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North Carolina’s forest disturbance and timber production assessed
using time series Landsat observations

Chengquan Huanga* , Pui-Yu Linga and Zhiliang Zhub

aDepartment of Geographical Sciences, University of Maryland, College Park, MD, USA; bU.S.
Geological Survey, Reston, VA, USA

(Received 26 September 2014; accepted 23 March 2015)

Wood products provide a relatively long-term carbon storage mechanism. Due to lack
of consistent datasets on these products, however, it is difficult to determine their
carbon contents. The main purpose of this study was to quantify forest disturbance and
timber product output (TPO) using time series Landsat observations for North
Carolina. The results revealed that North Carolina had an average forest disturbance
rate of 178,000 ha per year from 1985 to 2010. The derived disturbance products were
found to be highly correlated with TPO survey data, explaining up to 87% of the total
variance of county level industrial roundwood production. State level TPO estimates
derived using the Landsat-based disturbance products tracked those derived from
ground-based survey data closely. The TPO modeling approach developed in this study
complements the ground-based TPO surveys conducted by the US Forest Service. It
allows derivation of TPO estimates for the years that did not have TPO survey data,
and may be applicable in other regions or countries where at least some ground-based
survey data on timber production are available for model development and dense time
series Landsat observations exist for developing annual forest disturbance products.

Keywords: timber products output; remote sensing; vegetation change tracker

1. Introduction

Timber is a major forestry product with important economic values, providing raw
materials for furniture, paper, construction materials, and many other wood products.
These wood products, whether in use or in landfill, can store carbon for years, decades, or
longer (Skog and Nicholson 1998; Smith et al. 2006). In North America, harvested wood
products are estimated to provide the third largest carbon sink, next to forest and woody
encroachment (CCSP 2007), providing 10% of the total forest sector net carbon stock
change in the USA (Woodbury, Smith, and Heath 2007). In order to account for this
carbon pool, many carbon and ecosystem models require or provide explicit estimates of
carbon fluxes associated with harvested wood products (e.g. Chen et al. 2013; Houghton
2005). Therefore, quantifying harvested wood products is important for improved
understanding of carbon dynamics, and hence relevant to digital earth for carbon and
climate change studies.

In the USA, reports on timber product output (TPO) are produced by the Forest
Service Forest Inventory and Analysis (FIA) program through surveying wood processing
mills (Woodbury, Smith, and Heath 2007). With details on the amount and type of timber
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harvested at county or state levels (Johnson 2001), these reports have been used to
calculate carbon stored in wood products (Smith et al. 2006). The availability of historical
TPO data, however, is highly inconsistent among different states, making it difficult to
derive consistent and accurate estimates of carbon stocks and fluxes at regional to
national scales (Birdsey 2004; Zhu et al. 2010). When this study was conducted, some
states had up to 10 surveys, but others had far less (Figure 1).

With the ability to image the Earth’s land surface repeatedly, satellite remote sensing
provides spatially and temporally more consistent observations than allowed by using
ground survey methods, and therefore may provide an opportunity for deriving more
consistent estimates of harvested wood products. Satellite data have been used to estimate
timber volume and other forest attributes in many studies (e.g. Trotter, Dymond, and
Goulding 1997; Makela and Pekkarinen 2001). Recently, a number of algorithms have
been developed for producing time series data products on forest disturbances using
satellite data (e.g. Hilker et al. 2009; Zhu, Woodcock, and Olofsson 2013; Huang,
Goward et al. 2010; Kennedy, Yang, and Cohen 2010). In the southeastern USA, most
disturbances mapped using satellite data are due to timber harvest and logging (Thomas
et al. 2011). We hypothesized that in this region, timber harvest volume should be
correlated with Landsat-based disturbance estimates. The main purpose of this study was
to test this hypothesis through a case study conducted in North Carolina, a major timber
production state in southeastern USA. Specifically, we used time series Landsat data and
the vegetation change tracker (VCT) algorithm (Huang, Goward et al. 2010) to map forest
disturbances annually for the state of North Carolina. Relationships between these
products and TPO survey data were then evaluated for each year that had TPO survey
data, based on which an overall regression model was developed and used to produce an
annual TPO record for all years that had VCT disturbance products.

2. Materials and methods

2.1. Study area

North Carolina is located in the southeastern USA. With 100 counties and a total area of
139,390 km2, the state extends from the Atlantic coast in the east to the Great Smoky
Mountains in the west. It is divided into four ecoregions, including the Blue Ridge
Mountains in the west, the Piedmont Plateau in the middle, and Southeast Plains and
Middle Atlantic Coastal Plain in the east (Figure 2). The state is 60% forested, with 98%

Figure 1. Number of years for which ground-based TPO survey data exist in the conterminous
USA (updated as of June 2013).
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of the forest land being classified as timberland (i.e. capable of growing 1.4 m3 of wood
per ha per year) (Bardon et al. 2010). Seventy-eight percent of the state’s forests are
owned by Non-Industrial Private Forest (NIPF) owners, 8% by industrial forest
companies, and 14% by the public. Most forests owned by NIPF and industrial forest
companies are planted for timber harvest although damages from hurricane, insect
outbreak, snow/ice, fire, and other natural disturbances are also common. Loblolly pine
(Pinus taeda) and shortleaf pine (Pinus echinata) are among the major species used in
plantation forests, which typically have roughly the same age at individual stand level.
Many of the natural forests, however, have mixed ages and are often dominated by
deciduous or mixed species groups.

2.2. TPO survey data

In the USA, TPO data are collected through the US Forest Service FIA program using
ground-based survey methods. To determine the origin, harvest date, volume, species, and
use of harvested roundwood products, FIA canvasses all primary wood-using mills,
harvest sites, residential users, and commercial producers that harvest and sell wood
products (Woodbury, Smith, and Heath 2007; Johnson 2001). The TPO program strives
to achieve 100% response from all primary wood-using mills for each TPO survey
conducted for a state (Johnson 2001). The collected data are used to generate TPO reports
that provide county level estimates of harvested wood products. These reports are the
only and most valuable ground-based data source on harvested wood products in the
USA (Figure 1). Like many other datasets collected using survey-based methods,
however, the TPO reports are not immune from human errors. However, there is no
published assessment on the nature and magnitude of potential errors in these reports.

When this study was conducted, TPO reports for North Carolina were available for 10
survey years, including 1992, 1994, 1995, 1997, 1999, 2001, 2003, 2005, 2007, and
2009. The reports for 1992 and 1994 were available in printed format only (Johnson
1994; Johnson and Brown 1996). For the other 8 years, TPO data were available both in
printed format and in the FIA TPO database available at the FIA website (http://www.fia.
fs.fed.us/tools-data/). These TPO datasets provided county level estimates of industrial
roundwood (including hardwood sawlog, hardwood pulpwood, softwood sawlog, and

p19r35

p19r36

p18r35

p18r36

p17r35

p17r36

p16r35

p16r36

p15r35

p15r36

p14r35

p14r36

Blue Ridge

Piedmont

Southeastern 
Plains

Mid-Atlantic 
Coastal Plain

Figure 2. Location of the study area, with the North Carolina state map showing its four ecoregions
and the distribution of forest cover in 2010 (green, gray, and blue are forest, non-forest, and water,
respectively). The quadrangles are the WRS2 path/row tiles needed to cover North Carolina, with
the path and row numbers shown as ‘pxxryy.’
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softwood pulpwood), fuelwood and other wood products such as chips, post, poles, and
pilings. Data for industrial roundwood were provided in all 10 survey years, but no
information on fuelwood and other wood products was available in 1992 and 1994. Since
industrial roundwood accounted for about 95% of the total roundwood production and
85% of the total wood production in North Carolina (Howell and Brown 2004), only this
wood type was considered in this study. All references to TPO data in the remaining
sections of this paper only included the total industrial roundwood production.

2.3. Forest disturbance mapping

Forest disturbances were mapped using Landsat time series stacks (LTSS) and the VCT
algorithm. An LTSS is a stack of Landsat images assembled for a World Reference
System (WRS) path/row tile to provide clear view observations at a regular time step. An
annual LTSS typically consists of one image per year for the years that have at least one
cloud free or near cloud free (<5% cloud cover) image acquired during the summer leaf-
on season. If no such image is available in a particular year, multiple partly cloudy
images acquired during the summer leaf-on season of that year are used to produce a
composite using a best observation method. Here, best observation is defined based on
criteria designed to enhance forest disturbance mapping. Specifically, if no more than 1
clear view observation is available in a year at a given pixel location, the pixel with the
maximum Normalized Difference Vegetation Index value is selected. If more than 1 clear
view observation is available, the clear view observation that has the highest brightness
temperature is selected. Here, clear view observations are those that are not contaminated
by cloud or shadow and do not have other data quality problems. Pixels contaminated by
cloud and shadow were identified using an automated cloud masking algorithm
developed by Huang et al. (2010).

For the 12 path/row tiles needed to cover North Carolina (Figure 2), a total of 656
Thematic Mapper and Enhanced Thematic Mapper Plus images acquired between 1985
and 2010 were used to assemble the LTSS (Table 1). These images were downloaded
from the US Geological Survey (USGS) at the 30-m resolution. They were first converted

Table 1. Number of Landsat images used in this study to map
forest disturbance over the study area.

WRS path/row tile (pxxryy) Number of images used

p14r35 47
p14r36 44
p15r35 53
p15r36 50
p16r35 54
p16r36 43
p17r35 60
p17r36 36
p18r35 57
p18r36 66
p19r35 80
p19r36 66
Total 656

4 C. Huang et al.
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top-of-atmosphere reflectance and then to surface reflectance using the Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS) atmospheric correction
algorithm (Masek et al. 2006). In general, LEDAPS-based Landsat surface reflectance
products are highly comparable with Moderate-resolution Imaging Spectroradiometer
reflectance data (Feng et al. 2012, 2013). Geometrically, no additional correction was
performed on these images, because they had already been orthorectified by the USGS to
achieve subpixel geolocation accuracy. A detailed description of the procedures for
assembling LTSS has been provided in a previous study (Huang, Goward, Masek
et al. 2009).

The LTSS were analyzed using the VCT algorithm. This algorithm consists of two
major steps (Huang, Goward et al. 2010). First, it automatically identifies forest samples
in each Landsat image and uses those pixels to estimate the mean and standard deviation
of the reflectance value of forest pixels, which are then used to calculate an integrated
forest z-score (IFZ) index for each pixel:

IFZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

X
band3;5;7

bi � �bi
SDi

� �2

;

vuut

where bi is the spectral value of a pixel in band i, and �bi and SDi the mean and standard
deviation of the previously identified forest samples in that band. IFZ is a non-negative,
inverse indicator of forest likelihood. The closer to 0 this value, the more likely a pixel
being a forest pixel. The higher this value, the more likely a pixel being a non-forest
pixel. Thus, a forest pixel typically maintains low IFZ values when undisturbed. When a
disturbance occurs, that pixel loses part or all of its forest cover, often resulting in a sharp
increase in the IFZ value. The IFZ then decreases gradually if trees grow back after that
disturbance event. In the second step, VCT tracks the change of the IFZ to detect forest
disturbance and calculates an IFZ-based disturbance magnitude for each detected
disturbance (Figure 3). With annual Landsat observations, this algorithm can detect
most disturbance types, including clearing due to harvest, logging, urban sprawl, as well
as severe damages due to fire, storm and insect outbreak. Detailed descriptions of the
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Figure 3. VCT tracks the temporal profile of the IFZ to detect forest disturbance. For each detected
disturbance, it identifies the disturbance year and calculates an IFZ disturbance magnitude.
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VCT algorithm and its products have been provided in previous publications (Huang
et al. 2011; Huang, Goward et al. 2010; Huang, Goward, Schleeweis et al. 2009).

VCT disturbance products have been evaluated over many sites in the USA (Thomas
et al. 2011; Huang, Goward, Schleeweis et al. 2009; Huang et al. 2011). To determine the
quality of the disturbance products derived through this study, we examined them
thoroughly through visual assessment, and derived accuracy estimates over the WRS2
path 16/row 35 tile, which covered a large portion of central North Carolina (Figure 2).
The reference data used in the accuracy assessment was developed following the
procedure described by Thomas et al. (2011). Specifically, a stratified random sampling
method was used to select over 900 reference samples across the entire tile. Each sample,
a 30-m pixel, was interpreted to derive reference disturbance information through visual
examination of pre- and post-disturbance Landsat observations as well as available
GoogleEarth high-resolution images. The derived reference data were used to construct a
confusion matrix and to calculate the overall as well as class specific user’s and
producer’s accuracies following standard accuracy assessment methods (Congalton
1991). Inclusion probabilities of the selected samples were tracked and used to assign
appropriate weights to those samples according to Stehman et al. (2003).

The disturbance products generated for each WRS tile were merged to create
statewide mosaics. These mosaics were then overlaid on county polygons to calculate
each county’s forest disturbance area for each year between 1985 and 2010.

2.4. TPO modeling and prediction

The timber output of an area is determined by many factors, including the total area
harvested, the amount of timber available for harvest (i.e. pre-harvest timber density), as
well as harvest intensity. The VCT disturbance products derived through this study
provided information on the area, timing (year of disturbance), and spectral measures of
the intensity of each disturbance event (Figure 3). But no statewide datasets on pre-
harvest timber density and disturbance agent were available to this study. Since most
forest disturbances in this region were due to timber harvest and logging (Thomas et al.
2011), use of VCT disturbance products alone may allow reasonable modeling of timber
output. In this study, ordinary least square (OLS) regression methods were used to model
the relationships between TPO and VCT disturbance products.

One issue in linking TPO data to the VCT disturbance products was that the date
range of the TPO data collected in a survey year did not match the date range of the
disturbances mapped for that year (Figure 4). Specifically, the data provided in each TPO
report was collected during a calendar year, i.e. between 1 January and 31 December, but
the disturbances mapped by VCT for a year could occur at any time between the
acquisition dates of that year’s Landsat image and the previous year’s Landsat image used
by VCT. The disturbance map for a TPO survey year (referred to as TPO year hereafter)
included disturbances that occurred in the second half of the immediately previous year
(after the acquisition date of the Landsat image used in that year), while disturbances that
occurred during the second half of a TPO survey year (after the acquisition date of the
Landsat image used in that year) were mostly included in the next year’s disturbance map
(referred to as post-TPO year hereafter).

Under certain circumstances, part of the timber harvested in a TPO survey year might
be also associated with disturbances mapped in the year before the TPO survey year
(referred to as pre-TPO year hereafter). As will be discussed in Section 3.1 and Table 3,

6 C. Huang et al.
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for example, significant portions of the disturbances in 1991, 1993, and 2007 were
mapped by VCT as disturbances in the years before the actual disturbance years. Timber
harvested through salvage logging, a common practice employed to reduce timber
revenues loss due to severe damages from storms or other natural disturbances
(Lindenmayer, Burton, and Franklin 2008), might also be associated with disturbances
occurred in a previous year when salvage logging after a disturbance event was delayed
until the next calendar year. In order to evaluate the impact of such temporal mismatches
between TPO data and VCT disturbance products, for each TPO survey year we
examined the relationships between TPO roundwood production and (1) disturbances
mapped in the TPO year as a single predictor, (2) disturbances mapped in the TPO year
and the post-TPO year as two separate predictors, and (3) disturbances mapped in the
TPO year as well as the post- and pre-TPO years as three separate predictors.

To evaluate the usefulness of disturbance magnitude information for TPO modeling,
we calculated two sets of disturbance areas. In the first set, disturbance area was
calculated by adding up that year’s disturbance pixels without considering disturbance
magnitude. In the second set, the disturbance pixels were divided into four groups
according to their disturbance magnitude values. The first group had IFZ disturbance
magnitude values of less than 3, the second group between 3 and 6, the third group
between 6 and 9, and fourth group greater than 9. These threshold values were derived
partly based on our knowledge of approximate relationships between disturbance
magnitude and harvest intensity and partly on an analysis of the histograms of the
disturbance magnitude of the disturbance pixels. Most pixels in the first group likely were
partial disturbances and those in the fourth group stand clearing disturbances. Pixels in
groups two and three could have either partial or complete canopy removal. The
disturbance areas of the four groups were used as four separate predictor variables in the
regression analyses below.

With 3-year combinations to consider and two ways to calculate disturbance area, six
groups of predictor variables were derived for TPO modeling (Table 2). Each group was
used to establish a regression model between TPO and VCT disturbance products for

1991 disturbances 1992 disturbances 1993 disturbances

Date range of the 1992 TPO survey

Jan. 199319911990

Date range of disturbance maps. Downward arrows indicate
acquisition dates of the Landsat images in different years. 

1984 2010

Pre-TPO year TPO year Post-TPO year

1992 Dec. Jan. Dec.Jan. Dec.Jan. Dec.

Figure 4. Schematic chart showing the date range mismatch between the 1992 TPO survey and
forest disturbances mapped for 1992. The 1992 TPO report provided data collected between 1
January and 31 December, but the disturbances mapped for 1992 could occur at any time between
the 1991 and 1992 Landsat images used by the VCT. Therefore, the 1992 disturbance map included
disturbances occurred in 1991 after the acquisition of the 1991 image. Similarly, harvests that
occurred in 1992 after the acquisition of the 1992 image were included in the 1993 disturbance
map. Such date range mismatches existed between TPO survey data and VCT disturbance maps in
all other TPO survey years. Notice the acquisition dates of the Landsat images used in the LTSS
were determined by image availability, and were in general different in different years (Huang
et al., 2009).
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each TPO survey year. These models were evaluated using the adjusted R2 and the
second-order corrected Akaike Information Criterion (AICc):

Adjusted R2 ¼ R2 � ð1� R2Þ p

n� p� 1
;

AICc ¼ AICþ 2pðpþ 1Þ
n� p� 1

;

where n and p were the number of observations and predictor variables, and R2 and AIC
were calculated following standard textbooks (e.g. Tabachnick and Fidell 2013). In
general, a better model should have a higher adjusted R2 and a lower AICc value. The
variable group that yielded the highest adjusted R2 and lowest AICc for the individual
TPO survey years was selected in developing a final, multi-year model for predicting
TPO for all VCT disturbance years.

3. Results

3.1. Forest disturbances in North Carolina

3.1.1. Accuracy of the disturbance products

In general, the VCT disturbance products derived in this study had accuracies similar to or
better than those reported in previous studies (Huang, Goward, Schleeweis et al. 2009;
Thomas et al. 2011; Huang et al. 2011). Visual examination of these products across the state
revealed that most of the mapped disturbance patches had spatial–temporal patterns
characteristic of different disturbance processes. For example, linear or other forms of ‘well-
defined’ boundaries were mostly associated with timber harvest and logging (Figure 5C).
Disturbances that appeared to be caused by fire or hurricane damages could be linked to
known disturbance events (Figure 5B and 5D). Roads and other urban features were
apparent for disturbances driven by urban sprawl (Figure 5A).

Over the WRS path 16/row 35 tile, the VCT products had an overall accuracy of
88.6%. Many disturbance year classes had user’s and producer’s accuracies of over 80%
(Table 3). Accuracies below 70% were mostly due to misclassifications between adjacent

Table 2. Groups of predictor variables used in the TPO OLS regression analyses.

Group name
No. of
variables Disturbance data used

Disturbance
magnitude

One year, no magnitude 1 TPO year only Not considered
Two years, no magnitude 2 TPO year + post-

TPO year
Not considered

Three years, no magnitude 3 TPO year + pre-TPO year
+ post-TPO year

Not considered

One year, with magnitude 4 TPO year only Considered
Two years, with magnitude 8 TPO + post-TPO year Considered
Three years, with magnitude 12 TPO year + pre-TPO year

+ post-TPO year
Considered

8 C. Huang et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
M

ar
yl

an
d]

 a
t 1

3:
15

 1
5 

Se
pt

em
be

r 
20

15
 



years. For example, nearly half of the 1.40% 1993 disturbances in the reference data were
assigned to 1992, slightly less than one-third of the 2.81% 2007 disturbances to 2006, and
about a quarter of the 1.36% 1991 disturbances to 1990 (Table 3). These lower accuracies
were associated with 3 years that had the highest cloud cover over this path/row – 12.3%,
17.1%, and 7.0% in the 1991, 1992, and 2006 images, respectively. A visual examination
of the Landsat images revealed that many of the disturbed pixels in those years had cloud
cover in the images acquired before the disturbance years. In such cases, VCT tended to
identify the pre-disturbance cloudy year as the disturbance year, because cloudy pixels
typically had IFZ values much higher than those of pre-disturbance. In general, the
compositing algorithm was effective in reducing cloud cover – from 51.8% and 29.3% in
the input images to 17.1% in the composited image for 1992, and from 12.5% and 49.3%
to 7.0% for 2006. Unfortunately, further reduction was not possible due to lack of clear
view observations over the cloudy areas in those composites.

3.1.2. Forest disturbance rates

The VCT products revealed that from 1985 to 2010, an average of 178,000 ha forests in
North Carolina were disturbed each year, which added up to 4.62 M ha during the 26-
year period, or 55.6% of the state’s total forest area. Major disturbance events mapped by
the VCT included harvest/logging, hurricane, urban growth, fire, and other forms of
disturbances that resulted in substantial forest canopy loss (Figure 5). Most of the
counties with high disturbance rates were in eastern North Carolina (i.e. Mid-Atlantic
Coastal Plain and Southeastern Plain). The cumulative disturbance rate, which was
calculated as the ratio of the 26-year total disturbance area over the total forest area in a

Legend

Persisting Nonforest
Persisting Forest
Water

Pre-1985
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

Static Classes

Disturbance year Classes

(A)

(D)

(B)

(C)

Figure 5. Example disturbance types that could be associated with known disturbance events or be
verified through visual assessment, including (A) urban sprawl characterized by roads and other
urban features (western Raleigh near the Jordan Lake), (B) lightning induced fire (Pocosin Lakes
National Wildlife Refuge, burned from 1 June 2008 to 9 January 2009), (C) industrial logging that
often had linear patch boundaries, and (D) Hurricane Fran (1996) damages near suburban
Wilmington, NC. Each image represents a ground area of 19.2 km by 14.4 km.
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Table 3. Accuracy table of the VCT disturbance products for the WRS path 16/row 35 tile (overall accuracy = 88.6%).

Reference

VCT
Non-
forest Forest PSD 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Grand
Total

User’s
acc.

Nonforest 26.77 0.78 0.26 0.26 0.52 0.26 0.26 0.26 29.36 91.2
Forest 0.25 26.85 0.10 0.06 0.05 0.07 0.04 0.05 0.08 0.24 0.09 27.86 96.4
PSD 0.61 0.56 5.01 0.09 0.04 0.08 0.10 0.06 0.06 0.09 0.09 6.77 74.0
1985 0.33 1.11 0.05 1.48 74.7
1986 0.05 1.57 0.18 0.06 0.09 1.94 80.6
1987 0.05 0.14 1.04 0.05 1.28 81.4
1988 0.07 0.07 0.68 0.03 0.85 80.2
1989 0.21 0.09 0.91 0.03 1.24 73.4
1990 0.05 0.82 0.36 1.23 66.7
1991 0.09 0.04 0.66 0.78 84.0
1992 0.97 0.64 0.09 0.06 1.75 55.1
1993 0.04 0.75 0.08 0.09 0.95 79.1
1994 0.05 0.04 1.18 1.27 93.0
1995 1.13 0.06 1.19 95.0
1996 0.05 1.68 0.15 0.08 0.07 2.02 83.1
1997 0.15 0.08 1.60 0.23 2.07 77.7
1998 0.06 1.59 1.65 96.2
1999 0.31 1.55 0.05 1.91 81.0
2000 0.05 1.17 0.15 1.37 85.0
2001 0.06 1.62 1.68 96.4
2002 0.06 1.19 1.25 95.2
2003 1.32 0.06 1.38 95.7
2004 0.07 1.13 0.13 1.32 85.0
2005 1.89 1.89 100.0
2006 0.09 0.09 0.94 0.85 1.96 47.8
2007 1.96 1.96 100.0
2008 1.59 1.59 100.0
Grand

total
27.71 29.41 5.79 1.68 2.21 1.27 0.94 0.94 0.86 1.36 1.01 1.40 1.52 1.39 1.74 1.97 2.15 1.55 1.32 1.84 1.49 1.32 1.25 2.28 1.11 2.81 1.70 100

Producer's 97.0 91.3 86.6 65.9 70.8 81.8 72.0 96.4 96.0 48.4 95.2 53.9 77.8 81.3 96.6 81.4 73.7 100.0 88.3 88.3 80.0 100.0 89.9 82.9 84.6 69.7 93.8

Note: User’s and producer’s accuracies are in percentage (%), with some of the lowest accuracies highlighted in gray. Values in other cells are percentages of the total area of the
entire tile with the proportion of corrected pixels for each class highlighted in bold face. PSD refers to pre-1985 disturbance. Each four-digit number refers to the disturbance year.
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county, reached 96% in several counties (Figure 6A). This is possible even though the
percentage of ‘undisturbed’ forests in those counties were more than 4%, because many
forested areas in this region had more than one disturbance during the 26-year period.
Counties with very low disturbance rates were mostly in western North Carolina where
the Smoky Mountain National Park and several National Forests are located. Geograph-
ically located between the Blue Ridge region and the Southeastern Plain, the Piedmont
region also had disturbance rates in between the two regions to its east and west.

The total disturbed forest area over the entire state varied substantially from year to
year, with two major peaks in 1996 and 2007 and two smaller peaks in 1986 and 2010
(Figure 7). The 1996 peak appeared to be related to two major hurricanes that made their
landfall near Wilmington, North Carolina (Hurricanes Bertha and Fran on 12 July 1996
and 6 September 1996, respectively). Most of the counties that had very high
disturbances rates were located along the path of Hurricane Fran (Figure 6C). In 2010,
the counties with the highest disturbance rates were clustered in northeastern North
Carolina, which likely were related to damages from an extratropical cyclone that was
formed following Hurricane Ida and hit that region in November 2009 [(Figure 6E), see

Hurricane Fran 
landfall, Sept. 
5, 1996

Path of a cyclone 
in Nov. 2009

(A) Total disturbance rates 
1985-2010

(B) Annual disturbance rates, 1986

(D) Annual disturbance rates, 2007

(C) Annual disturbance rates, 1996

(E) Annual disturbance rates, 2010

Legend for (B-E): Percent forest 
area disturbed annually (%)

Blue Ridge

Piedmont

Southeastern 
Plains

Mid-Atlantic 
Coastal Plain

0.21 - 1.24
1.25 - 2.28

2.29 - 3.32
3.33 - 4.36

4.37 - 5.39
5.40 - 6.43

6.44 - 7.47
7.48 - 8.50

8.51 - 9.54
9.55 - 11.40

Figure 6. Cumulative county level disturbance rates from 1985 to 2010 (A) and annual rates in the
4 years that had the highest statewide disturbance rates (B–E). Most counties with very high
cumulative disturbance rates were in the Mid-Atlantic Coast Plain and the Southeastern Plains
ecoregions. The high annual disturbance rates in several counties in 1996 (C) and 2009 (E)
appeared to be related to hurricane or extratropical cyclone damages. But the 1986 and 2007
disturbance maps had no spatial patterns that could be linked to hurricane damages.
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http://www.wpc.ncep.noaa.gov/tropical/rain/ida2009.html for more information on this
extratropical cyclone]. Counties with high disturbance rates in 1986 and 2007 were
scattered across much of the state (Figure 7B and 7D). The coastal counties that were
often affected by tropical storms did not stand out as having high disturbance rates. While
this might indicate that the high disturbance rates in those 2 years likely were not related
to coastal storms, hurricane damages likely contributed substantially to the disturbances
mapped by VCT in many other years, as North Carolina was often affected by multiple
hurricanes or other tropical storms each year. For example, the state was hit by three
hurricanes in 1999 that caused record-breaking flooding and severe damages (e.g. see
http://www.nc-climate.ncsu.edu/climate/hurricanes/affecting.php for a list of hurricanes
that affected North Carolina) although the disturbance rate in 1999 was not as high as the
4 years discussed above.

3.2. TPO–disturbance relationships

In general, the TPO survey data had good relationships with the VCT disturbance
products. Although in any given year, the date ranges of the TPO survey data and VCT
disturbance products only had an overlap of approximately 6 months (Figure 3), the
adjusted R2 of linear regressions between same-year TPO data and disturbance area
exceeded 0.5 in 7 of the 10 TPO survey years (Figure 8A). The low adjusted R2 values in
1997 and 1999 likely were related to multiple hurricanes in 1996 and 1999 (see Section
3.1.2) that resulted in severe damages (and likely delayed salvage logging, see Section
2.4) that complicated the TPO–disturbance relationship. In 2007, the low adjusted R2

value was probably due to a large misclassification error in that year’s disturbance
product (see Section 3.1.1). Including the post-TPO year’s disturbance area in the
regression analyses resulted in significant increases in the adjusted R2 and decreases in
the AICc values for 1994, 1997, 1999, 2007, and 2009. When disturbances mapped in the
pre-TPO years were also considered, further increases in the adjusted R2 and decreases in
AICc were observed in 1992, 1995, 1997, 2001, and 2007 (Figure 8A and 8C).

Use of disturbance areas divided into four groups based on the IFZ disturbance
magnitude in the regression analyses resulted in substantial improvements in TPO
modeling as compared to the regressions derived without considering disturbance
magnitude. Improvements of 0.1 or more in the adjusted R2 were achieved in five, six,
and eight of the ten TPO survey years when disturbances mapped in the TPO year, TPO
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Figure 7. Temporal variability of annual forest disturbance area in North Carolina.
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year + post-TPO year, and TPO year + post-TPO year + pre-TPO year, respectively, were
used in the regression analyses (Figure 8A and 8B). Four of the ten TPO survey years had
regressions with improvements in the adjusted R2 of 0.2 or more, including 1997, 1999,
2007, and 2009. Increases in the adjusted R2 values were less than 0.1 in 1992 and 2003.
But those improvements were accompanied by decreases in AICc (Figure 8C and 8D),
indicating that use of the IFZ disturbance magnitude to stratify the disturbance pixels also
improved TPO modeling in these years.

It should be noted that while in general the relationships between TPO and VCT
disturbance products were strengthened substantially by considering the IFZ disturbance
magnitude and by including pre- and post-TPO year disturbances, for each TPO survey
year not all variables considered were necessary. Many variables had slope values not
statistically different from 0 (Tables 4 and 5). There were substantial among-year
differences as to which variables had non-zero slopes, and most variables had different
slope values in different years, suggesting that there likely were other important year and/
or county specific factors that affected the TPO–disturbance relationships but were not
considered in this study. As discussed earlier, such factors included disturbance type and
pre-disturbance timber density.

3.3. Multi-year TPO estimates

The above regression analyses based on individual year TPO data revealed that the 3
years, with magnitude variable group (see Table 2 for definitions of different variable
groups) allowed better modeling of TPO than any of the other variable groups. Therefore,

Figure 8. Adjusted R2 (A and B) and AICc values (C and D) of TPO regression models derived
using disturbance area calculated by counting VCT disturbance pixels without (A and C) and with
(B and D) considering the IFZ disturbance magnitude. In general, the adjusted R2 increased while
AICc decreased when disturbance pixels were stratified using the IFZ disturbance magnitude, and
when disturbances mapped in post-TPO and pre-TPO years were included in addition to those
mapped in the TPO survey year (TPO year) in the regression analyses.
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Table 4. Regression coefficients for the TPO models derived by using VCT disturbance area but not the IFZ disturbance magnitude.

TPO year only TPO year + post-TPO year TPO year + post-TPO year + pre-TPO year

Year Intercept Slope Intercept Slope_TPO
Slope_post-

TPO Intercept
Slope_pre-

TPO Slope_TPO
Slope_post-

TPO

1992 18.8^^ 119.2** 25.0^^ 123.8** –9.3 4.0^^ 74.8** 95.8** –19.4^^
1994 27.4^^ 125.3** 18.5^^ 62.1** 76.6** 26.4^^ 71.3** –21.9^^ 85.3**
1995 41.2^ 159.2** 41.6* 156.2** 1.6^^ 28.8^^ 88.3** 67.2** 2.7^^
1997 138.0** 68.1** 80.6** 28.0^ 78.8** 90.3** –53.5* 68.5** 72.4**
1999 39.5^^ 110.9** 31.6^^ –22.6^ 145.5** 31.6^^ –22.5^^ –0.2^^ 145.6**
2001 42.9* 109.2** 36.4^ 69.1** 47.3^ 32.0^^ 40.1^^ 48.1^ 31.6^^
2003 19.4^^ 141.9** 13.6^^ 113.1** 32.4* 12.7^^ 111.1** 3.3^^ 31.4^
2005 31.1^^ 121.4** 27.3^^ 108.5** 13.4^ 25.7^^ 89.5** 18.8^^ 15.6^^
2007 37.8^^ 68.4** 22.8^^ 35.2** 61.6** 10.0^^ 2.3^^ 73.2** 37.7*
2009 35.1* 101.6** 20.1^^ 57.3** 38.4** 14.7^^ 47.2* 13.9^^ 36.7**

Note: The units for the intercept and slope values are thousand m3 and m3/ha, respectively.**p < 0.01; *p < 0.05; ^p > 0.05; ^^p > 0.10.
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Table 5. Regression coefficients for the TPO models derived by considering both disturbance area and magnitude.

Slope

Pre-TPO year TPO year Post-TPO year

Year Intercept magn1 magn2 magn3 magn4 magn1 magn2 magn3 magn4 magn1 magn2 magn3 magn4

TPO Year Only
1992 29.0** 310.6** −142.2* 527.6** 14.6*
1994 42.7** 230.5* −207.4** 730.3** 12.8*
1995 46.1** 42.4^^ 93.5** 326.7** 134.7**
1997 111.6** 398.5* −396.6** 359.6** 309.3**
1999 70.1** 140.2^ −401.4** 1204.6** −102.1**
2001 52.7** 215.2^ −356.8** 1058.2** −20.1*
2003 41.6** 218.5* −272.2** 719.2** 96.7**
2005 82.9** 293.7^^ −294.0** 384.9** 192.1**
2007 74.8** 176.6^ −226.7** 544.8** 112.8**
2009 38.5** 213.1** −64.7** 393.3** 105.3**

TPO year + post-TPO year
1992 55.9** 198.9* −27.8^^ 392.4** −44.5^^ 417.6** −413.1** 336.7* 95.8^^
1994 41.9** 244.8* −213.1** 722.2** 45.2^^ −8.0^^ 19.1^^ 26.9^^ −49.5^^
1995 45.4* 128.8^^ 135.3^^ 126.7^^ 94.3^^ −19.8^^ −70.6^^ 377.2* −66.0^^
1997 100.1** 452.1* −358.6** 201.4^^ 237.6** −112.6^^ −151.3^^ 644.4** −82.3^^
1999 96.0** −10.8^^ −89.4^^ 504.5** −190.8** 360.0** −592.2** 1020.3** 71.7^^
2001 42.0* 134.2^^ −221.5^ 745.5** −60.1^^ 214.7^^ −218.5** 344.6^^ 61.7^^
2003 31.4^^ 120.2^^ −126.0^^ 409.9* 188.9** −2.4^^ −44.6^^ 307.0* −133.1*
2005 77.6** 238.9^^ −224.0^ 88.4^^ 108.6^^ 84.9^^ −207.0^ 672.5** −57.3^^
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Table 5. (Continued)

Slope

Pre-TPO year TPO year Post-TPO year

Year Intercept magn1 magn2 magn3 magn4 magn1 magn2 magn3 magn4 magn1 magn2 magn3 magn4

2007 71.9** 29.8^^ −163.6** 588.9** −66.8^^ 131.7* −114.8^ −16.7^^ 310.5**
2009 36.1** 148.9* −75.2^ 250.4* −35.4^^ −148.8^^ −35.2^^ 392.6** 87.5*

TPO year + post-TPO year + pre-TPO year
1992 41.0* 118.2^^ 6.9^^ 143.6^^ 72.2^^ 123.9^^ −31.5^^ 329.5* −99.0^^ 246.3^ −298.5** 196.4^^ 117.8^
1994 54.8** 289.0** −279.3** 196.1^^ 153.6** 158.3^^ −107.3^^ 497.0** −0.4^^ 27.3^^ 59.0^^ 27.3^^ −96.2*
1995 63.0** 354.3* −332.8** 940.1** 132.0^ −58.7^^ 78.1^^ −183.0^^ 20.8^^ 53.2^^ −69.0^^ 169.5^^ −138.5*
1997 102.1** −69.4^^ 90.7^^ 354.2* −94.8^^ 359.3^ −355.1** 79.0^^ 178.4* 18.1^^ −146.2^^ 351.7^^ 2.9^^
1999 97.2** 41.7^^ −142.2^^ 350.5^ 14.2^^ −2.0^^ −22.9^^ 399.4* −243.5** 313.2* −595.0** 937.9** 71.6^^
2001 65.8** 208.2^^ −277.5* 797.4** −151.2^ 56.8^^ −175.0^^ 380.2^ 87.9^^ 233.5^ −272.1* 383.0^ −11.2^^
2003 41.0* 228.3^ −81.2^^ −177.2^^ 59.6^^ 49.9^^ −103.7^^ 478.8** 140.7* −14.2^^ −33.6^^ 275.4^ −79.1^^
2005 70.3** −184.3^^ 168.7^^ 107.4^^ −154.9^ 155.6^^ −172.7^^ 8.7^^ 139.6^ 122.7^^ −203.0^^ 529.9* 30.8^^
2007 57.5** 100.8^ −192.5* 586.4** −1.3^^ 24.8^^ −98.6^ 220.9* −34.1^^ 35.3^^ 4.0^^ −277.1* 233.0**
2009 37.4* 92.2^^ −64.2^^ −55.7^^ 175.6** 118.7^^ −91.8^ 370.6** −114.9* −690.8^^ 19.6^^ 295.6* 50.5^^

Note: The variables magn1, magn2, magn3, and magn4 refer to the four groups of disturbance areas calculated based on the IFZ disturbance magnitude (see Section 2.4). The units for
the intercept and slope values are thousand m3 and m3/ha, respectively.
**p < 0.01; *p < 0.05; ^p > 0.05; ^^p > 0.10.
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this variable group was used to develop an overall model using TPO data from all 10
survey years. The adjusted R2 of this model indicated that it explained 71% of the
combined spatial and temporal variability of TPO survey data collected across the state
over the 10 survey years. In general, county level TPO estimates derived using this model
were distributed along the 1:1 line when compared with actual values, with slight
underestimation in the higher end and overestimation in the lower end (Figure 9).

Applying the overall model to all VCT disturbance years resulted in an annual TPO
record for North Carolina (Figure 10). In general, this record tracked state level TPO
estimates calculated from ground-based survey data, with relative errors of less than 7%
in 9 of the 10 survey years. The only year where the modeled and survey-based TPO
estimates differed by more than 10% was 2005. The larger error in this year might be
partially due a misclassification error by VCT. As discussed in Section 3.1.1, over one-
third (0.85% out of 2.81%) of the 2007 disturbances in the path 16/row 35 tile were
misclassified as 2006 disturbances. As a result, the 2006 disturbance rate was inflated by
over 70% (from 1.11% to 1.96%). Since 2006 was a post-TPO year for estimating 2005
TPO, this inflated disturbance rate likely contributed to the over prediction in 2005.

The TPO record derived using the VCT disturbance products and the overall
regression model revealed that North Carolina had an average TPO of 23.2 million m3 per
year from 1986 to 2009, or a total TPO of 557.6 million m3 over the 24-year period. This
record had an increasing trend during the first decade, with TPO values growing from
17.0 million m3 in 1986 to 29.5 million m3 in 1996. The TPO values then decreased in
the next half decade. While the predicted and actual TPO disagreed by 14% in 2005, both
decreased sharply after 2006, to below 20 million m3 by 2009.

Figure 9. Comparison of county level TPO values predicted using the overall regression model to
ground-based survey data for all 10 TPO survey years.
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4. Discussions

Wood products are a significant carbon sink by storing carbon for years, decades, or
longer. The TPO data collected by the US Forest Service using ground survey methods
provide a basis for quantifying carbon dynamics in wood products (e.g. Chen et al. 2013;
Turner et al. 1995; Houghton and Hackler 2000). The availability of such survey data,
however, is highly inconsistent across the USA (Figure 1), making it difficult to derive
spatially and temporally consistent estimates of carbon stored in harvested wood
products. The method developed in this study may provide an alternative approach for
deriving spatially and temporally more consistent TPO estimates using satellite-based
disturbance products. While we have demonstrated that in North Carolina, VCT
disturbance products were highly correlated with TPO survey data, and the TPO
estimates derived based on VCT disturbance products tracked the survey data closely, the
modeling approach developed through this study may be improved in several ways.

First, use of disturbance agent information to separate harvest/logging from other
disturbance types should help. Unless followed by salvage logging, damages from fire,
storm, insect outbreak, and other natural disturbances typically do not contribute to
timber production, and therefore should not be included in TPO modeling. The feasibility
to separate different disturbance types using Landsat data has been demonstrated in
several studies (e.g. Schroeder et al. 2011; Zhao, Huang, and Zhu accepted).

Second, annual biomass or tree cover datasets are needed. Such datasets can provide
information on pre-harvest timber density, and can be used to calculate disturbance
magnitudes that are based on physical quantities (e.g. biomass or tree cover removal) and
therefore may be better linked to harvest intensity than the IFZ-based disturbance
magnitude used in this study.

Third, relationships between TPO and VCT disturbance products likely will be
improved if they are better matched temporally. As shown in Figure 4, on average the
date range of the TPO survey data in any given year had a 6-month offset from that of the
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Figure 10. State level TPO estimates derived based on VCT disturbance products as compared to
ground survey data, with error bars indicating the 95% confidence interval of those estimates.
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VCT disturbance data. While we were able to reduce the impact of such temporal
mismatches in this study by considering disturbances mapped in the pre- and post-TPO
years, a better solution to this problem would be to map disturbances at sub-annual
intervals (e.g. monthly), which would then allow calculation of disturbance areas for each
time period the TPO survey data were collected. The feasibility to map forest
disturbances at sub-annual intervals has been explored using existing satellite data (e.g.
Zhu, Woodcock, and Olofsson 2013; Xin et al. 2013; Hilker et al. 2009). A combination
of newly available (e.g. Landsat 8) and forthcoming satellite datasets (e.g. Sentinel-2) will
greatly improve the availability of Landsat-class data for disturbance mapping with sub-
annual details (Wulder et al. 2012).

Further, both the VCT disturbance products and the TPO survey methods have room
to improve. As discussed in Section 3.3, overestimation of TPO in 2005 by the developed
approach was likely due to misclassification of 2007 disturbances to 2006. Reducing such
errors should improve disturbance area estimation, and hence TPO modeling. This may
be achieved by improving the accuracy of the VCT algorithm, or by using other
algorithms capable of producing dense time series disturbance products (e.g. Hilker et al.
2009; Zhu, Woodcock, and Olofsson 2013; Kennedy, Yang, and Cohen 2010) if those
algorithms can produce more accurate results. However, since the lowest accuracies in the
VCT disturbance products appeared to be related to excessive cloud cover (see Section
3.1.1), more substantive improvements likely will depend on the ability to acquire clear
view observations annually or more frequently in all land areas. This, however, cannot be
achieved with a single-satellite system provided by the current Landsat program. A virtual
constellation of existing (e.g. Landsat 8) and/or forthcoming satellites (e.g. Sentinel-2)
will improve the chance to acquire cloud-free observations in many cloudy regions
(Wulder et al. 2012).

While the TPO survey data were treated as ‘truth’ in this study, they were collected
using survey-based methods, which were susceptible to human errors, especially in
determining the origin, harvest date, and use of the harvested wood products. Such errors
likely contributed to some of the differences between the modeled and survey-based TPO
estimates reported in this study, which likely will be reduced should more accurate TPO
survey data become available.

5. Conclusions

A new approach has been developed for establishing annual records of TPO using time
series Landsat observations and limited available TPO survey data. This approach builds
on the VCT algorithm designed to produce annual forest disturbance products. It first
exploits the relationships between available TPO survey data and VCT disturbance
products and then uses the established relationships to derive TPO estimates for all years
that have VCT disturbance products. This approach was used to quantify North
Carolina’s forest disturbance and timber production in this study.

The results revealed that North Carolina had an average forest disturbance rate of
178,000 ha per year from 1985 to 2010. Over the 26-year period, a total of 4.62 M ha, or
55.6% of the state’s total forest land, were disturbed. The disturbance area mapped in
each TPO survey year was found to be highly correlated with the TPO survey data
collected in that year. Further improvements to the TPO–disturbance area relationships
were achieved by including disturbance data from the pre- and post-TPO years and by
stratifying the disturbance area using the IFZ disturbance magnitude. Up to 87% of the
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total variance of county level industrial roundwood production was explained by the
regression models developed for individual TPO survey years. A multi-year model
developed using all 10 available TPO surveys explained 71% of the combined spatial and
temporal variability of the TPO data. At the state level, TPO estimates derived from this
model tracked those derived from ground-based survey data, with relative errors of less
than 7% in 9 of the 10 TPO survey years. Predictions from this model revealed that from
1986 to 2009, North Carolina had an average TPO of 23.2 million m3 per year, or a total
TPO of 557.6 million m3 over the 24-year period.

The modeling approach developed in this study complements the ground-based TPO
surveys conducted by the US Forest Service. While the specific regressions developed
likely cannot be used outside North Carolina, the modeling approach can be used to
establish timber production records for any region where only limited ground-based
timber survey data exist but available Landsat acquisitions allow reconstruction of forest
disturbance history at annual or sub-annual time steps. Assuming TPO–disturbance
relationships are relatively scale invariant, this modeling approach may also allow
derivation of TPO records at sub-county levels. Forest disturbance maps have already
been developed for many areas of the USA (Masek et al. 2013; Li et al. 2009a, 2009b),
and maps for the conterminous USA are being developed through the ongoing North
American Forest Dynamics project (Goward et al. 2008). With these products, the
developed modeling approach may be used to produce an annual, multi-decade TPO
record for the USA.
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