this study is the same
as presented in the work of French et al. [2002] (see
below) and is based on the standard equation presented by
Seiler and Crutzen [1980]. The objectives of the research
were twofold:
[5] 1. Assess the uncertainty attached to the different

parameters of the basic equation, and propagate this uncer-
tainty using Monte Carlo simulation, yielding a distribution
of possible values for total carbon and three carbon-based
gases released during burning in Alaska.
[6] 2. Quantify the relative impact of each input param-

eter on the output uncertainty (sensitivity analysis) to
identify priorities in terms of data collection and informa-
tion accuracy.
[7] The purpose of this paper is to present the approach

and results of our propagation of uncertainty model that
illustrates how the various factors contribute to uncertainty.
We review the sources of uncertainty in estimating carbon
emissions, including the uncertainty of each model input.
We also discuss how the community can begin to improve
our understanding of emissions from wildfire by working
toward a common terminology and quantifying error in
measured or modeled data.

2. Estimating Carbon Emissions From
Boreal Fires

[8] As reviewed in the work of French et al. [2002],
calculating total carbon released during biomass burning
(Ct) is generally done by estimating the area affected by
fire along with the amount of fuel (carbon) consumed
during the fire [Amiro et al., 2001; Cahoon et al., 1994;
Conard and Ivanova, 1997; Conard et al., 2002; French et
al., 2000, 2002; Kasischke et al., 1995b; Seiler and
Crutzen, 1980; Shvidenko et al., 1995; Stocks, 1991].
The emission of a particular gas species (Eg) is calculated
from Ct using experimentally derived emission factors
(Efg), the ratio of gas released to total carbon released.

For the boreal region, the analysis is often separated into
two fuel components, the aboveground or aerial compo-
nent, which includes trees and shrub components above
the ground surface, and the ground-layer organic material
component, which includes ground surface vegetation and
fully to partially decomposed organic material in the upper
portion of the ground surface (also known as duff). This
separation is made because of the large differences in these
two pools in carbon content, fuel composition (quality,
moisture and other factors), and consumption during
burning. In estimating the contributions of each gas
species, the proportion of flaming and smoldering burning
is defined for each component to account for differences in
emission factors for the two combustion types. Typically
the amount of carbon dioxide (CO2), carbon monoxide
(CO) and methane (CH4) released from fires is estimated.
By separating carbon pools and combustion type, these
fundamental variables are accounted for within the model
parameter set. The following equations have been used in
modeling fire emissions in previous analyses [French et
al., 2000] and were used as a basis for calculations in the
current study:

Ct ¼ A Caba þ Cgbg
� �

ð1Þ

Eg ¼A Caba 0:8 Efg�f þ0:2 Efg�s

� �
þCgbg 0:2 Efg�f þ0:8 Efg�s

� �� �
;

ð2Þ

where A is the area burned (hectares, ha); Ca is the carbon
density of the aboveground component, which is assumed
to be 0.5 of the biomass (t ha�1); Cg is the carbon density of
the organic material found in the ground-layer, which is
composed of the litter and duff layers (t ha�1); ba and bg are
the proportions of the aboveground vegetation and ground-
layer organic carbon, respectively, consumed in the burn;
and Efg is the emission factor for each of three gas species,
CO2, CO, and CH4 (in units of gas released per unit of
carbon consumed).
[9] The analysis using (2) is carried out for each gas

independently. The f and s subscripts on the emission
factor terms in (2) refer to flaming and smoldering
combustion, respectively. For simplicity in understanding
fire emission uncertainty we have assumed that 80% of the
consumption in the aboveground happens in a flaming
combustion and 20% happens in smoldering combustion,
while 20% of ground-layer burning is flaming combustion
and 80% is smoldering combustion based on the rationale
presented in previous studies [Kasischke and Bruhwiler,
2002]. The analysis is performed with geographically
defined input data; for example, using spatially explicit
data on where the fire occurred and the carbon present at
the site, as well as consumption information specific to the
region of the burn.

3. An Approach for Assessing Uncertainty in
Carbon Emissions

3.1. Uncertainty in Model Inputs

[10] In developing a model of uncertainty, the error
present in each model term needs to be understood and
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statistically described. This error is then propagated
through the base model to come up with the distribution
of possible values for carbon and carbon gas emissions.
Error can be modeled statistically if enough measurements
are made. In the case of Alaska, the data used in
estimating fire emissions is, in some cases, limited, and
in other cases poorly documented and described, so
several assumptions were made in modeling the output
uncertainty (see model implementation section).
[11] Four types of parameters are used to quantify fire

emissions: area burned, carbon density, fraction of carbon
consumed, and emission factors. Estimates for the nine
parameters in (1) and (2) are described in detail in the work
of French et al. [2002]; the uncertainty in these input data is
described here.
[12] The map of area burned in Alaska originates from fire

records held by the Alaska Fire Service. These records
contain fire boundaries for 1950 to the present, with varying
levels of accuracy over the years [Kasischke et al., 2002;
Murphy et al., 2000]. From the records, a database of fires,
called the Alaska large fire database (LFDB), has been
created. It contains the digitized boundary of Alaskan fires
greater than 200 ha recorded since 1950. Errors are present
in the LFDB; in particular, unburned regions within a fire are
often unmapped, leading to an overestimate of total area
burned. Burn maps in some older records are difficult to
interpret and properly geographically locate, and the outer
boundary of the burn can also be poorly mapped, introducing
either overestimations or under-estimations from a disregard
of the complexity of the burn edge. Despite these defects, the
LFDB contains the most complete record of fire location and
timing for Alaska. Kasischke et al. [2002] have determined
that the database contains a reasonable sample of fire activity
for the last 50 years despite some missing records for the
early decades.
[13] According to Kasischke et al. [2002], missing maps

amount to approximately 15% of the total area burned. For
a similar LFDB for Canadian fires, Amiro et al. [2001]
assume an upper bound of 9% to 13% more than the input
estimate based on the fact that the fire maps used do not
include smaller fires (fires <200 ha), some fire records are
missing, and there is a small discrepancy due to complex
fire edges that may not be accurately represented in the
fire boundary maps. Unburned islands and nonfuel areas
within mapped burn areas, which are not accounted for in
burn boundary records, and inaccuracies in burn boundary
mapping define the lower error bound at 15% [Amiro et
al., 2001]. Fire records for Alaska are in similar form as
those for Canada, and so can be assumed to have similar
error sources.
[14] In our analysis, fuel consumption is derived by

combining estimates of carbon present in the aboveground
and ground-layer pools (Ca and Cg) and estimates of the
fraction of each carbon pool that was converted to atmo-
spheric carbon (ba and bg). While information related to
these parameters are available from soil and forest inven-
tories, and field-based observations collected during ex-
perimental burns, development of estimates of fuel
consumption in areas that burn in wildfires is much more
difficult to quantify than area burned for fire in boreal
regions. Examination of the error in each of these terms
has been minimal.

[15] For this analysis, estimates of Ca and Cg are drawn
from published maps on carbon density of Alaska for two
components, aboveground [Kasischke et al., 1995b] and
soil carbon (carbon in the top 30 cm of soil; Lacelle et al.
[1997]). These maps are derived from field data, with no
information on uncertainty.
[16] The ba and bg terms are defined by ecozone and

year of burn using a weighting method for fraction
consumed based on the assumed severity of fires in a
given year. Higher than average consumption is assumed
during high fire years, when at least twice the average
area has burned, while lower consumption is assumed in
low fire years, when less than half of the average area has
burned. The boreal region of Alaska is covered by three
ecozones, each with different consumption patterns, so the
consumption estimates are determined separately for each
ecozone. The weighting is similar to what was done by
French et al. [2000, 2002], but refined based on improve-
ments in our understanding of annual and seasonal fire
patterns [Kasischke et al., 2002]. Analysis of fire records
have shown that burning in later months of the fire
season (August and September), when conditions are
driest, occur almost exclusively in high fire years. Years
with low area burned typically burn within a 6-week
period in June and July, when sites are not as dry as later
in the summer. The weighting method for defining
consumption takes into account the higher levels of
burning due to these seasonal variations in burn condi-
tions. The result is a set of nine estimates of fraction
consumed for each carbon pool based on ecozone and
year of the burn (Table 1).
[17] The basis for the estimates of fraction consumed

for the Alaska Boreal Interior are field measurements of
aboveground and ground-layer consumption at burn sites
in interior Alaska [Kasischke et al., 2000]. According to
these field measurements, ba can range from 0.05 to 0.30
while bg can be as high as 0.90. However, areas where
consumption of ground-layer carbon is 0.90 are very
small, so mean fraction consumed values used for eco-
zone-wide estimates are never so high. Analysis of the
raw field data for the Alaska Boreal Interior reveals the
uncertainty in ba to be ±23%. The bg uncertainty is much
higher, ±46%, based on the field data.
[18] Emission factors have been determined from air-

borne sampling of smoke plumes. The uncertainty in these
sample measurements was determined from the reported
measurement uncertainty for three sampling missions
[Cofer et al., 1990, 1989, 1996]. Comparison of emission
factor measurements from these experiments shows that

Table 1. Estimated Fractions Consumed for Three Fire Year

Classes in the Three Alaskan Boreal Ecozonesa

Fire Year Class

Alaska Boreal
Interior

Boreal
Cordillera

Taiga
Plains

ba bg ba bg ba bg
High 0.26 0.19 0.17 0.41 0.28 0.10
Average 0.22 0.15 0.13 0.35 0.26 0.08
Low 0.15 0.10 0.09 0.25 0.22 0.06
Uncertainty, % ±23 ±46

aUncertainty is assumed to be the same for all ecozones.
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the uncertainty in these factors is collectively relatively
low.

3.2. Uncertainty Model Theory

[19] For each component of equations (1) and (2), the
model of input uncertainty takes the form of a probability
distribution that gives the set of possible values with the
corresponding probability of occurrence. Depending on the
type of information available, the distribution can take
simple forms (e.g., uniform, triangular, Gaussian) charac-
terized by a few parameters (e.g., minimum and maximum
values, mean, variance) that can either be inferred from
experimental data or correspond to ‘‘prior guess’’(a priori
information).
[20] The total amount of carbon released by wildfire (Ct)

in Alaska was assessed from a given number (K) of sites
that are known to have burned in the past 50 years. Let uk
denote the vector of spatial coordinates of the polygon
centroid corresponding to the k-th burn site, and A(uk) be
the area of that burn. The total carbon emission for Alaska
would then be:

Ct ¼
XK
k¼1

A ukð Þ Ca ukð Þba ukð Þ þ Cg ukð Þbg ukð Þ
� �

; ð3Þ

where each parameter in the model is now regionalized; that
is it has a value that is site-specific and depends on factors
related to its geographic location, including ecozone, soil
type, carbon density, etc.
[21] The uncertainty attached to model predictions of Ct is

assessed using a combination of stratified random sampling
of input parameters probability distributions and Monte
Carlo simulation [Goovaerts et al., 2001; Heuvelink et al.,
1989]. The basic idea is to sample randomly the different
distributions of input variables and to feed each combination
of sampled values (A(l)(uk), ba

(l)(uk), bg
(l)(uk),Ca

(l)(uk),Cg
(l)(uk))

into function (4) to retrieve the corresponding simulated
carbon value Ct

(l):

C
lð Þ
t ¼

XK
k¼1

A lð Þ ukð Þ C lð Þ
a ukð Þb lð Þ

a ukð Þ þ C lð Þ
g ukð Þb lð Þ

g ukð Þ
h i

: ð4Þ

[22] Uncertainty in model predictions for emissions
of each gas (Eg) is assessed with the same simulation
methodology.

E lð Þ
g ¼

XK
k¼1

A lð Þ ukð Þ C lð Þ
a ukð Þb lð Þ

a ukð Þ
h

0:8 E
lð Þ
fg�f þ 0:2 E

lð Þ
fg�s

� 	

þ C lð Þ
g ukð Þb lð Þ

g ukð Þ 0:2 E
lð Þ
fg�f þ 0:8 E

lð Þ
fg�s

� 	i
: ð5Þ

The concept is easy to understand but its implementation
can become computationally challenging as the number of
sites and input parameters involved increases, in particular
in presence of correlation among input parameters and/or
sites.

3.3. Model Implementation

[23] A Fortran-based program was written to implement
the uncertainty model. The program uses inputs for each
model parameter which originated as an ArcGIS1 attri-
bute table; they are the same data used by French et al.
[2002] with the exception of the consumption fractions
shown in Table 1. All of the data, except Efg for each gas
and combustion type, are held as spatially variable param-
eters within ArcGIS1-based tables; emission factors do
not vary across the region and are assumed constant for
each location. Information on each parameter, therefore, is
geographically defined, allowing a spatially explicit anal-
ysis of carbon released. The input data table contains a
list of ‘‘sites’’ representing a burn location with unique
information on the size of the site, the year of burn
(which allows an annual analysis), aboveground carbon
density, ground-layer carbon density, and ecozone, which
defines the fraction-consumed values. The input database
is shown graphically in Figure 1, which displays the
results of the analysis using equation (1) at each site,
the same analysis performed in our previous study
[French et al., 2002].
[24] Practical implementation of the Monte Carlo simu-

lation required making assumptions regarding the charac-
teristics (shape, spread) of the probability distributions of
input parameters since precise information is not available.
The uncertainty about the area burned was modeled using
a uniform distribution with minimum and maximum val-
ues set to 85% and 115% of the GIS-based estimates,
which amounts to considering a maximum error of ±15%.
The uncertainty about each of the four other input param-
eters was modeled using a Gaussian distribution centered
on the parameter estimates, as given in the ArcGIS1-based
table. Because the precision of input parameter estimates is
poorly known, a range of possible spread values for the
probability distributions, as defined by the coefficient of
variation (CV = standard deviation/mean) was considered
(Table 2).
[25] Another difficulty in implementation of the Monte

Carlo simulation was that probability distributions at
different sites could not be sampled independently since
for some parameters, such as b values, one might expect
a systematic overestimation or under-estimation of the
values for the different ecozones. To account for this
expected systematic under/overestimation of b values over
the three ecozones, the same random ordering was used
for the three zones. For example, if the upper tail of the

Table 2. Coefficient of Variation (CV) Values Used in Three

Uncertainty Model Runs

‘‘Best Guess’’
Uncertainty

Low
Uncertainty

High
Uncertainty

Area burneda 0.15 same same
Aboveground C 0.10 0.05 0.25
Ground-layer C 0.10 0.05 0.25
Aboveground b 0.23 0.05 0.25
Ground-layer b 0.30 0.05 0.25
Emission factor
flaminga,b

CO2

CO same same
CH4

0.02
0.09
0.15

Smoldering 0.03
0.06
0.08

aThe CVs for area burned and emission factors were the same for all
analyses.

bCalculated from Cofer et al. [1989, 1990, 1996] assuming 0.5 kgC/kg
biomass.
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probability distribution of ba for Boreal Cordillera is
sampled, the same part of the probability distribution of
ba for Alaska Boreal Interior and Taiga Cordillera is
sampled. As a consequence, some realizations of the
spatial distribution of b values over Alaska will be
characterized by high average values (where the upper
tail of the probability distributions at all K sites has been
sampled), while other realizations will display low aver-
age values (where the lower tail of the probability
distributions at all K sites has been sampled). In contrast,
the large number of categories for the other input param-

eters (e.g., 42 for Ca and 76 for Cg) coupled with their
independent sampling (no systematic over/under-estima-
tion of Ca and Cg values is envisioned for forest or soil
types) means that the average value of these parameters
over Alaska should be fairly constant across realizations.
In other words, the sampling of the upper tail of proba-
bility distributions for some categories would be balanced
by sampling of lower tail of probability distributions for
other categories.
[26] The sampling of probability distributions was per-

formed as follows:

Figure 1. Map of carbon emissions (t-ha�1) for 50 years of fire across the boreal regions of Alaska.
Estimates are the result of combining maps of fire occurrences with aboveground and ground-layer
carbon and expected fraction of carbon consumed in the fires as described in the work of French et al.
[2002] (see equation (1)).
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[27] 1. For each input parameter, the set of different
values (referred to later as ‘‘categories’’) found in the
database was retrieved. For example, nine values for ba
corresponding to three fire classes and three ecozones (see
Table 1).
[28] 2. For each category, a probability distribution

centered on the estimate found in the database is built at
each site. This distribution is then stratified into L equally
probable classes (number L is specified by the user; set at
2000 for calculations of Ct and 1000 for Eg) and a value
is randomly drawn within each class, yielding a set of
L-simulated values or realizations at each site. Finally,
these L values are randomly ordered. The same set of L
simulated values was used for all sites belonging to that
category.
[29] In creating the output distribution, the sampling

procedure is repeated many times (e.g., L = 2000 realiza-
tions) for different combinations of CV values for the
probability distributions of input parameters. The spread of
the resulting distribution of L-simulated Ct or Eg values
provides an assessment of the uncertainty attached to the
prediction of carbon emission from each site. Total carbon
and carbon gas emitted from Alaskan fires is then deter-
mined by summing results obtained at the individual site
level. To avoid generating negative simulated parameter
values, CV values larger than 30% were not used. The
range of a normal distribution is approximately six times
the standard deviation, hence there is a small (0.0013)
probability that negative values are generated if the stan-
dard deviation exceeds one third of the mean or, equiva-
lently, as the coefficient of variation exceeds 33%. To
avoid negative values, the program was written to flag any
instances of negative draws during a run, which happened
very rarely.
[30] Several scenarios were performed, related to high,

low, and ‘‘best guess’’ uncertainties (Table 2). The low input
CVs and high input CVs scenarios were run to help
visualize the impact of input CV on the results. The CVs
chosen for this exercise were arbitrarily determined for
illustration purposes only. The low CVs for the carbon
and consumption factors were set at 5%; the high CVs
were set at 25%. For these cases, the CVs for area burned
and emission factors were not changed since these uncer-
tainties are fairly well known and, in the case of EF, are
small.
[31] The ‘‘best guess’’ CVs were defined based on our

best assessment of the magnitude of measurement errors
as discussed above; most are between the high and low
scenarios, but not all, since the high and low cases are
chosen for demonstration only. Data for the fuel and
consumption model parameters are sparse, so defining the
‘‘best guess’’ CVs is somewhat arbitrary. ‘‘Best guess’’
estimates of uncertainty for ba was set at 0.23 to match
the limited field data available from Alaska. The ‘‘best
guess’’ CV for bg was set at 0.30, although field data tell
us that the uncertainty is higher. This is due to limitations
of the Monte Carlo sampling procedure, which limits
input CV to less than 33% to avoid negative values in
the output distribution. ‘‘Best guess’’ estimates of uncer-
tainty in the aboveground carbon density values were set
at 10%, based on a report regarding uncertainty in
aboveground biomass estimates from forest inventory data

in Russia [Alexeyev et al., 2000] since no information on
the precision of the actual input data is available. The
ground-layer uncertainty was arbitrarily set at 10% (the
same as the aboveground CV) since no uncertainty data
are available.
[32] The output of the uncertainty model is a set of

results for Ct and Eg for all of Alaska over the 50 years
of fire records and for a selection of individual sites. The
detailed results of calculations at individual sites are
shown as examples of the types of results possible at
the site level; they were randomly chosen. The distribu-
tion of the L realizations is given for the total carbon
and each carbon-based gas released, which was then
annualized to come up with a distribution of results for
the average annual emissions. An analysis of four indi-
vidual years was also conducted to compare difference in
results from high to low fire years and with other
studies.
[33] Using the uncertainty model, a sensitivity analysis

was performed for calculating Ct. The relative impact of a
particular input parameter on output uncertainty was esti-
mated by the increase in the spread of Ct values as larger
coefficients of variation were considered for the probability
distribution of that parameter. This increase was computed
on average for all possible combinations of CV values for
other input parameters. This analysis was completed by the
computation of correlation coefficient and partial R2 be-
tween CVof Ct values and CVof input parameters, allowing
one to assess how much of the variability in total carbon
values is due to the different input parameters. Such
sensitivity analysis can become computationally expensive
if a large number of different CV values is used for all input
parameters, so for this analysis five levels of CV were
considered. They ranged between 5 and 25% for four
parameters, Ca, ba, Cg, bg. In light of the computation load
that multiple parameters entails, the sensitivity analysis was
not performed for Eg. This is acceptable because uncertainty
in the Efg values is known to be much smaller than for the
other variables, so their impacts would not be the most
critical to the results.

4. Uncertainty Model Results

[34] The uncertainty model output is a set of predictions
from the L-realizations generated. The simulated mean
should approximate the actual emission estimate obtained
from calculating emissions with the original input values
(held in the GIS-derived input table). For all runs the
model-predicted mean emission estimate came within
0.1% of the original emission estimate, indicating that
the uncertainty predictions are being properly calculated
(Table 3).
[35] Using the ‘‘best guess’’ values for input CVs, the

simulated average annual total carbon emissions (Ct) from
Alaska over 50 years range from 1.1 to 10.6 TgC-yr�1

(1 Tg equals 106 tons (t) or 109 kg), with an output CV of
24% (Figure 2a and Table 3). Improving the input CVs to
an optimistic 5% for the fuel and consumption parameters
results in an estimate that ranges between 4.9 and
6.7 TgC-yr�1 with a CV of 4%; the mean is similar to
the ‘‘best guess’’ case, while the resulting distribution of
predicted values is much more narrow. The ‘‘high uncer-
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tainty’’ case (CVs of 0.25 for the fuel and consumption
parameters) shows that if confidence in the carbon density
values is worse than expected, but the estimation of
ground-layer consumption improves, the result is mixed.
Output CV for individual sites is larger than in the ‘‘best

guess’’ case, but the region-wide case improves because of
the strong influence of the ground-layer consumption
values on region-wide uncertainty (see discussion below).
[36] For three example sites (Figures 2b–2d), the CVs of

simulated carbon distributions for the ‘‘best guess’’ scenario
are 24%, 32%, and 22%; the median CV of all of the site-
specific predicted emissions is 27%. The CV for Ct, 24%, is
expected to be on the lower end of the ones observed at
individual sites because of site averaging. When summing
site-specific predicted values to compute the total amount of
carbon released (Ct) over Alaska, some variability is aver-
aged out: Overestimation at some sites is compensated for
by under-estimation at other sites. This result is better
demonstrated in the low input CV cases, where the
Alaska-wide CV for emissions uncertainty is 4% while
the site-level CVs are near 10% (Table 3). Another conse-
quence of the averaging process is that the histogram of
predicted total carbon release is symmetric (application of
the central limit theorem), while at some individual sites the
histogram is slightly skewed, usually positively (smaller
proportion of high values and mean higher than median).
Looking at results from individual years reveals that uncer-
tainty in Ct tends to increase slightly as annual area burned
decreases (Table 4). This can be attributed to compensation
through averaging in years when more area has burned.
[37] Similar results are obtained when predicting emis-

sions of three carbon-based gases, Eg (Table 4 and Figure 3);

Table 3. Total Carbon Emissions (Ct) for Alaska (Average Annual

Emissions, in Tons of Carbon (tC)) and Three Example Sites Using

Three Sets of Input CVsa

Alaska, tC/year Example Sites, tC

Original Emissions Estimate
5,860,302 2331 449,097 895,371

‘‘Best Guess’’ CVs
Predicted average 5,860,711 2332 448,756 894,874
Standard deviation 1,382,497 559 142,393 193,031
CV 0.236 0.240 0.317 0.216

Low CVs
Predicted average 5,860,308 2331 449,039 895,305
Standard deviation 244,285 236 49,059 88,694
CV 0.042 0.101 0.109 0.099

High CVs
Predicted average 5,861,122 2331 448,710 894,728
Standard deviation 1,216,967 649 159,972 235,976
CV 0.208 0.278 0.357 0.264

aSee Table 2.

Figure 2. Distributions of total carbon emissions predictions from the uncertainty model for (a) mean
annual emissions from Alaska, and (b–d) three example sites. Example sites were arbitrarily chosen to
demonstrate the results at individual sites. Number of realizations (L) = 2000.
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uncertainty ranges from 23% to 27%. There is less uncer-
tainty in CO2 estimates than the two other gases because of
less variation in the emission factors for CO2 than CO or
CH4 (see Table 2).
[38] Our emissions estimates compare well with recent

studies. Because mean data inputs for fractions consumed
and emission factors varied between this study and our
previous study [French et al., 2002], the outputs are not the
same. Using our estimates of uncertainty from this study,
however, the results do agree. The results also agree with
Goode et al. [2000] who estimate that 46 ± 11 Tg of CO2

emitted from 1997 Alaskan fires.
[39] In assessing the impact of the four input parameters

on uncertainty in Ct, we find, as expected, the less certain
the input parameters, the more variability in carbon pre-
dictions (all values in the sensitivity analysis table are
positive), although for some of the parameters the increase
is of small magnitude (Table 5). The most influential
variables are Cg and bg which represent the carbon emis-
sions originating from ground layers. Because Cg and bg are
multiplied in the carbon model, their respective influence
cannot be discriminated in the sensitivity analysis. The same
comment applies to Ca and ba. Clearly, the ground-layer
fraction consumed, bg, is the most important parameter in
terms of output uncertainty. The reasons are threefold:
(1) this parameter multiplies the amount of ground-layer
carbon, which is on average twice the amount of above-
ground carbon, hence has a larger impact on the total
amount of carbon released; (2) only nine different estimates
are used over all of Alaska; and (3) the bg values have not

been simulated independently over the three ecozones
because of the assumption that the values for the ecozones
would be jointly under-estimated or overestimated. Conse-
quently, some realizations will be characterized by high
simulated bg values at all sites, leading to high simulated
values. Conversely, other realizations will have low simu-
lated bg values at all sites, resulting in low simulated Ct

values. Thus, the distribution of all simulated carbon values
will tend to have a large range (hence large coefficient of
variation) in presence of high uncertainty regarding bg
values. This result is confirmed by the partial R2 that
indicates that 95% of the variance of Ct values is explained
by CV of local probability distributions of bg values
(Table 5).

5. Reducing Uncertainties in Model Inputs:
The Steps Beyond Estimating Area Burned

[40] The uncertainty in estimates of emissions from fire
can originate from both the construction of the emissions
model and the input data. Early studies of boreal fire
emissions considered only the aboveground carbon pool
[Seiler and Crutzen, 1980], neglecting large carbon pools in
the ground-layer. They often used average estimates for the
input values over large regions [Cahoon et al., 1994] rather
than regionalizing the input data (as in the work of Amiro et
al. [2001], French et al. [2000, 2002], and Kasischke et al.
[1995b]). These generalizations were warranted in early
analyses when it was apparent that information on the
amount of fire in the boreal region was unclear. Their main

Table 4. Predicted Total Emissions and Uncertainty in Estimated Emissions of Carbon and Three Carbon-Based

Gases for Average Annual Fire in Alaska and Four Individual Years

Average
Annual 1990 1997 1994 1989

Area burned, ha 261,558 1,228,554 703,302 103,334 20,464

Total C Emissions (tC)
Average 5,860,711 30,948,599 16,270,248 1,706,643 348,054
Standard deviation 1,382,497 7,299,560 3,976,713 410,391 86,878
CV 0.236 0.236 0.244 0.240 0.250

Total CO2 Emissions (tCO2)
Average 16,229,446 85,773,334 44,942,342 4,715,489 961,679
Standard deviation 3,703,048 19,683,969 10,907,079 1,098,207 243,000
CV 0.228 0.229 0.243 0.233 0.253

Total C Emissions As CO2 (tC)
Average 4,429,283 23,408,957 12,265,506 1,286,935 262,458

Total CO Emissions (tCO)
Average 1,745,088 9,176,084 4,881,808 511,375 105,001
Standard deviation 436,230 2,316,359 1,290,857 131,738 28,988
CV 0.250 0.252 0.264 0.258 0.276

Total C Emissions As CO (tC)
Average 748,302 3,934,751 2,093,344 219,280 45,025

Total CH4 Emissions (tCH4)
Average 64,632 339,035 181,400 18,981 3903
Standard deviation 17,268 90,879 50,571 5185 1115
CV 0.267 0.268 0.279 0.273 0.286

Total C Emissions As CH4 (tC)
Average 48,389 253,831 135,811.86 14,211 2922
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intent was to produce first-order estimates of emissions
using the best available information on burn area. Now,
however, data on burned area has improved through more
careful analysis of fire records and the introduction of
remote sensing-based fire area estimations [Fraser et al.,
2000; Stocks et al., 2002; A.I. Sukhinin et al., unpublished
manuscript, 2004], calling for more detailed attention to the
fuel and fuel consumption parts of the problem. In most
recent analyses, the consumption portion of the models has
become more complex than the original approach of Seiler
and Crutzen [1980] by separating variation in consumption
based on fuel type, geographic location, and other factors.
[41] Other analyses of fire emissions have used model

parameters or approaches different than those shown in (1)
and (2). Amiro et al. [2001] used an approach to estimate
total carbon emissions from Canada which was similar to
(1), including separate consideration of aboveground and
surface fuel components, but they employed a fire behavior
model to estimate fuel consumption at each fire site rather
than separately estimating fuel amounts and fraction of the
material consumed as done in our study. In their case, fuel
and the proportion of fuel consumed are linked within the
prediction model. Assumptions are made about carbon
density (fuel load) based on ‘‘type,’’ and the variability in
density is captured within the classifications of fuel type,
rather than explicitly within the model as in the model we
have used. There has been a consensus, however, in boreal

forest fire emissions estimation, that carbon and burning in
the aboveground component are different from carbon and
burning in the ground layer, leading to models which
explicitly define input variables for each component. This
distinction is not as important in systems where one
component is the predominant source of carbon emission;
in those systems, variation in burning can be accounted for
as an uncertainty in the input parameter data rather than in
the structure of the model. As improvements are made in
our understanding of boreal fire emissions, the construction
of the model should be reviewed to separate out variables
that could help refine the emission estimates or combine
parameters which need not be separate.

Figure 3. Distributions of predicted mean annual emissions of (a) CO2, (b) CO, and (c) CH4 for Alaska.
Number of realizations (L) = 1000.

Table 5. Results of Sensitivity Analysis Showing Increases in

Carbon Emission Uncertainty as Input CV Increases at 5%

Intervals

CV for Input
Parameters

CV Increase for Carbon Emission

Ca ba Cg bg
0.0000 0.0000 0.0000 0.0000 0.0000
5.0000 0.0000 0.0007 0.0003 0.0137
10.0000 0.0002 0.0032 0.0018 0.0426
15.0000 0.0005 0.0073 0.0045 0.0764
20.0000 0.0010 0.0124 0.0080 0.1120
25.0000 0.0017 0.0186 0.0122 0.1485
Correlation coefficient 0.12 0.01 0.10 0.98
Partial R2 0.000 0.015 0.010 0.957
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[42] The scale of the emissions analysis, or the require-
ment of the study, can also dictate what model parameters
are needed and how they are defined. The area burned term
(A) and the fraction consumed terms (b) can both account
for the spatial impact of fire. At coarse scales, the area
burned may be defined as the amount of area where some
percent of the material is consumed. This may be dictated
by the measurement precision, in the case of a remote
sensing-based estimate of burn area, or by the objectives
of the study. At a finer scale, a location designated as
unburned in a coarse-scale analysis may actually have
burned in a very light burn, dictating a designation of
burned but with a low consumption fraction. Depending
on the scale and situation, therefore, the burn area and
consumption terms could be combined into a ‘‘level of
burning’’ designation, rather than a definitive burn/unburn
designation, for each location.
[43] For the study presented here, the inputs are drawn

from existing data. Assumptions regarding the mean input
values, the uncertainty in the mean values, and the charac-
teristics of the probability distributions of the input variables
were necessary because of the paucity of data available for
most of the model parameters. A large source of uncertainty
in emissions estimates using the methods presented here
derives from the estimation of carbon held in the various
pools subjected to fire. Data for these inputs are sparse. In
our study we used data collected at a few sites across Alaska
that had no information on uncertainty. The CV values used
for our ‘‘best guess’’ scenario are based on the limited
evidence available, where possible. In the case of Cg, no
uncertainty information on the data used or any similar data
set is available, so we chose 10%, the same value used for
the aboveground carbon uncertainty. It is likely that this
value is lower than the true uncertainty, and it is very
possible that the input mean values are not accurate. This
type of data gap limits the usefulness of the results we have
found, but shows that our knowledge of carbon (fuel) pools
is poor.
[44] Much of the output uncertainty found in this analysis

results from having nonsite specific information for the
consumption values, due to our general lack of spatial
information for consumption. We know from site specific
field data and analysis that within a single burn there can be
highly variable fuel consumption [Isaev et al., 2002;
Michalek et al., 2000]; however, we have very little infor-
mation on how consumption varies across the entire region.
Better, spatially defined consumption values would help
minimize the impact of this term on the overall uncertainty
in emissions. For example, the model could define con-
sumption based on ecosystem type rather than ecozone.
These values could then be modeled as independent factors,
rather than assuming, as we did, a systematic overestimation
or under-estimation of the values for the different ecozones,
which created higher uncertainty when propagated through
the model.
[45] Data are lacking for some ecosystems types, limiting

implementation of an ecosystem type-based approach.
Amiro et al. [2001] estimated consumption for each burn,
but their work assumed that the landscape comprised
‘‘typical’’ fuel types, which may have led to an under-
estimation of total emissions from not including situations
such as burning in peatlands or re-burn areas. It is estimated

that 15 to 20% of the boreal forest region is covered by
peatlands [Kasischke, 2000], which can hold very large
carbon reserves. Turetsky et al. [2002] and Turetsky and
Wieder [2001] have shown that significant levels of organic
soil can be consumed during fires in boreal peatlands, but
the current data for carbon density and consumption have
not properly accounted for burning in this cover type. High
levels of carbon can be consumed in very dry years, when
many observations of fire’s impacts have been made. This
may mean our understanding of peatland burning is biased
toward dry/severe fires. However, it is unclear if emission
from fire in peatland are over or under estimated since little
work has been done to systematically measure this situation.
More data are needed for peatland and other ‘‘nontypical’’
ecosystems types if we are to properly define consumption
across the boreal region.
[46] In addition to improving the emissions model and

input data, there are also some improvements that can be
made to the uncertainty model itself. First, since we know
that fire records and the maps of burn area are more
complete and accurate in recent years [Kasischke et al.,
2002], the model could allow varying uncertainty in the
burn area term (A) by year. Similarly, we may be able to
have spatially varying input CVs if, for example, we have
better estimates of Ca in one region than another. In
addition, once more is known about the input data, the
assumptions regarding the distribution of the input data can
be refined to create probability distributions for the simula-
tion which may be more complex than the Gaussian and
uniform distributions used here.
[47] For the analysis presented here, we have tried to

account of the range of uncertainty in the set of model
parameters shown in (1) and (2). It is important to recog-
nize, however, that researchers have disparate definitions of
some of the commonly used input variables used in mod-
eling emissions, because researchers come from a variety of
backgrounds (traditional site-level ecology, fire science,
atmospheric science, remote sensing, global climate mod-
eling). The result can be a disparity between the required
input data, as the model is constructed, and the data that are
actually available and used as inputs. An example is the
biomass or carbon density parameters (Ca and Cg in this
study). Some researchers measure and work with biomass or
fuel that is potentially subject to burning in a fire; the term
‘‘available fuel’’ is often used. Some measure and work
with total fuel or with carbon stocks. Sometimes these data
originate from forest inventories, and sometimes from field
measurements designed for fire emissions research. All of
these terms connote different portions of the carbon held in
a terrestrial ecosystem, and each can be quantified in
various manners. The distinction between the needs of the
model and the data available for modeling are often not
made or stated in fire emission studies. It will be very
important, as more work is conducted in this field, to better
define the terms used in models and to be sure that the
measurements made are appropriate for populating the data
inputs for the model parameters of interest.

6. Conclusions

[48] This paper presents a general approach for propaga-
tion of error and assessment of the uncertainty given model
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inputs and their statistical characteristics. The results of our
analysis add to our understanding of the uncertainty in
estimates of fire emissions from Alaskan wildfire; more
importantly, the exercise was quite valuable for learning the
problems associated with emissions estimation. The results
of this work show that current estimates of carbon emission
from biomass burning are not well constrained because our
base data sets are incomplete and lack adequate error
information. The analysis shows that improvement in mea-
surements and measurement uncertainty will improve our
estimates of fire-related emissions, especially at the regional
level (see Table 3). From this work, it has become apparent
that data are not available to assess uncertainty properly in a
simple model. In the future, attention should be given to
creating data sets that include uncertainty estimates so that
calculations made using these data sets can be properly
interpreted. Additionally, improvements must be made in
characterizing fuels and fuel consumption in less-typical
forest types, such as peatlands and areas that re-burn within
a few years. The exercise presented in this paper points out
the extensive work needed to improve estimates of carbon
emissions from biomass burning beyond simply quantifying
area burned.
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