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ABSTRACT
The current generation of geostationary Earth-observing satellites 
provide spectral bandpass, spatial resolution and imaging frequency 
characteristics well suited to near-continuous active fire detection 
and monitoring. The earliest of these systems-SEVIRI on-board 
EUMETSAT’s MSG series-has operated since 2004, and more recently 
the capability has been expanded globally with the ABI on-board 
NOAA’s GOES-16 and GOES-17 satellites, and the AHI on-board JMA’s 
Himawari-8 and Himawari-9. At present, the NOAA and EUMETSAT 
operational geostationary active fire products are available based on 
two different algorithms: the Fire Detection and Characterization 
(FDC) product operating with data from GOES-16 and −17, and 
FRP-PIXEL active fire products from GOES, Himawari and MSG. We 
have conducted a comprehensive accuracy assessment of these 
geostationary fire products across two seasons (1 January–31 March 
2020 and 1 July–30 September 2020), based on comparison to 
Landsat active fire detections made simultaneously (±5 minutes of 
geostationary overpass time) with the geostationary data. Compared 
to Landsat we find (i) low false alarm rates, ranging between 4%–7% 
(FDC) and 2%-6% (FRP-PIXEL)- depending on the season and hemi-
spheric-disk for high confidence pixels, (ii) a reduction in this false 
alarm rate for FDC due to algorithm changes made since our prior 
(2018) validation effort (48% false alarms in summer 2018 compared 
to 4% in summer 2020 for high confidence pixels), and (iii) compar-
able active fire pixel detection rates for the FDC product (high con-
fidence fire pixel classes only) and the matching FRP-PIXEL product 
(all fire pixel confidence classes). Overall, the performance of these 
geostationary products is shown to be strong and complementary in 
that the FRP-PIXEL product has fewer false alarms but a lower detec-
tion rate, whereas the FDC product detects more fire pixels but with a 
much higher false alarm rate.
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1. Introduction

The current generation of geostationary weather satellites, which include the NOAA 
Geostationary Operational Environmental Satellite (GOES) R-Series, the European 
Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Meteosat 
Second Generation (MSG), and the Japan Meteorological Agency (JMA) Himawari plat-
forms, now include explicit active fire monitoring capabilities in addition to generic 
refinements in spatial and temporal resolution as well as radiometric performance. The 
Advanced Baseline Imager (ABI) on-board the GOES-16, GOES-17 and GOES-18 satellites 
and the Advanced Himawari Imager (AHI) on-board the Himawari-8 and Himawari-9 
satellites were designed with similar specifications, allowing for an easier intercomparison 
between the three hemispheric-disks, whereas the MSG Spinning Enhanced Visible and 
Infra-Red Imager (SEVIRI) sensor has been operating for considerably longer and has 
characteristics roughly between the previous generation GOES and ABI/AHI (Table 1/ 
Figure 1). MSG will be replaced by the even more capable Meteosat Third Generation 
(launched December 2022) within the next few years.

Active fire detections are one of the most frequently accessed Earth observation land 
products and are used in a wide range of applications, including emissions modelling (e.g. 
Li et al. 2019; Mota and Wooster 2018), land use/land cover mapping (e.g. Millones et al.  
2017; Vetrita and Cochrane 2020), and disaster mapping (e.g. Davies et al. 2008; ESRI  
2021). However, to date, polar-orbiting sensors have provided the active fire data for most 
fire research and many operational applications, primarily due to their global coverage 
and finer spatial resolution compared to geostationary sensors (e.g. Eva and Flasse 1996; 
Giglio, Schroeder, and Justice 2016; Schroeder et al. 2014; Wooster et al. 2021). However, 
despite their larger pixel sizes (Figure 1), modern geostationary imaging now provides an 
unrivalled temporal sampling of fire activity. GOES ABI on-demand mesoscale imaging 
can cover a region as often as every 30 seconds. This capability offers considerable 
advantages in uses where near-continuous monitoring of the highly dynamic nature of 
fire activity throughout the day and night is required (Freeborn et al. 2009; Giglio 2007; 
Prins et al. 2001; Schmit et al. 2017; Wooster et al. 2021), and has shown significant 

Table 1. Key advances in the latest generation of NOAA and EUMETSAT geostationary Earth observing 
satellites, compared to their predecessors. Table adapted from (Hall et al. 2019).

Geostationary Sensor

Spatial 
Resolution* 

(km) 
at nadir

Spectral 
Bands

Mid-wave Infrared Channel 
Saturation** (K)

Full-Disk Temporal 
Resolution (min)

Previous Generation GOES 
Imager

4 5 335 180

GOES-R ABI 2 16 400 10
Meteosat First Generation 

MVIRI
5 3 250 30

Meteosat Second Generation 
SEVIRI

3 12 335 5–15

Previous Generation 
Himawari-7 (MTSAT-2)

4 5 330 30

Advanced Himawari Imager-8 
& 9

2 16 400 10

*Applicable to the mid-wave infrared channel used in active fire detection. 
**Saturation as specified, actual instrument saturation temperatures vary and can change over time.
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benefits in both operational and research applications (e.g. Vosloo, Momberg, and 
Josephine 2010; Baldassarre et al. 2015; Roberts et al. 2015; Lindley et al. 2020; Mueller 
et al. 2020).

Multiple agencies produce active fire products from the geostationary sensors whose 
footprints are shown in Figure 1. Here we focus on the GOES ABI Fire Detection and 
Characterization (FDC) product (Schmidt et al. 2020), which builds upon the heritage of 
the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) first developed in the 
early 1990s, and the FRP-PIXEL product first generated for MSG SEVIRI with the 
Geostationary Fire Thermal Anomaly (FTA) algorithm (Roberts and Wooster 2008; 
Wooster et al. 2015), but now includes the ABI- and AHI-based versions of the FRP- 
PIXEL product generated using an adaptation of the FTA algorithm. The growing use of 
these data in online multi-satellite fire monitoring systems (e.g. NOAA’s Hazard Mapping 
System (HMS) [https://www.ospo.noaa.gov/Products/land/hms.html#maps] and NASA’s 
Fire Information for Resource Management System (FIRMS) US/Canada [https://firms2. 
modaps.eosdis.nasa.gov/usfs/]) makes it particularly important to document and compare 
the characteristics and performance of these data sets.

Here we evaluate the geostationary FDC and FRP-PIXEL active fire products against near- 
simultaneous Landsat active fire reference maps. A previous Landsat-based evaluation of 
the NOAA GOES-16/ABI FDC and the MSG SEVIRI FRP-PIXEL product performances was 
undertaken for the year 2018 over their respective hemispheric-disks (Hall et al. 2019). The 
results of our initial validation not only highlighted important issues regarding the respec-
tive detection algorithms, but also demonstrated nontrivial differences between the see-
mingly complementary FDC and FRP-PIXEL products. Since the 2018 validation effort, 
various changes were made to the GOES-16 FDC product in particular (see Section 2.1) 
that necessitate this updated product accuracy assessment, as well as the subsequent 
availability of the GOES-17 ABI FDC product (in August 2018) and operational FRP-PIXEL 
products for the GOES-16/17 and Himawari-8 disks (Xu et al. 2021).

Figure 1. Spatial coverage and pixel area (km2) of the GOES-16, GOES-17, MSG, and Himawari disks. 
The pixel footprint increases systematically from each sensor’s sub-satellite point. At the time of 
analysis, the MSG-Indian Ocean Data Coverage (IODC) active fire product was not routinely available 
from the EUMETSAT LSA SAF (https://landsaf.Ipma.pt/en/) and so it is not included on this figure.
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We begin with an overview of the two active fire products (Section 2; Supplementary 
Table SA), followed by an updated seasonal validation and quality assessment over the 
GOES-16, GOES-17, and Himawari-8 hemispheric-disks (Section 3). Analysis of the ABI FDC 
product from the most recently launched GOES-18 satellite, positioned near the current 
GOES-17 orbital location, is not included in this study. Finally, we summarize our findings 
and conclude with future directions and provide guidance on using these geostationary 
data in a global context (Section 4).

2. Geostationary active fire products

2.1. Fire Detection and Characterization (FDC) Product

The 2-km NOAA ABI FDC product (Schmidt et al. 2020) is generated using an algorithm 
that builds on that first used to generate the GOES WF_ABBA products made fully 
operational in 2002 (Justice et al. 2002; Prins et al. 1998; Prins and Menzel 1992; 
Schmidt 2020). ABI FDC data are acquired every 10 minutes for the entire disk, every 5  
minutes for the conterminous U.S. (CONUS; GOES-East) or Pacific US (PACUS; GOES-West) 
sectors, and every 30–60 seconds for the mesoscale sector (GOES-R 2021). Prior to April 
2019 the temporal resolution of the full disk products was 15 minutes. Fire pixel locations 
are not terrain-corrected, but rely on the standard ABI navigation which utilizes a GRS80 
ellipsoid (NOAA 2019). This introduces a positioning error relative to other platforms that 
can be on the order of several kilometres depending on terrain elevation and view zenith 
angle. For the assessment conducted herein we used the FDC 10-minute full disk product 
for both the GOES-16 and 17 satellites, and adjusted the matching distance to the 
reference Landsat-based active fire data to account for the data navigation offset (see 
Section 3.1).

The FDC product includes active fire pixel locations along with sub-pixel fire character-
istic information (e.g. fire radiative power; FRP), and other pixel-level metadata. The pixel- 
level metadata classification system denotes the various levels of confidence as a function 
of the processing conditions as well as fire pixel persistence. Two mirroring sub-groups 
are identified in association with fire pixel classes 10–15 and 30–35 (Table 2). The former 
defines instantaneous (first/single) fire detections whereas the latter identifies temporally- 
filtered cases when two or more co-located detections are observed within a 12-hour 
interval when compared against a mask containing fires since NaN Invalid Date (Schmidt 
et al. 2020). The highest confidence fire pixels are assigned classes 10/30, whereas classes 
11/31 identify a saturated fire pixel, and classes 12/32 define a potential cloud-contami-
nated fire pixel. The remaining fire pixel classes describe lower overall confidence levels, 

Table 2. FDC fire pixel class definitions (Schmidt 2020).
FDC Fire Pixel Class 
(instantaneous/temporally-filtered) Definition

10/30 Processed fire pixel
11/31 Saturated fire pixel
12/32 Cloud contaminated fire pixel
13/33 High probability fire pixel
14/34 Medium probability fire pixel
15/35 Low probability fire pixel
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with decreasing probability of actual fire confirmation as we progress from classes 13/33 
to classes 14/34 and 15/35 (Schmidt et al. 2020). The metadata also flags which pixels 
were not processed due to their surface type, the presence of opaque clouds, and/or 
block-out zones near the sub-solar point and near where the satellite and solar zenith 
angles are equal.

The product requirements for the FDC were driven by the needs of the WF_ABBA’s 
broad user base that utilizes the data in different ways and thus has varying requirements 
for accuracy and varying tolerances for false positives. In particular, lower probability 
active fire pixel classes (13/33–15/35) typically represent relatively weak and/or ambig-
uous fire signals, but can also include image features most commonly caused by reflec-
tions from clouds or the ambient land surface – leading to higher false alarm rates in those 
cases (see Hall et al. 2019 for examples).

Since our previous accuracy assessment (Hall et al. 2019), several improvements have 
been made to the FDC algorithm. Readers are referred to (Hall et al. 2019) to understand 
the performance of the FDC product prior to April 2019, when the first change was 
applied to the data stream. The effects of this and additional subsequent changes can 
be seen in the time series of fire pixel classes (Figure 2). At present, the FDC product has 
not been re-processed with the most up to date algorithm. The FDC product metadata 
unfortunately do not provide publicly interpretable information about product and 
algorithm changes (e.g. version number), thus users should be cautious when under-
taking longer-term time series analysis with these data. For the GOES-16 FDC processing 
stream, the first distinct change occurred on 8 April 2019, when the temporally-filtered fire 
pixel classes 30–35 began appearing in the FDC product (previously such classes could 
not occur due to a software error). The next distinct change occurred on 25 July 2019 as a 
result of targeted algorithm tuning. On 23 October 2020, an additional GOES-17-specific 
update was implemented in the FDC product to mitigate the loop heat pipe (LHP) 
subsystem anomaly causing degradation of infrared channels on the ABI sensor. Given 
that this algorithm adjustment was made after our initial 2020 analysis, we opted to 
regenerate the affected GOES-17 FDC product using an internal-NOAA version of the FDC 
algorithm (August 2022) over our 2020 validation periods in order to capture the impact 

Figure 2. GOES-16 FDC algorithm changes resulted in two abrupt discontinuities in the FDC active fire 
product: 8 April 2019 and 25 July 2019. There were no noticeable discontinuities in the FDC classes 
after July 2019. See Table 2 for class definitions.
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of the recently implemented changes. Until NOAA can reprocess the full ABI archive, there 
is no way to revalidate the current FDC product without amassing an entirely new 
Landsat-8 validation reference data set (see Section 3). Therefore, although this 2020- 
reprocessed version (hereafter referred to as 2020 R) is not the operational data product, it 
is still representative of its performance. Given the similarities in algorithm performance 
between the original 2020 FDC and the reprocessed 2020 R FDC outputs, the majority of 
the results will highlight the performance of the 2020 version (official operational algo-
rithm) with the pertinent 2020 R results included in the supplementary material.

2.2. Fire radiative power (FRP-PIXEL) products

The EUMETSAT Satellite Application Facility for Land Surface Analysis (LSA-SAF) has 
generated the Meteosat FRP-PIXEL product operationally every 15 minutes across the 
full SEVIRI disk (see Figure 1) since early in the MSG mission. The product is produced 
using an updated and operational implementation of the Fire Thermal Anomaly (FTA) 
algorithm of Roberts and Wooster (2008), described in Wooster et al. (2015), and the 
archive of MSG SEVIRI data back to 2004 has also been reprocessed using the current 
operational FTA algorithm. These data are available from the EUMETSAT LSA-SAF (https:// 
landsaf.ipma.pt/en/), along with a near real-time version generated from the MSG-8 
Indian Ocean coverage data stream (not included here because of its non-operational 
status at the time of this work). The same FTA algorithm has been more recently adapted 
to operationally generate FRP-PIXEL products from both Himawari-8 AHI (see Xu et al.  
2017) and GOES-16 and 17 ABI (see Xu et al. 2021). The AHI and ABI FRP-PIXEL products 
are available through the Copernicus Atmosphere Monitoring Service (CAMS) via a server 
at the Portuguese Institute for the Ocean and Atmosphere (IPMA): safmil.ipma.pt 
(193.137.20.100; email emanuel.dutra@ipma.pt for access).

The key outputs included in the AHI and ABI FRP-PIXEL products are the same as those of 
the original MSG FRP-PIXEL product, except the spatial and temporal resolutions have 
improved from 3-km/15-minute full disk (MSG SEVIRI) to 2-km/10-minute full disk (ABI 
and AHI) [resolutions quoted at the sub-satellite points]. The product includes active fire 
characteristics (e.g. FRP) and quality metrics such as fire detection confidence levels ranging 
from 1–100% (see Wooster et al. 2015; Roberts et al. 2015 for full details). Here we classify 
FRP-PIXEL active fire pixels as either low (≤50%) or high (>50%) confidence. One key 
difference currently in the FRP-PIXEL products compared to the FDC product is the smaller 
(65° versus 80°) view zenith angle (VZA) cut-off. This prevents use of the very large area 
pixels that occur towards the edge of the geostationary disk within which it is difficult to 
detect active fires and where false alarm rates seem likely to increase. These different 
angular thresholds result in a smaller mapped area for the FRP-PIXEL products generated 
from GOES ABI compared to the matching NOAA GOES FDC product (see Figure 3).

A second key difference of the FRP-PIXEL products compared with FDC for the period 
of evaluation is the higher proportion of missing or corrupt data within the FRP-PIXEL 
product caused by occasional problems related to the input data acquisition by IPMA. At 
the time of writing, the Himawari-8, GOES-16 and GOES-17 FRP-PIXEL products have an 
extended data gap between 8 April 2020 and 13 May 2020. Comparing the FRP-PIXEL and 
FDC products for GOES-16 in 2020 for example, the FRP-PIXEL contained 13% missing/ 
corrupt data compared to only 0.4% for FDC.
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It is also worth considering the different philosophies underlying the FTA and 
FDC algorithms. As alluded to in Section 2.1, a distinct subset of operational FDC- 
product users wish to have every possible pixel in which an active fire might be 
present flagged in the product, even if this results in a high false alarm rate. Ideally 
such pixels would be identified as a ‘low probability’ FDC active fire pixel class 
(Table 2). This contrasts with the FTA algorithm, whose intention is to be sensitive 
to fires with as low an FRP as possible without inducing high levels of false alarms, 
even in the low confidence active fire pixel class. Furthermore, it is known that the 
cloud mask used by the Meteosat FRP-PIXEL product processing chain (the uni-
versal Meteosat SEVIRI cloud mask applied to all LSA SAF products) is rather cloud 
sensitive, and though a few tests have been de-activated for the active fire 
application (Wooster et al. 2015) of this mask, it is the source of some failed active 
fire detections in conditions where a detection could otherwise have successfully 
taken place (see Freeborn et al. 2014 for details). The FTA algorithm applied to the 
GOES ABI and Himawari AHI include internal cloud masking tests, which are 
simpler and less cloud-sensitive than that used in the MSG SEVIRI processing (see 
Xu et al. 2017, 2021). Thus, the ABI and AHI FRP-PIXEL products often contain 
active fire detections in comparatively cloud-free pixels that would likely be 
masked as cloud in the MSG version.

3. Coincident Landsat-8 validation

3.1. Landsat validation overview

As with the previous validation effort of Hall et al. (2019), the reference active fire data for 
the geostationary product assessment were derived from 30-m near-coincident (±5  
minutes of geostationary overpass time) Landsat-8 Operational Land Imager (OLI) 

Figure 3. July 2020 FDC (all classes) and FRP-PIXEL (all confidence) active fire points within the GOES- 
17 (left) and GOES-16 (right) hemispheric disks. The smaller mapping extent of the FRP-PIXEL product 
compared to the FDC product is accentuated over North America. Fire pixel symbology is enlarged for 
clarity.
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imagery. Individual OLI scenes were processed to extract active fire information using the 
Schroeder et al. (2016) Landsat-8 OLI automated fire detection algorithm. The algorithm is 
primarily driven by the fire-sensitive band 7 (shortwave infrared; 2.11–2.29 µm) with 
daytime retrievals incorporating OLI bands 1–6. Despite its proven use in active fire 
detection applications, existing Landsat-class sensors are largely unsuitable for FRP 
retrieval due to the limited dynamic range, leading to high fire-pixel saturation rates, 
and the inadequate spectral band placement. Therefore, this validation study focuses on 
the active fire detection and not FRP retrievals.

The validation was conducted over two time periods (based on the availability of the 
FRP-PIXEL products) to further understand any seasonally varying active fire detection 
performances: 1 January 2020–31 March 2020 (henceforth referred to as the northern 
hemisphere (NH) winter) and 1 July 2020–30 September 2020 (henceforth referred to as 
NH summer). The FDC product was available for the GOES-16 and GOES-17 disks over both 
seasonal periods, while the more recent FRP-PIXEL products for GOES and Himawari were 
only available for the GOES-16 disk over both seasonal validation periods and from 2 
March 2020 for the GOES-17 and Himawari-8 disks. Therefore, the FRP-PIXEL was only 
validated over the NH summer period for GOES-17. Overall, 52338 reference Landsat-8 
scenes were used in the seasonal validations (Table 3).

For the purpose of this analysis, ‘fire pixels’ are defined as the active fire pixels each 
product reports as burning at the time the observation was made. Due to optical 
diffraction, the difference between the field of view of individual detector elements and 
the spacing between sampling, and the remapping applied to place ABI, AHI, and SEVIRI 
data onto a pre-defined navigational ellipsoid, the heat signatures for fires are typically 
visible in more pixels than the fire actually occupies on the ground.

As with our previous validation effort (Hall et al. 2019), a variable distance buffer 
(Equation 1) was applied to each validation fire pixel. 

Where, a is fire pixel area. This threshold gave a more relaxed true positive definition, i.e. a 
fire pixel which contained either a reference fire pixel within the effective ABI or AHI pixel 
bounds or within the distance buffer d. A false alarm, or false positive, is an FDC or FRP- 
PIXEL fire pixel that did not contain any reference fire activity. For the geostationary 
product intercomparison, a view-zenith angle (VZA) threshold of 65° was applied to the 
FDC product to match that of the FRP-PIXEL products used herein. Validation analyses 

Table 3. Coincident Landsat-8 validation summary information.
Validation 
Season/Dates

Geostationary 
Disk

Reference 
Landsat Scenes

FDC Pixels Validated 
over Full Disk

FRP-PIXEL Pixels 
Validated over Full Disk

Products 
Validated

NH winter/1 
Jan − 31 Mar 
2020

GOES-16 9,727 100,321 94,052 FDC and FRP- 
PIXEL

GOES-17 9,417 51,119 NA FDC
NH summer/1 

Jul − 30 Sep 
2020

GOES-16 11,595 93,534 92,877 FDC and FRP- 
PIXEL

GOES-17 9,835 45,615 43,597 FDC and FRP- 
PIXEL

Himawari-8 11,764 NA 97,925 FRP-PIXEL
Total 52,338 290,589 328,451
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were also carried out over the full disk area when applicable. For example, we compare 
the results from this 2020 NH summer validation period with the previous 2018 validation 
effort (18 July and 30 September 2018; Hall et al. 2019) to quantify any improvements in 
the updated FDC product produced over the full GOES-16 disk (see Section 3.2.1).

3.2. Active fire detection curve

To facilitate the intercomparison between the FDC and FRP-PIXEL detection rates, it 
was assumed that each Landsat-8 OLI reference fire pixel corresponded to a 900 m2 

active fire area (i.e. the OLI pixel is completely filled with fire). However, Landsat OLI 
can detect fires as small as ~1 m2 (Schroeder et al. 2016; theoretical probability of 
OLI channel 7), so many and perhaps most Landsat OLI detected fires have no 
chance of being detected by the geostationary products (for which detection require 
hundreds of square metres of burning vegetation). Nevertheless, whilst the assump-
tion of a 900 m2 fire within the OLI pixel may not be correct in most cases, it does 
enable a basic metric of fire fractional area to be calculated based on the geosta-
tionary sensor’s effective pixel footprints (see Hall et al. 2019 for details). Quantifying 
the detection rate as a function of fire fractional area helps normalize the results 
from the differing geostationary active fire products (which have different pixel 
sizes).

3.2.1. FDC GOES-16 comparison with 2018 validation
We first examine the performance difference between the 2018 validation of GOES-16 and 
that found herein, thus highlighting the effect of the algorithm changes detailed in 
Section 2.1. Figure 4 shows the GOES-16 full disk area detection rate curves for the FDC 
2018 NH summer validation (black/light grey), 2020 NH summer validation (red/dark grey), 
and the reprocessed 2020 R NH summer validation (blue line) active fire products. The 
detection rates are shown as a function of relative fractional area covered by active fire (as 
calculated from the OLI-derived active fire detections). Since an active fire pixel becomes 
feasibly detectable if the flaming fire covers around 1/10000th (0.1%) of the pixel area 
(Wooster et al. 2021) the graph in Figure 4 starts at this x-axis value. However, it should be 
remembered that in reality the Landsat OLI pixels themselves will mostly not be covered 
by active fire either – so in reality a value of 0.1% on the x-axis would represent a lower fire 
coverage in the geostationary active fire pixel.

The detection rate curves shown in Figure 4 use all FDC active fire classes (Classes 10– 
15 and 30–35; see Table 2 for class descriptions), and highlight the higher active fire 
omission error of the updated, and more conservative, FDC algorithm. Conversely, as 
shown in Section 3.3, the updated algorithm has led to lower false alarm rates compared 
to the 2018 analysis. Finally, the GOES-16 full disk 2020 and 2020 R FDC detection rates are 
very similar, which is unsurprising given the FDC algorithm changes only impacted GOES- 
17 detection rates.

Analysis of the proportional differences between the NH summer 2018 and NH summer 
2020 periods shown in Figure 4 found a general tendency towards more non-fire FDC 
classes containing reference Landsat-detected active fire pixels in the updated product 
compared to 2018, which again was indicative of higher omission error rates. Specifically, 
the proportion of FDC non-fire pixels (class 100; defined as ‘processed region of image’ in 
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Schmidt et al. 2020) with at least one coincident Landsat reference fire pixel increased by 
4% from 2018 (84%) to 2020 (88%). Raising the minimum fire threshold to at least 75 
coincident Landsat reference fire pixels found the number of FDC non-fire pixels with fire 
activity increase by 8% from 23% (2018) to 31% (2020).

3.2.2. FDC & FRP-PIXEL 2020 comparison
The GOES-16 seasonal validation (Figure 5) is the only analysis to contain FDC and FRP- 
PIXEL results for both time periods in 2020, since GOES-17 and Himawari-8 FRP-PIXEL 
product processing had not yet commenced during the NH winter validation period. 
Despite the decrease in the FDC detection rate compared to the 2018 results, across the 
matching disk areas the FDC product continues to identify more Landsat-8 reference fire 
pixels than the FRP-PIXEL product when including all classes and confidence levels, while 
exhibiting comparable detection rates when only using the high confidence FDC classes 
(classes 10/30 and 11/31; Figure 5 grey line). This difference however comes at the 
expense of higher false alarm rates than the FRP-PIXEL product (see Section 3.3).

Partitioning the overall FDC detection rates by class and comparing with the FRP-PIXEL 
detection curve over their matching areas (<65° VZA) shows that differences in detection 

Figure 4. GOES-16 full disk area active fire detection rates for the 2018 NH summer validation FDC 
(black line; Hall et al. 2019), the 2020 NH summer validation FDC (red line), and the reprocessed 2020 R 
NH summer validation FDC (blue line) active fire products as a function of the relative fractional area 
within each GOES-16 pixel that were mapped as fire by Landsat-8. It was assumed each individual 
Landsat-8 OLI reference fire pixel corresponded to a 900 m2 active fire area (i.e. the OLI pixel was 
completely filled by fire), which we accept is unlikely in many cases. The number of FDC pixels 
sampled are represented on a log scale by overlapping columns: 2018 (light grey) columns are in the 
foreground, while 2020 (dark grey) columns are in the background. For visualization purposes, the 
reprocessed 2020 R FDC pixels are not shown as the columns were essentially identical to the 2020 
FDC pixels.
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between the two active fire products are indeed related to FDC’s lower confidence fire 
pixel classes (Figure 6). Specifically, the FRP-PIXEL active fire detection rate is almost 
identical to the FDC class 30 detection rate (Figure 6; right). This is unsurprising, since 
the 2018 validation results found that the original FRP-PIXEL product over the MSG SEVIRI 
disk was more conservative than the GOES FDC product, albeit with a far lower active fire 
detection false alarm rate (Hall et al. 2019).

Based on the detection rate analysis, we urge caution when using the FDC product 
before 25 July 2019. Although the detection rate is higher than later years, the earlier time 
period is subject to very high false alarm rates (Hall et al. 2019). Further, if users require a 

Figure 5. 1 January–31 March 2020 (NH winter; top row) and 1 July–30 September 2020 (NH summer; 
bottom row) active fire detection rates for FDC all classes (red line), FDC high confidence classes (Class 
10/30 and Class 11/31; grey line), and FRP-PIXEL all confidence (blue line) active fire products for 
GOES-16, GOES-17, and Himawari-8 disks as a function of relative fractional area covered by fire 
(according to the OLI-derived active fire data). The dashed red and grey lines indicate the range of fire 
fractions over which the GOES-17 detection rate was not well quantified due to a lack of samples. The 
detection rates have been calculated over the matching common mapped area processed by both 
products. It was assumed the individual Landsat-8 OLI reference fire pixels corresponded to a 900 m2 

fire area. The reprocessed 2020 R FDC detection rates were essentially identical to the original 2020 
version (red and grey lines) and are therefore not shown.

Figure 6. (Left) Breakdown of the GOES-16 NH summer detection rate as a function of relative fraction 
area by FDC class and; (right) a comparison between the FDC Class 30 (red line) with the GOES-16 FRP- 
PIXEL (blue line) detection rate over the commonly mapped area (ABI pixel area is less than 16km2 or 
<65° VZA). See Table 2 for FDC fire pixel class descriptions.
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more conservative algorithm, then the FRP-PIXEL product or a filtered FDC product (high- 
confidence classes only) is recommended.

3.3. False alarm rates

The seasonal false alarm (active fire errors of commission) per disk over the < 65° VZA area 
are shown in Figures 7–9 (see Supplementary Tables SB , SC, and SD for full summary 
validation results). The FDC false alarm rates have been partitioned by class, and in 
addition grouped by confidence for easier comparison with the FRP-PIXEL confidence 
categories. Here All Classes combines all FDC fire classes, Low Conf Classes includes classes 
12–15 and 32–35, and High Conf Classes includes classes 10–11 and 30–31.

In the updated FDC algorithm, the lowest confidence class (15/35) and cloud contami-
nated class (12/32) continue to show rather high rates of false alarms across both seasons 
and GOES disks (Figure 7 and 8; see Figure S1 and S2 for 2020 R FDC results), although the 
number of class 15 pixels has markedly decreased since the 2018 validation. In Hall et al. 
(2019), of the 4,182 class-15 active fire pixels included in the GOES-16 FDC product, almost 
all detections (95%) were in fact false alarms – whereas now the value is lower – albeit still 
the vast majority (68% for GOES-16 NH Summer 2020 [Figure 7b] and 56% for reprocessed 
GOES-16 NH Summer 2020 R [Figure S1b]). This decrease is also visible in Figure 2. Directly 
comparing the FDC ‘All Classes’ false alarm rate to the FRP-PIXEL ‘All Confidence’ false 
alarm rate, we see a 1.8× higher false alarm rate for FDC in winter (Figure 7a) and a 2.7× 
higher FDC false alarm rate in summer (Figure 7b) compared to the FRP-PIXEL product.

The GOES-17 disk contains mostly ocean, whilst the land coverage is primarily towards 
the disk edges. Thus, as expected, the GOES-17 FDC product contained fewer validation 
pixels compared to GOES-16, especially in the NH winter analysis. The FDC product also 
shows very high false alarm rates, higher than 50% for most classes (Figure 8), albeit at 
small sample sizes since there are not that many detectable active fires at such high 

Figure 7. GOES-16 FDC and FRP-PIXEL false alarms (commission error) over the < 65° VZA area: NH 
winter 2020 (1 January–31 March 2020; left) and NH summer 2020 (1 July–30 September 2020; right). 
See Table 2 for FDC fire pixel class descriptions. High confidence active fire pixels dominate the FRP- 
PIXEL product output, and over the period of the study the FRP-PIXEL GOES-16 ABI product contained 
7× more high confidence than low confidence pixels. Conversely, the FDC product contained 3× more 
low confidence fire pixels compared to the high confidence ones. The black bars highlight the FDC ‘All 
Classes’ and FRP-PIXEL ‘All Confidence’ false alarm rates.
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latitudes (see Supplementary Figure S2). The pixel sizes are also larger in the fire-prone 
regions that are imaged by both GOES-17 and 16 (e.g. California, U.S.A.) and thus fires are 
more likely to either be missed completely or misclassified. The FRP-PIXEL product for 
GOES-17 has a false alarm rate less than half that of the FDC product when considering all 
categories of active fire pixel, and around half that when just considering the high 
confidence FDC pixels (Figure 8b).

Based on additional analysis of the GOES-16 and GOES-17 FDC product, it was clear 
that the mid-morning Landsat-based reference validation samples did not capture all the 
possible viewing scenarios including sub-daily and/or seasonal variation in solar angles 
and land/water surface warning/cooling. For example, the low false alarm rates in FDC 
Class 13/33 were likely underrepresented (see Supplementary Figure S3), and therefore 
users are encouraged to visually examine the active fire pixels before analysis as class- 
specific filtering won’t necessarily remove all the false alarms.

Figure 8. GOES-17 FDC and FRP-PIXEL false alarms (commission error) over the < 65° VZA area: NH 
winter 2020 (1 January–31 March 2020; left) and NH summer 2020 (1 July–30 September 2020; right). 
FRP-PIXEL was unavailable for the NH winter 2020 validation. See section 2.1 for FDC fire pixel class 
descriptions. High confidence active fire pixels dominate the FRP-PIXEL product output, and over the 
period of the study the FRP-PIXEL GOES-16 ABI product contained 7× more high confidence pixels 
than low confidence ones. Conversely, the FDC product contained 20× more low confidence fire pixels 
compared to the high confidence ones. The black bars highlight the FDC ‘All Classes’ and FRP-PIXEL 
‘All Confidence’ false alarm rates.

Figure 9. Himawari-8 AHI FRP-PIXEL false alarms (commission error): NH summer 2020 (1 July–30 
September 2020). The FRP-PIXEL product was unavailable for the NH winter 2020 validation. High 
confidence active fire pixels dominate the FRP-PIXEL product output, and over the period of the study 
the FRP-PIXEL AHI product contained 5× more high confidence than low confidence active fire pixels. 
The black bar highlights the FRP-PIXEL ‘All Confidence’ false alarm rate.
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The FRP-PIXEL product was the only available product over the Himawari-8 AHI disk 
and was only available for the NH summer analysis (Figure 9). Since the peak fire activity 
within the AHI disk occurs in January and February, and the FRP-PIXEL product was not 
available during that period for 2020, the validation is quite possibly not representative of 
the major burning period. The false alarm breakdown by mapping confidence for the 
Himawari FRP-PIXEL product is very similar to the GOES FRP-PIXEL product results – with a 
high confidence (High Conf (51–100)) active fire pixel false alarm rate of ~ 4%.

A comparison of the active fire pixel counts (Figure 10; left) and the proportion of high 
confidence fire pixels (Figure 10; right) within both FDC and FRP-PIXEL products across 
the three hemispheric disks showed that even after removing classes 15 and 35 from the 
FDC product (black line), the FRP-PIXEL product had consistently higher proportions of 
high confidence fire pixels than the FDC products (i.e. a greater proportion of the active 
fire pixels detected by the FTA algorithm were denoted as having ‘high confidence’ than 
the FDC fire pixels). Although some of the Low Conf (1–50) FRP-PIXEL active fire false alarm 
rates were quite high (e.g. 30% false alarm rate for the Himawari-8 AHI low confidence 
fires; Figure 9), the vast majority of FRP-PIXEL active fire detections are associated with 
high confidence classes (i.e. confidences over 50%).

Analysis of the active fire detection rates between the FRP-PIXEL and FDC products for 
GOES-16 and GOES-17 for 2020 resulted in convergence in the frequency of active fire 
detection between the two products once FDC classes 15 and 35 (which have, along with 
some other classes, high false alarm rates [Figure 7]) were removed (Figure 10; left). This 
was especially true over the GOES-17 hemispheric disk. For users seeking the lowest false 
positive rate, we recommend excluding the lowest confidence classes from any analysis. 

Figure 10. Daily active fire pixel count (left) and the proportion of high confidence fire pixels (right) in 
2020 for the GOES-16 (top), GOES-17 (middle), and Himawari-8 (bottom) FDC (red and black) and FRP- 
PIXEL (blue) products. The FDC product has been subdivided into all fire classes (red) and all fire 
classes excluding Class 15/35 (black) due to the high false alarm rate of the lowest confidence class – 
see Table 2 for FDC fire pixel class descriptions. The high confidence fire pixels refer to FDC Class 10/30 
and Class 11/31 and FRP-PIXEL fire confidence values 51%–100%. Note the log scale on the y-axis of 
the GOES-17 fire pixel count (middle left).
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Here, classes 15 and 35 were a primary focus as they contained a higher proportion of 
validation pixels compared to other low confidence classes. In addition, as seen in the 
2018 validation analysis, the FRP-PIXEL product continues to show significantly lower 
levels of false alarms as compared to the FDC product when all classes from both products 
are considered (Figure 7 and 8).

Finally, analysis of the FDC product in areas beyond the 65° VZA FRP-PIXEL cut-off 
found very low active fire detection rates (see Supplementary Figure S4) and very high false 
alarm rates in the small number of validation pixels available here (see Supplementary 
Tables SE – SG). The larger mapping extent of the FDC product compared to the FRP-PIXEL 
product (Figure 3) consequently does not yield significantly more active fire detections, 
and little useful information.

3.4. Land and cloud cover error analysis

To study the impact of land cover on the geostationary active fire product performance, 
the 2019 MODIS Vegetation Continuous Fields Collection 6 (DiMiceli et al. 2017; Hansen et 
al. 2002) data layer was used to estimate the average tree cover percentage for a 20 km ×  
20 km area centred on the corresponding geostationary active fire pixel location (see Hall 
et al. 2019 for details). A breakdown of the false alarms as a function of percentage tree 
cover alongside a visual inspection of the validation data output revealed several sys-
tematic issues within the FDC and FRP-PIXEL products (see Supplementary Figures S5 – S7). 
There has been a drastic improvement in the FDC false alarms compared to the 2018 
validation. For example, in the 2018 validation, the GOES-16 FDC product suffered from 
large patches of daytime false alarms over bright desert soil, leading to an almost 100% 
commission error (out of 3340 validation pixels) in areas with 0–10% tree cover (Hall et al.  
2019); under the present validation effort the commission error rate in this tree-cover 
category has dropped to 30% commission error (out of 46 validation pixels). The reduc-
tion in the number of pixels used in the analysis is a direct result of the lack of spurious fire 
pixels in the updated FDC product, however these large swaths of false alarms over desert 
regions are still present outside the temporal scope of this validation exercise.

Several patterns have also emerged during the visual analysis of the validation 
Landsat scenes across all three hemispheric disks. During the NH winter, the 
warmer urban areas triggered false alarms mainly within the FDC product (Figure 
11a), whereas the FRP-PIXEL product misclassified some bare ground – although 
not to the same extent as the 2018 FDC NH summer product (Figure 11b). Late 
August through September saw an uptick in false alarms in both products, includ-
ing confusion with solar farms (Figure 11c), while water mask issues were seen in 
both products throughout the NH summer (Figure 11d). A continued pattern seen 
in the 2018 validation was the Meteosat FRP-PIXEL’s overzealous cloud mask 
compared to the FDC product (see Supplementary Figure S8) – something noted 
by Freeborn et al. (2014) and introduced in Section 2.2. Although the GOES-16, 
GOES-17, and Himawari-8 versions of the FRP-PIXEL products use their own internal 
cloud masks – designed to be less strict than the external SEVIRI-based mask used 
by all products generated by the LSA SAF (Freeborn et al. 2014) – even these 
internally-generated cloud masks sometimes restrict the ability of the FTA algo-
rithm to map fires when applied to ABI and AHI data.
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4. Summary and conclusion

We present a validation assessment of a series of key operational geostationary active fire 
products (GOES-16 and–17 FDC, and FRP-PIXEL from GOES-16 and–117, and Himawari AHI). 
Our reference data are coincident Landsat-8 OLI active fire detections over two seasonal time 
periods: 1 January 2020–31 March 2020 and 1 July 2020–30 September 2020. We validated 
the FDC product from 2020 and a more up-to-date internally reprocessed version (2020R FDC) 
over the GOES-16 and GOES-17 disks, and compared these results to our previous 2018 
validation study (Hall et al. 2019). We also assessed the GOES-16, GOES-17, and Himawari-8 
FRP-PIXEL products produced using the FTA algorithm that was originally developed for MSG 
SEVIRI (Wooster et al. 2015).

Figure 11. (a) FDC GOES-16 urban false alarm in Brazil; (b) FRP-PIXEL GOES-16 bare ground false alarm 
in California; (c) FDC GOES-16 solar farm false alarm in Texas; (d) FRP-PIXEL GOES-16 water mask false 
alarm in Brazil. Red grid cells represent pixels identified as fire, blue represents pixels identified as 
water/invalid ecosystems, white represents clouds, yellow represents blocked-out pixels, and black 
represents pixels identified as clear land. The coordinates of the pixel centre represent the grid cell 
marked with a red ‘×’.
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Our updated 2020 (and reprocessed 2020R FDC algorithm) validation shows a 
marked improvement in false alarm rates for the updated GOES-16 FDC product 
compared to the results obtained in 2018 for the former version. However, they 
have also demonstrated the difficulties associated with applying an algorithm 
designed for one hemispheric-disk to another. The 2018 and 2020 accuracy assess-
ments however still suggest that FDC product classes 15/35 (low probability fire 
pixels) have very high active fire detection commission errors (i.e. very high rates 
of false alarms). Removal of FDC classes 15/35 resulted in convergence of the 
active fire counts and detection rates between the FDC and FRP-PIXEL products. 
We also found comparable false alarm rates derived from higher confidence pixels 
between the two products (4–7% FDC and 2–6% FRP-PIXEL), yet the FRP-PIXEL 
product contained 5–7× more high confidence fire pixels than low confidence fire 
pixels over the study period. Conversely, the FDC product was dominated by low 
confidence fire pixels with 2× (GOES-16) and 20× (GOES-17) more low confidence 
fire pixels then high confidence pixels. Further, analysis of the smaller mapping 
area (<65° VZA) of the FRP-PIXEL product compared to FDC found this restriction 
was not a detriment to mapping fire pixels, since the > 65° VZA area in the FDC 
product contained few active fire detections and many of them were false alarms.

The results of our validation effort have highlighted some important issues within both 
the FDC and FTA algorithms when applied to the geostationary data sources used herein. 
We have also demonstrated differences and complementarities for the FDC and FRP-PIXEL 
products generated from the same ABI source data. For example, if users require data with 
minimal false alarms then the more conservative FRP-PIXEL products generated from GOES- 
16 and −17 might be the better option than the FDC products, since even the low 
confidence FRP-PIXEL active fire pixels have rather low false alarm rates. However, users 
having a higher tolerance for false positives in the GOES disk may find that the FDC product 
is the better option (albeit with care being needed since some fire pixel classes have false 
alarm rates exceeding 50%), which also in the periods tested has fewer data dropouts, and 
exists with a longer time series (but noting the discontinuities apparent in Figure 2). Users 
wanting coverage outside of the area of the GOES disk (covering the America’s) should also 
opt for the FRP-PIXEL products, since these cover Africa, Europe and Asia as well as the 
Americas (see Figure 1).

The Landsat-based validation presented here ultimately needs to be extended to include 
the broad range of observing and environmental conditions impacting the performance of 
the products. Options include validation against opportunistic independent reference data 
from airborne or ground-based platforms and intercomparison with higher resolution fire 
products from operational polar orbiting satellites that sample different local times (e.g. VIIRS 
I-band products on the S-NPP and JPSS satellite series). Further, an intercomparison between 
MODIS and VIIRS FRP retrievals and the GEO data would provide additional insight into the 
respective geostationary active fire algorithms and is an important future step in under-
standing the strengths of each product.

Refinement of the operational NOAA GOES FDC product continues. Work is under-
way to implement explicit terrain correction and persistent anomaly flags in the 
output of the baseline product. Additional algorithm improvements are also tested 
and implemented to further reduce false alarm rates and omission errors. NOAA is 
also working on improving the delivery of the FDC fire information through 
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customized and tailored products to maximize impact on decision making and to 
better serve user needs.
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