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Impact of Radiometric Calibration and Specifications
of Spaceborne Optical Imaging Sensors on the
Development of Operational Automatic Remote

Sensing Image Understanding Systems
Andrea Baraldi

Abstract—The development of operational automatic remote
sensing (RS) image understanding systems (RS-IUSs) represents a
traditional goal of the RS community. Unfortunately, to date, the
transformation of huge amounts of multisource, multiresolution
Earth observation (EO) imagery into information still remains
far below reasonable expectations. The original contribution of
this work to existing knowledge on the subject of automating
the quantitative analysis of EO images is fourfold. In primis this
paper moves from existing literature to consider the radiometric
calibration of RS images a necessary, although not sufficient,
condition for implementation of operational automatic RS-IUSs.
This requirement complements the traditional perception of
calibration and validation (Cal/Val)-related activities as crucial in
achieving harmonization and interoperability of multisource EO
data and derived information products generated at all scales as
envisaged under: (i) the Global Monitoring for the Environment
and Security (GMES) project, led by the European Union (EU),
and (ii) the Global Earth Observation System of Systems (GEOSS)
program, conceived by the Group on Earth Observations (GEO)
whose space arm, the Committee of Earth Observations (CEOS),
recently delivered a Quality Assurance Framework for Earth
Observation (QA4EO) data. The second objective of this paper is
to solicit the RS community to further investigate the calibration
quality and uncertainty of the well-known Satellite Pour l’Obser-
vation de la Terre (SPOT) and Indian Remote sensing Satellite
(IRS) imaging sensor series whose zero-value offset parameters
appear questionable based on experimental evidence. Third, this
work provides a quantitative assessment of the spectral informa-
tion loss that, in comparison with the ongoing SPOT-4/-5 optical
sensors, may affect future planned European EO satellites such
as Pleiades-1/-2 and the follow-on missions Astrium SPOT-6/-7.
Finally, this work shows that, in several recent or ongoing scien-
tific applications of EO images acquired across time, space, and
sensors, the mandatory radiometric calibration preprocessing
stage appears to be surprisingly ignored or underestimated by EU
space agencies and research institutions that have been members
of the CEOS for more than twenty years and should be eager to
transform the new QA4EO initiative into RS common practice.

Index Terms—Image understanding system, operational perfor-
mance measurement, radiometric calibration into top-of-atmos-
phere (exoatmospheric planetary) radiance/reflectance values.

Manuscript received November 14, 2008; revised May 12, 2009. Current ver-
sion published September 09, 2009.

The author was with the European Commission Joint Research Centre,
I-21020 Ispra (Va), Italy. He is now with Baraldi Consultancy in Remote
Sensing, 40129, Bologna, Italy (e-mail: andrea6311@gmail.com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSTARS.2009.2023801

I. INTRODUCTION

I N recent years, the number and performance of spaceborne
optical sensors for Earth observation (EO) has continued

to increase together with the demand for remote sensing (RS)
observational data, metadata and derived information products
[1]–[4]. The impact of spaceborne optical imagery upon scien-
tists and decision-makers around the world has recently prof-
ited from unrestricted access at no charge to large-scale low-
and medium-resolution RS image archives [5]. These multiple
drivers make urgent the need to develop operational satellite-
based measurement systems suitable for automating the quan-
titative analysis of RS imagery, which is one of the traditional
goals of the RS community involved with global land cover and
land cover change assessment [1].

Unfortunately, to date existing scientific and commercial RS
image understanding systems (RS-IUSs) [6] score low in op-
erational performance [7]–[9]. As a consequence, the transfor-
mation of huge amounts of multisource, multiresolution space-
borne imagery into information still remains far below reason-
able expectations and mostly confined to scientific rather than
operational applications [10]. This may be due to both theoret-
ical and technological lacks in existing knowledge on the subject
of RS image understanding.

• From a conceptual point of view, any imaging sensor
projects a (3-D) scene onto a (2-D) image. Therefore,
the main role of a biological or artificial image under-
standing system is to back-project the sub-symbolic
information in the (2-D) image domain onto the sym-
bolic information in the (3-D) scene domain. This means
that the problem of image understanding is inherently
ill-posed and consequently very difficult to solve [11].
The inherent ill-posedness of image understanding is the
same as that of inductive learning. Starting from classical
philosophy to end up with machine learning it is well
known that the general notion of inference (learning)
comprises two types of learning mechanisms known as
“induction (i.e., progressing from particular cases [e.g.,
training data] to general [e.g., estimated dependency
or model])”, therefore called bottom-up, fine-to-coarse,
data-driven, or learning-by-example, and “deduction
(i.e., progressing from general [e.g., model] to particular
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cases [e.g., output values])”, therefore called top-down,
coarse-to-fine, model-driven, or learning-by-rule [12]. In
particular, “induction amounts to forming generalizations
from particular true facts. This is an inherently difficult
(ill-posed) problem and its solution requires a priori
knowledge in addition to data” [12, p. 39].

• From a technical viewpoint, a data processing system is
automatic when it requires no user-defined parameter to
run; therefore, its ease of use is unsurpassed. In automating
a data processing system, necessary, although not suffi-
cient, conditions are for input data to be [13]: (i) well be-
haved (well conditioned), i.e., not violating any assump-
tions needed to successfully apply whatever analysis the
system performs, e.g., every input data source is expressed
in a physical unit of measure and belongs to a known do-
main of variation and (ii) well understood by the system de-
veloper, namely, every input data source is provided with a
clear physical meaning and with a community-agreed data
format.

Based on the foregoing considerations and in line with
machine learning [14], computer vision [11], RS literature [13],
[15], [16], and common sense (synthesized by the expression:
“garbage in, garbage out”), RS-IUSs should increase their
degree of automation by making stronger assumptions about
the input dataset (equivalent to prior knowledge of the real
world, known as the world model [11]) to make it well behaved
and well understood. On the contrary, most (if not all) existing
RS-IUSs:

• Do not require RS images to be: (a) radiometrically cali-
brated, i.e., they do not require dimensionless digital num-
bers (DNs) to be transformed into a radiometric unit of
measure, and (b) validated in terms of unequivocal geo-
metric and radiometric quality. As a consequence these
RS-IUSs adopt a manual or, at best, semi-automatic data
understanding approach on a scene-by-scene basis (since
one scene may represent, say, apples while a contiguous or
overlapping scene may represent, say, oranges).1

• Provide RS experts and practitioners with overly compli-
cated inductive data learning options to choose from based
on scene-specific heuristic criteria.

As a consequence, these RS-IUSs are difficult to use and un-
suitable for mapping large-scale RS datasets requiring an auto-
matic data product generation and delivery chain.

The original contribution of this work to existing knowledge
on the development of operational automatic RS-IUSs is four-
fold. Starting from existing literature this paper considers the

1To the best of the author’s knowledge, no other scientific field like RS relies,
on a regular basis, on measures provided with no unit of measure belonging to
an international system of units. If Rome was not built in one day, could Rome
be built in one thingamabob? When the question is fuzzy (garbage in), the sole
possible answer is “maybe” (garbage out).

availability of radiometrically calibrated spaceborne optical im-
agery of validated geometric and radiometric quality conditio
sine qua non for development of operational automatic RS-IUSs
robust to changes in the input RS data acquired across time,
space and sensors.

It is noteworthy that calibration and validation (Cal/Val)-re-
lated activities are traditionally considered crucial in achieving
harmonization and interoperability of EO data and derived
information products generated from a variety of sources at
all scales-global, regional and local-as envisaged under the
visionary goal of the Global Earth Observation System of Sys-
tems (GEOSS), conceived by the Group on Earth Observations
(GEO)2 [17], [18]. In the context of a GEOSS, an appropriate
coordinated program of Cal/Val activities throughout all stages
of a spaceborne mission, from sensor build to end-of-life, is
considered mandatory by the Quality Assurance Framework for
Earth Observation data (QA4EO) [19], led by the Committee
of Earth Observations (CEOS)3 [20] Working Group on Cali-
bration and Validation (WGCV)4 [21]. A continuous traceable
Cal/Val activity, well defined and controlled through common
standards, is also required by the Global Monitoring for the En-
vironment and Security (GMES) program, led by the European
Union (EU) in partnership with the European Space Agency
(ESA), to guarantee the sustainability of integrated operational
services for EU security and environmental monitoring based

2GEO was launched in response to calls for action by the 2002 World Summit
on Sustainable Development and by the G8 (Group of Eight) leading industri-
alized countries [17]. GEO provides a framework for the coordination of efforts
and strategies to address common goals in EO. It comprises a voluntary partner-
ship of 77 governments and the European Commission (EC), in addition to 56
intergovernmental, international, and regional organizations with a mandate in
EO or related issues that have been recognized as Participating Organisations. In
2005 GEO launched a “ten-year implementation plan” to establish its visionary
goal of a global EO system of systems, GEOSS [18].

3CEOS was created in 1984 in response to a recommendation by the
Economic Summit of Industrialized Nations Working Group on Growth,
Technology, and Employment’s Panel of Experts on Satellite Remote Sensing
[20]. This group recognized the multidisciplinary nature of satellite EO and
aims at optimizing benefits of spaceborne EO through cooperation among
its participants in mission planning and in development of compatible data
products, formats, services, applications and policies. CEOS became the space
arm of GEO in 2006. In that capacity, CEOS is playing an active role in
the establishment of GEOSS. CEOS members are, among others: Agenzia
Spaziale Italiana (ASI), British National Space Centre (BNSC), Centre Na-
tional d’Etudes Spatiales (CNES), Deutsches Zentrum für Luft- und Raumfahrt
(DLR), European Commission (EC), European Space Agency (ESA), European
Organization for the Exploitation of Meteorological Satellites (EUMETSAT),
National Aeronautics and Space Administration (NASA), National Oceanic
and Atmospheric Administration (NOAA), Canadian Space Agency (CSA),
Instituto Nacional de Pesquisas Espaciais (INPE) and Indian Space Research
Organization (ISRO).

4Initiated in 1984, the CEOS Working Group on Calibration and Validation
(WGCV) pursues activities to coordinate, standardize and advance calibration
and validation of EO missions and their data in the conviction that the space
agencies and commercial satellite data providers should present EO data in a
way that would ensure the possibility of comparing sensors and products [21].
Thus, CEOS WGCV, in partnership with the Institute of Electrical and Elec-
tronics Engineers (IEEE), was the natural GEO choice to carry out the task of
developing an international Quality Assurance Framework for Earth Observa-
tion data (QA4EO) in the context of GEOSS. Started in two GEO/CEOS work-
shops held in 2007 and 2008, the ongoing QA4EO initiative is conceived as
an international EO Cal/Val community-derived process to establish an inter-
national quality assurance framework to facilitate harmonization and interop-
erability of EO data, metadata, derived information products, and operations
required to achieve them [19].
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on EO data from multiple sources (satellite, airborne and in
situ) and synergistic data products5 [22].

To summarise, the first objective of this work is to empha-
size that an appropriate coordinated Cal/Val process must be
considered mandatory, first, to guarantee the harmonization
and interoperability of multisource, multiresolution EO data as
envisaged by the GEOSS and GMES programs and, second, to
provide the GEOSS and GMES instantiations with operational
automatic RS-IUS components. As a consequence, this paper
delivers a timely reminder to the space agencies and commer-
cial satellite industries of their responsability to provide the
RS community involved with the development of operational
satellite-based measurement systems with radiometrically
calibrated EO images of validated geometric and radiometric
quality.

The second objective of this paper is to solicit further scien-
tific investigation at institutional level of the calibration quality
and uncertainty of the well-known Satellite Pour l’Observation
de la Terre (SPOT) and Indian Remote sensing Satellite (IRS)
imaging sensor series whose zero-value offset parameters ap-
pear questionable based on experimental evidence.

The third contribution of this work is to provide a prelimi-
nary estimate of the spectral information loss that, in compar-
ison with the ongoing SPOT-4/-5 optical sensors, may affect fu-
ture planned European EO satellites, such as Pleiades-1/-2 and
the follow-on missions Astrium SPOT-6/-7, whose finer spatial
resolution is counterbalanced by a change in spectral resolution
that increases their interband data correlation and sensitivity to
the presence of haze and aerosols.

Finally, this paper shows that in several recent or ongoing sci-
entific applications of EO images, acquired across time, space
and sensors, focused on global land cover mapping and land
cover change detection, risk management and fast reaction to

5ESA is the coordinator of the space component of GMES and is ensuring
the flow of EO data into the GMES services along with access to these data
[23]. As a primary recipient of EO data, the EC has identified five initial GMES
Core Services projects, including three fast-track services focusing on land, ma-
rine and emergency services and two pilot service projects focusing on security
and atmospheric composition. Preoperational data provision to the five GMES
Core Services projects is planned to begin before the end of 2008. In 2008, ESA
received 12 proposals offering to provide, over the next few years, GMES Ser-
vices with RS data acquired from more than 40 European and non-European
EO satellites. Thus, the fleet of GMES contributing missions is constantly in-
creasing. Among other satellites there are ESA Member States’ missions, such
as France’s SPOT and Pleiades satellites, Germany’s 5-satellite RapidEye con-
stellation and TerraSAR-X, Italy’s CosmoSkyMed, the UK-led Disaster Mon-
itoring Constellation (DMC) (including the soon-to-be launched DMC-UK2
and Spain’s Deimos-1), as well as Canada’s Radarsat, Israel’s EROS and other
non-European missions distributed through European companies such as the
FORMOsa SATellite (FORMOSAT)-2 and the KOrean MultiPurpose SATel-
lite (KOMPSAT)-2. In addition, ESA will act as data provider for its own EO
missions, such as Envisat and ERS-2, as well as its Third Party Missions such
as the Project for On-Board Autonomy (PROBA). ESA and the European Or-
ganisation for the Exploitation of Meteorological Satellites (EUMETSAT) offer
their data free of charge, while other agencies offer favourable conditions to the
GMES Services. Thanks to harmonized protocols and standards developed by
EU space agencies through the Heterogeneous Mission Accessibility (HMA)
Project, ESA is able to harmonize data flow and data access. Moreover, to en-
sure that GMES Services have quick, easy and coherent access to data from all
of the missions, ESA will provide a dedicated Data Access Portal where GMES
Services can obtain relevant information and access the data products. Many of
these data sets will be distributed relying on the operators of contributing satel-
lite missions.

catastrophic events, the mandatory radiometric calibration pre-
processing stage appears to be surprisingly ignored or under-
estimated by EU space agencies and research institutions that
have been members of the CEOS for more than twenty years and
which should be eager to transform the new QA4EO initiative
into RS common practice. This means that, in spite of their in-
ternational commitment to accomplish Cal/Val-related activities
for EO data quality assurance, EU space agencies and research
institutions may be slow, reluctant or inadequate in moving from
scientific to operational EO data applications.

The rest of this paper is organized as follows. Section II pro-
vides the scientific background and definitions useful in relating
the development of operational automatic RS-IUSs to the vi-
sionary goals of the GEOSS and GMES programs which require
harmonization and interoperability of EO data derived from a
variety of sources. Section III surveys related works on the sub-
jects of RS data radiometric calibration, atmospheric correction
and existing operational automatic RS-IUSs. Starting from ex-
perimental evidence, Section IV investigates the effectiveness
and reliability of the absolute radiometric calibration zero-value
offset parameters adopted by the well-known SPOT and IRS
imaging sensor series. Section V compares the radiometric cali-
bration capabilities of European versus non-European EO satel-
lite optical sensors. In Section VI, additional sensor specifica-
tions causing an increase in the timeliness of either ongoing or
future EU satellite optical missions are discussed. Section VII
provides examples of several small- and large-scale research and
development projects where EU space agencies and scientific
institutions ignore the radiometric calibration preprocessing re-
quirement and extract information on a scene-by-scene basis
from RS images acquired across time, space and sensors. Con-
clusions are reported in Section VIII.

II. SCIENTIFIC BACKGROUND AND DEFINITIONS

This section provides the scientific background and defini-
tions useful in relating the development of operational automatic
RS-IUSs suitable for use in large-scale multisource, multireso-
lution spaceborne optical image archives to the visionary goals
of the GEOSS and GMES programs which require a coordinated
plan of standardized Cal/Val activities to guarantee harmoniza-
tion and interoperability of EO data generated from a variety of
sources.

The potential of the increasing amount of RS imagery
acquired from multiple platforms for the monitoring of the
earth’s environment and detection of its temporal variations
at geographic extents ranging from local (areas up to 100 000
km ) to regional (areas roughly between 100 000 and 1 000 000
km ), continental and global scales is well known by user com-
munities involved with urban growth assessment and planning,
property tax assessment, intelligence/surveillance applications
for national security and defense purposes, tourism, ecosystem
management, watershed protection, water balance calculations,
risk management and global change [1]–[4].

The traditional use of EO data for environmental monitoring
is expected to be revolutionized by universal availability of
cost-free large-scale low—(above 40 m) and medium—(from
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40 to 20 m) spatial resolution spaceborne optical image
archives. GEO recently announced that scientists and deci-
sion-makers around the world will soon have unrestricted access
at no charge to the Landsat archive, the world’s most extensive
collection of continuously-acquired RS spaceborne imagery
[5]. This news followed the decision by the China-Brazil Earth
Resources Satellite (CBERS) to distribute its images free of
charge starting from the year 2007. In turn, the EU announced
a free data policy for the Sentinel-2/-3 satellites whose launch
is scheduled starting from 2012.

While the cost-free access to large-scale low- and
medium-spatial resolution RS image databases is becoming
a reality, the demand for very high spatial resolution (VHR,
below 5 m resolution) commercial satellite imagery has con-
tinued to increase in terms of both quantity and quality of data.
For example, the United States government spent $5–6 M in
1991 and $200 M in 2003 for the purchase of VHR satellite im-
ages [4]. The increasing request for VHR spaceborne imagery
has boosted the rapid growth of the commercial VHR satellite
industry. For example, within the year 2012 ongoing VHR
spaceborne optical imaging sensors, such as GeoEye-1, Quick-
Bird-2, IKONOS-2, OrbView-3, KOMPSAT-2, RapidEye,
FORMOSAT-2, and ALOS AVNIR-2, will be joined by fu-
ture planned VHR spaceborne imaging missions, such as
Pleiades-1/-2, WorldView-2 and Astrium SPOT-6/-7.

These multiple drivers solicit the RS community to achieve,
in the short- to medium-term, one of the traditional goals
of space agencies and scientific and commercial institutions
involved with global land cover and land cover change detec-
tion programs, such as the Land Use and land Cover Change
(LUCC) program and the National Aeronautics and Space
Administration (NASA) Land Cover and Land Use Change
(LCLUC) program [1, pp. 451, 452], namely, the development
of operational satellite-based measurement systems capable of
automating the quantitative analysis of multisource, multires-
olution RS imagery.

Unfortunately, to date the automatic or semi-automatic trans-
formation of huge amounts of multisource, multiresolution RS
imagery into information still remains far below reasonable ex-
pectations [10]. For example, the percentage of data ever down-
loaded by stakeholders from the ESA EO databases is estimated
at about 10% [24]. In common practice, insufficient RS image
mapping capability may be due to two main factors.

• Existing scientific and commercial RS-IUSs, such as
eCognition [6] and the Atmospheric/Topographic correc-
tion (ATCOR3) [47], score low in operational performance
which encompasses [7]–[9]: (i) ease of use (degree of au-
tomation), (ii) effectiveness (e.g., classification accuracy),
(iii) efficiency (e.g., computation time, memory occupa-
tion), (iv) economy (costs; they increase monotonically
with manpower, e.g., the manpower required to collect
scene-specific training samples), (v) robustness to changes
in input parameters, (vi) robustness to changes in the input
dataset, (vii) maintainability/scalability/re-usability to
keep up with users’ changing needs and (viii) timeliness
(defined as the time span between data acquisition and
product delivery to the end user; it increases monoton-
ically with manpower). For example, a low operational

performance measurement may explain why the im-
pact upon commercial RS image processing software
toolboxes of the literally hundreds of so-called novel
low (sub-symbolic)- and high (symbolic)-level image
processing algorithms presented each year in scientific
literature remains negligible [10].

• The increasing rate of collection of RS data of enhanced
quality outpaces the capabilities of both manual inspection
and inductive machine learning from supervized (labeled)
EO data. The cost, timeliness, quality and availability of
adequate reference (training/testing) datasets derived from
field sites, existing maps and tabular data are considered
the most limiting factors on RS data product generation
and validation [1], [13], [25]–[30].

To overcome these limitations, well-known keys to opera-
tional performance are discussed below [102].

a) Streamline and simplify operations according to struc-
tured system design principles capable of enforcing
the well-known divide-and-conquer problem-solving
approach. To achieve interoperability, structured system
design focuses on interfaces between operations. As a
consequence, the impact of an individual system oper-
ation upon the global system is exactly defined by its
interface [18]. In structured system design, any data
processing system can be hierarchically described by
a data flow diagram (DFD) comprising: (i) operations
(processes) as nodes in the DFD, (ii) observational data
flows, (iii) derived information flows and (iv) control
flows, all represented as oriented edges (equivalent to
interfaces) linking nodes in the DFD [7]. It is noteworthy
that data processing system design accounts for the cus-
tomary distinction between a model and the algorithm
used to identify it [31], i.e., structured system design
defines a data processing system architecture without
implementing it. In the words of Page-Jones, “structured
system design is everything but code” [7].

b) Standardize operations, observational data, metadata,
derived information and control flows [refer to point a)
above] in agreement with the QA4EO guidelines [19]. In
a DFD, every process and every data/information/control
flow must be provided with engineered (quantitative,
unequivocal) “reference standards” as a means of eval-
uating: (i) performance of an activity and (ii) quality
of a data flow [32]. Engineered reference standards
must take multiple individual evaluation measures into
consideration to account for the well-known, but often
forgotten in common practice, noninjectivity of any eval-
uation measure. This means that, for example, different
classification maps compared against the same reference
sample set may produce the same confusion matrix and
that different confusion matrices may generate the same
confusion matrix accuracy measure. These observations
suggest that no single universally acceptable measure
of quality, but instead a variety of indices, should be
employed in practice [33], [34]. In the words of the
QA4EO initiative, a quality indicator (QI) is based on an
unequivocal quantifiable metrological/statistically-based
measure [19, p. 7], i.e., a QI is based on a documented
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quantitative assessment of its traceability to a commu-
nity-agreed reference standard ideally tied to a physical
unit of measure belonging to an international system of
units. In a DFD, QIs belong to the following taxonomy:
(i) operation performance index (OPI) equivalent to an
operational performance measurement [9], e.g., effec-
tiveness, efficiency, etc., refer to the list of operational
system requirements provided above in this text, (ii)
observational data quality index (DQI), e.g., geometric
and radiometric accuracy of EO sensor derived data, (iii)
metadata quality index (MQI), e.g., a declared calibration
uncertainty associated with the radiometric calibration
parameters, and (iv) derived information product quality
index (IQI), e.g., classification and spatial accuracy of a
map generated from EO data.

c) Operation performance tracking and data quality moni-
toring in agreement with the QA4EO guidelines [19]. Ac-
curate operation performance/data quality tracking (trace-
ability) provides knowledge on what is not performing
up to a reference standard, so that alternative quality as-
surance strategies can be enforced at that stage. In line
with the QA4EO requirements [19], the term validation
can be related to the assignment of unequivocal quantita-
tive OPI/DQI/MQI/IQI values which fall within reference
standards to every operation (process), data flow, meta-
data and derived information product comprised in a EO
data product generation and delivery chain.

d) Automating operations. While the abovementioned
guiding principle (a) deals with the data processing
system architecture, this guideline deals with a data
processing system instantiation. An automatic data pro-
cessing system requires: (I) no user-defined parameter to
run, therefore, its ease of use is unsurpassed, and (II) the
input data to be [13].

i) Well behaved (also refer to Section I). EO sensor
derived data are well behaved when they are:

Radiometrically calibrated, i.e., dimensionless
DNs are transformed into a community-agreed
radiometric unit of measure.

Geometrically corrected, i.e., projected onto a
community-agreed terrestrial reference system.

Validated, i.e., provided with quantitative, un-
equivocal and traceable measures of geometric
and radiometric EO data quality.

ii) Well understood by the system developer, i.e., pro-
vided with a clear physical meaning and with a com-
munity-agreed data format (also refer to Section I).

It is noteworthy that, in the context of the GMES and GEOSS
programs [17], [18], [22], and following implementation of the
new QA4EO initiative (refer to Section I above), the issue of
the Cal/Val activity is expected to quickly climb to the top of
space agencies’ agendas where it has often ranked low in the
past. In the words of an anonymous referee “one of the chal-
lenges in the procurement of space instrumentation for RS is
balancing the requirements for adequate pre- and postlaunch
calibration activities against other project constraints. Calibra-
tion usually takes place at the end of an instrument develop-
ment phase where the pressures of cost and schedule are at

their greatest and is often cut short as a consequence. In order
to ensure that observational data products are accurately cal-
ibrated it is vital that building blocks of a calibrated sensor
are incorporated at the outset of instrument development.” No-
table examples where calibration was one of the most severe
requirements of the spaceborne mission are the ENVISAT Ad-
vanced Along-Track Scanning Radiometer (AATSR) and the
ENVISAT Medium Resolution Imaging Spectrometer Instru-
ment (MERIS) [35].

Traditionally, the biggest obstacles to creating effective
onboard calibration systems are the timeliness of the analysis
of the hardware requirements, onboard calibration system im-
plementation and integration issues and the project costs which
may easily increase with the complexity and degree of novelty
of the onboard calibration system. For example, the CEOS
WGCV endorses the moon as a reference standard source of
luminous intensity for radiometric calibration stability [36],
whereas AATSR and MERIS adopt a sun-based onboard cali-
bration device technology which is relatively new and complex
to implement [35]. In practice, all spaceborne sensors must
rely on continuous vicarious calibration campaigns whose in-
strument data, site characteristics and implementation periods
should be traceable in a common format [19], [37].

To conclude, while QA4EO focuses on Cal/Val activities re-
lated to guiding principles (b) and (c) mentioned above and
suitable for improving the operational performance of both the
GEOSS and GMES system instantiations, the original contri-
bution of this paper is to stress that Cal/Val-related activities
are mandatory in automating the quantitative analysis of space-
borne optical imagery in agreement with the data processing
system architecture and implementation principles (a) and (d)
mentioned above. Overall, this work highlights the (obvious!)
fact that an appropriate coordinated program of Cal/Val activi-
ties fulfills all the four resolutions (a)–(d) recommended above
to improve operational performance of both the GEOSS and
GMES system instantiations whose eligible components are op-
erational automatic RS-IUSs.

III. PREVIOUS WORKS

This section provides a summary of related works on the fol-
lowing subjects.

• Radiometric calibration of DNs into: (i) (planetary, exoat-
mospheric) top-of-atmosphere (TOA) radiance (TOARD),
(ii) TOA reflectance (TOARF) and (iii) surface reflectance

values when atmospheric effects are removed from either
TOARD or TOARF values.

• Operational automatic RS-IUS architectures and imple-
mentations that require as input RS images radiometrically
calibrated into TOARF values.

A. Radiometric Calibration and Atmospheric Correction

Radiometric calibration, the transformation of dimensionless
DNs into a unit of measure related to a community-agreed ra-
diometric scale, comprises a sequence of three steps.

1. Transformation of DNs into nonnegative TOARD values
. This first calibration step is also known as absolute

radiometric calibration [40].
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2. Transformation of TOARD values into TOARF values be-
longing to range [0, 1].

3. When atmospheric effects are taken into account, transfor-
mation of either TOARD or TOARF values into surface re-
flectance values belonging to range [0, 1]. Unfortunately,
the problem of atmospheric correction is typically ill- or
poorly-posed. Consequently, it is very difficult to solve and
requires user’s supervision to make it better posed [47].

Although often ignored in common practice by RS scientists
and practitioners, radiometric calibration achieves the following
objectives (see 1 and 2 above).

Acknowledged by existing literature, it ensures the har-
monization and interoperability of multisource observa-
tional data and derived products required by international
programs such as the GEOSS and the GMES [17], [18],
[22].

According to this work (refer to Sections 1 and 2 above),
it makes RS data well behaved and well understood [13],
which paves the way to automating the quantitative anal-
ysis of EO data [38], [39].

Absolute radiometric calibration [40] is the linear transfor-
mation of a pixel value, , with

, where is the total number of pixels and Bnd is
the number of spectral channels (bands), into a TOARD value,

, expressed in a radiometric unit of mea-
sure, either [W/(m sr m)] (e.g., Landsat, SPOT, ASTER,
QuickBird) or [mW/(cm sr m)] (e.g., IKONOS, IRS)
[47], as a function of the offset and gain calibration parameters
to be retrieved from the RS metadata files. For example, in the
case of SPOT-1/-5 imagery [41]

(1)

where, for example, and and
are the absolute calibration gain and offset parameters

for band , identified respectively as “ ”
and “ ” in the SPOT metadata DIMAP file
format.

The model for obtaining dimensionless true terrain re-
flectance, , from the spectral
radiance at the sensor’s aperture may be ex-
pressed as [42] shown in (2), at the bottom of the page, where

is the electromagnetic wavelength; (lat, long) is the pixel po-
sition in geographic coordinates; is the earth-sun distance
in astronomical units to be interpolated from values found in
literature as a function of the viewing day and time, , trans-
formed into a Julian day value in range , such that
approximately belongs to range % [43]; is the
atmospheric upwelling radiance scattered at the sensor by the
atmosphere (called airlight [44], equivalent to an additive term

to be assessed by dark-object subtraction techniques: if, by defi-
nition of a dark object, , then the unknown variable
La is equal to the measured TOARD value [45]);
is called diffuse irradiance at the surface [42], ambient light,
or indirect illumination [46], contains no information on the
surface properties of the pixel and comprises two components:
(a) in nonflat terrain areas, light is reflected from other objects
(e.g., adjacent slopes in rugged terrain) before being reflected
from the pixel under consideration; this first component is
called reflected terrain radiance and is null in flat terrain [47];
or (b) in both flat and rugged terrain, radiation is reflected from
the neighbourhood of the pixel under consideration and, next,
it is scattered by the atmosphere into the viewing direction;
this second component is called skylight [44] or adjacency
radiance [47]; overall, changes with wavelength and
can provide a relevant contribution to incident radiance [42],
[45]; and are, respectively,
the path atmospheric transmittances of the upwelling (ground
surface-sensor path) and downwelling (sun-ground surface
path) flows; is the mean solar exoatmospheric (TOA,
planetary) irradiance found in literature [43] (e.g., in the SPOT
metadata DIMAP file format, parameter is identified
as “ “); is
the sun’s zenith angle in degrees, typically provided in the
image metadata file or computed from the data acquisition
time and per scene or pixel-based lat-long coordinates; term

is called sunlight [44] or direct illumina-
tion [46] and represents the only radiation component reflected
from the pixel under consideration that contains “pure” infor-
mation on the surface properties of the pixel.

In (2), atmospheric effects are modeled by atmospheric pa-
rameters and .
Unfortunately, it is well known that atmospheric correction re-
quires ancillary data (summary statistics), rarely available in
practice, which should be collected at several locations within
the RS image footprint at the time of RS image acquisition.
This means that the problem of atmospheric correction is typ-
ically ill- or poorly-posed. Consequently, it is very difficult to
solve and requires user’s supervision to make it better posed
[47]. In practice, this author has observed that RS images ra-
diometrically calibrated into values by several EU institutions
mentioned below in this text are affected by spectral distorsion
causing scene-derived surface reflectance spectra to disagree
with reference surface reflectance spectra found in existing lit-
erature (e.g., refer to [64, p. 273]) or in public domain spectral
libraries such as the U.S. Geological Survey (USGS) mineral
and vegetation spectral libraries, the Johns Hopkins University
(JHU) spectral library and the Jet Propulsion Laboratory (JPL)
mineral spectral library [47], [65].

A reduction in interscene variability across time, space and
sensors can be achieved by a simplification of (2) into dimen-

(2)
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sionless TOARF values belonging to range [0, 1]. Starting from
(2), TOARF values are computed as a function of the electro-
magnetic wavelength for spectral band , by
considering: (a) atmospheric effects negligible, such as for rel-
atively “clear” scenes where and

[42], [45], and (b) flat and/or nonflat neighboring
terrain effects negligible, i.e., [42]. Thus, (2) be-
comes [43]

(3)

Although often overlooked by RS scientists and practitioners,
it is well known in existing literature that radiometric calibration
of DNs into values features several advantages
over radiometric calibration into values.

• The former is recommended before calculating various
vegetation indices (VIs) [39]. In fact, while the relation-
ships between the leaf area index (LAI) and a great variety
of well-known VIs calculated from TOARD values are
nonlinear, the relationships between LAI and the same
vegetation indices calculated from TOARF are, in several
cases, reasonably linear.

• By accounting for seasonal and latitudinal differences in
solar illumination the former guarantees better interimage
comparability/interpretation (classification, mapping)
across time, space and sensors [38], [48], which is in line
with the goals of EO data harmonization and interoper-
ability required by the GEOSS and GMES programs.

• The former is more consistent with the scenario of low-
and high-level image processing capabilities to be de-
veloped on board future intelligent fourth-generation EO
satellites (FIEOSs) [49]. According to [50], the increasing
need to acquire timely information about Earth system
processes and for early warning of natural and human
disasters, combined with a need to control costs and cope
with increased system complexity, suggests that intelligent
satellites are appropriate for deriving information quickly
and in near real-time (e.g., value-added products, such as
thematic maps, should be generated on board via user com-
mands) for dissemination to nonscience-user communities
(e.g., by means of a direct downlink to a mobile device
such as a cell phone or laptop computer). To summarize,
the development of FIEOS, where on-board integration of
sensors, data processors, and communication systems is
pursued, should become a major scientific challenge to the
RS community within the next 10 years [49].

It is noteworthy that, when neighboring terrain effects are
omitted, i.e., , then can
be expressed as as follows:

(4)

where and
.

Equation (4) shows that, if flat and non-flat neighboring terrain
effects are negligible, i.e., , then:

• For a clear sky condition, when
and [42], [45], then
and , thus

, i.e., surface reflectance values can be
computed from TOARF values when atmospheric effects
are: (I) accounted for, i.e., scene-specific parameters

, and are retrieved from ancillary
data, or (II) considered negligible, i.e., surface reflectance

values are an ideal (atmospheric noise-free) case of
TOARF values. In other words, if , then

⊇ .
• Independent of wavelength , when atmospheric effects

are omitted (ignored), i.e., and
such that

, numerical effects of the two simplified atmospheric
terms, and

, tend to counterbalance each other,
i.e., whereas the first approximation causes an underesti-
mation of the estimate, the second approximation does
vice versa. Across wavelengths, this property improves
the effectiveness of TOARF as an estimator of the true
values.

• When wavelength increases, TOARF provides a better
approximation of . It is well known that light scattering
due to atmospheric conditions (haze, consisting of gas
molecules and water droplets) and aerosols (consisting
of liquid droplets and solid particles suspended in the
atmosphere and generated by either natural or anthro-
pogenic sources) is inversely proportional to the energy
wavelength , i.e., shorter wavelengths of the spectrum
are scattered more than the longer wavelengths. Thus, a
visible blue (B) channel is affected by scattering across
all atmospheric conditions ranging from ‘very clear’
(where scattering is proportional to a factor ) to
‘very hazy’ (where scattering is proportional to a factor

) and cloudy (where complete scattering occurs,
proportional to a factor ) [45]. On the contrary, in
the medium infra-red (MIR) wavelengths the amount
of atmospheric scattering is known to be “quite small
except for ‘very hazy’ atmospheres and can be considered
negligible” [45, p. 476]. In these various atmospheric
conditions, ranging from “very clear” and “clear” visible
wavelengths to any MIR portion of the electromagnetic
spectrum unless it is “very hazy,” atmospheric effects can
be omitted (ignored), i.e., and
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in (4), such that
.

B. Operational Automatic RS-IUSs

The goal of this section is to prove that radiometric calibration
of RS imagery is a necessary but not sufficient condition for de-
velopment of operational automatic RS-IUSs. In particular, this
section describes advantages and limitations of existing RS-IUS
instantiations belonging to the following taxonomy of RS-IUS
architectures.

• Multi-agent hybrid RS-IUSs, including the subclass of
two-stage stratified hierarchical RS-IUSs.

• Two-stage segment-based RS-IUSs.
1) Multi-Agent Hybrid RS-IUSs: Interaction of intelligent

agents in a multi-agent system creates a so-called agent, or cog-
nitive, architecture. If an agent system consists of both sym-
bolic (model-driven, refer to Section I) and sub-symbolic (data-
driven, refer to Section I) components capable of mutual (bi-di-
rectional) interaction (e.g., if agent A queries agent B then B
answers A), then it is called a multi-agent hybrid system [51].
Examples of multi-agent hybrid RS-IUSs found in existing liter-
ature are the blackboard model [52], SIGMA [11], ACRONYM
[53], SPAM [54], AIDA [55], and ERNEST [56]. Multi-agent
hybrid RS-IUSs comprise the following.

i) A low-level general-purpose domain-independent in-
ductive-learning (fine-to-coarse, bottom-up, asemantic,
sub-symbolic, refer to Section I) driven-without-knowl-
edge inherently ill-posed image segmentation first stage
working at the signal level (data-driven).

ii) A high-level (symbolic) processing second stage
combining top-down (model-driven) with bottom-up
(data-driven) inference strategies to: (a) better condition
an otherwise ill-posed driven-without-knowledge seg-
mentation first stage and (b) restrict intensive processing
to a small portion of the image data, analogously to
a focus of visual attention in pre-attentive biological
vision. Top-down inference is implemented by means of
semantic nets representing the application-specific (3-D)
scene domain knowledge available a priori. A semantic
net is defined as a graph, either directed or nonoriented,
either cyclic or acyclic, consisting of nodes linked by
edges. Nodes represent concepts, i.e., classes of (3-D)
objects in the world, while edges represent relations
(e.g., PART-OF, A-KIND-OF, spatial relations, temporal
transitions) between nodes [104].

Multi-agent hybrid systems typically suffer from two main
limitations. First, they are affected by so-called artificial in-
sufficiency caused by the inherent ill-posedness of the image
segmentation problem [11]. In practice, any first-stage image
segmentation algorithm is simultaneously affected by both
omission and commission segmentation errors. Second, se-
mantic nets lack flexibility and scalability to cope with users’
changing needs, i.e., they are unsuitable for commercial RS
image processing software toolboxes and remain limited to
scientific applications.

2) Two-Stage Segment-Based RS-IUSs: Two-stage segment-
based RS-IUSs, whose conceptual foundation is known as ob-
ject-based image analysis (OBIA) [57], have recently gained

noteworthy popularity in scientific and commercial VHR image
applications where a target land cover class, such as a class of
manmade (3-D) objects, can be characterized by salient geo-
metric (morphological, shape) properties and spatial relation-
ships to be computed on a (2-D) image segment basis [6]. Un-
like multi-agent hybrid RS-IUSs, a two-stage segment-based
RS-IUS architecture comprises an inherently ill-posed driven-
without-knowledge segmentation first stage in series with a seg-
ment-based classifier unable to interact with the first stage to
make it better posed. In particular, see the following.

i) The inherently ill-posed driven-without-knowledge seg-
mentation first stage is: (a) inherently affected by artificial
insufficiency, i.e., it is inherently affected by both omis-
sion and commission segmentation errors (see comments
above in Section III-B1 above) and (b) relies on seg-
mentation parameters to be user-defined based on heuris-
tics. To reduce the number of empirical segmentation pa-
rameters, commercial two-stage segment-based RS-IUSs
employ a multiscale (hierarchical) iterative segmentation
first stage [105]. As output, a hierarchical segmentation
algorithm generates multiscale segmentation solutions in
the hope that the target image will appear correctly seg-
mented at some scale. Unfortunately, quantitative multi-
scale assessment of segmentation quality indices requires
ground truth data at each scale which are impossible or
impractical to obtain in RS common practice. Therefore,
the “best” segmentation map must be selected by the user
on an a posteriori basis from the available set of multi-
scale segmentation solutions according to heuristic, sub-
jective and/or qualitative criteria analogous to those em-
ployed in the selection of prior segmentation parameters
[106]. To conclude, exploitation of a hierarchical seg-
mentation algorithm does not make the driven-without-
knowledge segmentation first stage easier to use. In addi-
tion, hierarchical segmentation algorithms are computa-
tionally intensive and require large memory occupation.

ii) A segment-based classification second stage can be im-
plemented either top-down (model-driven), such as a de-
cision-tree classifier based entirely upon prior knowledge
of the (3-D) world, or bottom-up (data-driven), such as a
supervised data learning classifier. In practice, under the
guise of “flexibility” two-stage segment-based RS-IUS
software toolboxes provide RS experts and practitioners
with overly complicated options to choose from based on
heuristics and, as a consequence, they are difficult to use
[57]. In addition, the second-stage classifier is unable to
interact with the driven-without-knowledge segmentation
first stage to make the inherently ill-posed segmentation
problem better posed (see Section III-B1 above). Finally,
as input information primitives the second stage classifier
employs sub-symbolic (2-D) segments exclusively. This
may be unnecessary and time-consuming when, for ex-
ample, simple pixel-based spectral properties can be em-
ployed for classification purposes.

Overall, there is still a lack of consensus and research on
the conceptual foundation of OBIA, i.e., on the relationship be-
tween inherently ill-posed sub-symbolic (2-D) image segments
and symbolic (3-D) landscape objects [57].
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Fig. 1. Two-stage stratified hierarchical RS-IUS implementation proposed by Shackelford and Davis [58], [59]. As output the preliminary classification first
stage provides simultaneously: (i) symbolic pixels, (ii) symbolic segments (objects, parcels, as connected sets of labeled pixels featuring the same label), and
(iii) symbolic strata (as image-wide sets of labeled pixels featuring the same label). These data types co-exist and are all provided with a semantic meaning which
is well understood by a user.

3) Two-Stage Stratified Hierarchical RS-IUSs: In recent
years Shackelford and Davis have presented several implemen-
tations of a two-stage RS-IUS model suitable for mapping VHR
satellite images of urban areas [58], [59]. These RS-IUS imple-
mentations comprise, in cascade (see Fig. 1): (i) a supervised
pixel-based plug-in (i.e., noniterative, one-pass) maximum
likelihood (ML) classifier and (ii) a battery of class-specific
classification modules. Starting from the customary distinction
between a model and its implementation, this author considers
the Shackelford and Davis RS-IUS instantiations the first
examples found in RS literature of a novel family of RS-IUSs,
called hereafter the two-stage stratified hierarchical RS-IUS
model, whose stratification mechanism works analogously
to a focus of visual attention in biological vision. This novel
RS-IUS architecture constitutes a subclass of the parent class
of multi-agent hybrid systems for RS image understanding
(see Section III-B1 above) and represents a possible alternative
to the ordinary well-known two-stage segment-based RS-IUS
model (see Section III-B2 above).

The objective of this section is threefold.
• To summarize the Shackelford and Davis RS-IUS imple-

mentations.
• To highlight advantages of the two-stage stratified hierar-

chical RS-IUS architecture.
• To present an enhanced instantiation of the two-stage

stratified hierarchical RS-IUS model whose pixel-based
preliminary classification first stage is implemented, in
place of the ordinary supervised plug-in ML classifier
adopted by Shackelford and Davis, as an operational
automatic near real-time well-posed model-driven ap-
plication-independent spectral rule-based decision-tree
classifier (SRC) recently proposed to the RS community
[15], [16], [60].
a) Shackelford and Davis RS-IUS Implementation: Suit-

able for mapping 1 m resolution VHR imagery of urban areas
the Shackelford and Davis two-stage RS-IUS implementation
comprises, in cascade (see Fig. 1) [58], [59].

i) A pixel-based preliminary classifier implemented as a
supervised pixel-based plug-in (noniterative, one-pass)

maximum likelihood (ML) classifier that maps each pixel
into a discrete and finite set of semantic labels. In place of
ordinary land cover classes, these semantic labels identify
land cover class sets [58], [59], i.e., they “combine” sets
of primitive land cover classes. More specifically, each
class set is a logical OR combination of primitive land
cover classes affected by ML classification confusion due
to a significant amount of spectral overlap. This is tan-
tamount to saying that the ML classification confusion
between different class sets is negligible, i.e., land cover
class sets must be mutually exclusive. In other words, the
first-stage pixel-based plug-in ML classifier implemented
by Shackelford and Davis is well posed. Given the struc-
tural content of urban scenes depicted in VHR spaceborne
imagery, five class sets are identified (see Fig. 1): (1) ei-
ther grass or tree, (2) either road or building or imper-
vious surface, (3) either water or shadow, (4) bare soil,
and (5) others (outliers, e.g., clouds). In line with the Con-
galton requirements, this classification scheme is mutu-
ally exclusive and totally exhaustive [33, p.12].

ii) A battery of land cover class (object model)-specific
(knowledge-driven) hierarchical classifiers incorporating
the “stratified” or “layered” approach which is typically
adopted in decision-trees [14]. This battery consists of
(see Fig. 1): (a) stratified context-sensitive (e.g., texture)
feature extraction modules and (b) stratified land cover
class-specific fuzzy rule-based classification modules
employing a converge-of-evidence mechanism.

b) Advantages of the Two-Stage Stratified Hierarchical
RS-IUS Architecture: In comparison with the parent class
of multi-agent hybrid RS-IUSs (see Section III-B1 above)
the subset class of two-stage stratified hierarchical RS-IUSs
features one major advantage. While primitive (2-D) objects
employed by the former are sub-symbolic (asemantic) segments
(e.g., segment 1, segment 2, etc.) the latter employs primitive
(2-D) objects comprising symbolic pixels in symbolic segments
in symbolic strata. In practice, by providing RS application
developers and domain experts with semantic (symbolic) prim-
itive (2-D) objects in the image domain, the two-stage stratified
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hierarchical RS-IUS architecture facilitates instantiation of
multi-agent hybrid systems for RS image understanding [15].

In comparison with the two-stage segment-based RS-IUS ar-
chitecture (refer to Section III-B2) the two-stage stratified hi-
erarchical RS-IUS model features several potential advantages
which are listed below [15].

1. A pixel-based preliminary classification first stage fea-
tures several advantages over a first-stage driven-without-
knowledge segmentation algorithm.
— The former is not affected by the well-known uncer-

tainty principle according to which, for any contextual
(neighborhood) property, we cannot simultaneously
measure that property while obtaining accurate lo-
calization [107]. In other words, by working at the
sensor spatial resolution the pixel-based preliminary
classification first stage offers a capability of detecting
small but genuine image details potentially superior (at
least not inferior) to any context-sensitive segmentation
algorithm. In addition, by working at the sensor resolu-
tion the former is spatial resolution-independent.

— As output a pixel-based preliminary classifier iden-
tifies mutually exclusive class sets, called hereafter
spectral-based semi-concepts which, by definition,
are affected by no spectral overlap (refer to this text
above). This is tantamount to saying that a pixel-based
preliminary classifier is well posed and capable of
removing any source of artificial insufficiency (uncer-
tainty, unreliability) of sub-symbolic image features
traditionally introduced by a first-stage ill-posed
driven-without-knowledge segmentation algorithm. A
spectral-based semi-concept is a semantic conjecture
based solely on per-pixel (noncontextual) color (spec-
tral, i.e., chromatic and achromatic) properties. For
example, if the “color” (spectral signature) of a pixel
is, say, green in the visible electromagnetic spectrum,
then that pixel is likely to belong to a spectral-based
semi-concept called vegetation whose information
granularity is equal to or coarser than that of primative
land cover classes (concepts in the [3-D] world) such
as, say, forest or grassland. In practice, spectral-based
semi-concepts are suitable for filling in the well-known
information gap between concepts in the (3-D) scene
and sub-symbolic features in the (2-D) image (refer
to Section I). Since spectral-based semi-concepts are
affected by no spectral overlap, they are reliable and el-
igible for splitting into their primitive land cover classes
at a further hierarchical RS data processing level where
sources of contextual evidence (e.g., textural, morpho-
logical, geometric properties, spatial relationships, etc.)
are taken into consideration.

— While driven-without-knowledge segmentation pro-
vides ill-posed image segments as sub-symbolic
primitive (2-D) objects, a pixel-based preliminary
classification first stage generates as output symbolic
primitive (2-D) objects comprising symbolic pixels
in symbolic segments in symbolic strata. These three
spatial types are not alternative, but co-exist and can be
selected at second stage according to the needs of the

battery of application-specific satellite-based measure-
ment systems.

2. In series with the preliminary image classification first
stage, a battery of second-stage stratified class-specific
hierarchical classification modules enforces a well-known
divide-and-conquer problem-solving approach tradition-
ally employed by decision-tree classifiers [14]. The idea
of stratification is well known in statistics. For example,
in stratified sampling the sampling frame is divided into
nonoverlapping groups or strata, e.g., geographical areas.
A sample is taken from each stratum and when this sample
is a simple random sample the method is referred to as
stratified random sampling. A possible disadvantage is
that identification of appropriate strata may be difficult.
The advantage is that stratification will always achieve
greater precision provided that the strata have been
chosen so that members of the same stratum are as similar
as possible with respect to the characteristic of interest.
The second-stage battery of stratified class-specific hier-
archical classification modules consists of (see Fig. 1) the
following.

a) Stratified class-specific context-sensitive (e.g., tex-
ture, morphological, geometric) feature extraction
modules. For example, the “stratified” or “lay-
ered” approach is adopted to make an inherently
ill-posed segmentation algorithm better posed (lo-
cationally constrained). In particular, a second-stage
class-specific stratified segmentation algorithm can
be employed when a target land cover class is charac-
terized by salient geometric (morphological, shape)
properties to be computed as segment-based. This
is typically the case of manmade objects, such as
buildings, roads and agricultural fields, whose geo-
metric attributes are especially important for their
recognition (see Fig. 1).

b) Stratified class-specific fuzzy rule-based classifica-
tion modules employing constructive reasoning. In
practice, constructive reasoning is pursued through
evidence accumulation (convergence-of-evidence)
by means of fuzzy membership functions (e.g., elon-
gation is high) and fuzzy operators [58], [59]. It is
noteworthy that if-then rules combining symbolic
and sub-symbolic sources of evidence can be, firstly,
easily modeled by a human domain-expert who is
naturally acquainted with symbolic reasoning and,
secondly, implemented seamlessly in a two-stage
stratified hierarchical RS-IUS architecture where
symbolic (2-D) primitives are provided as output by
the preliminary classification first stage.

3. In a two-stage stratified hierarchical RS-IUS architecture,
the world model is twofold.
— A first-stage world model is stored in the pixel-based

preliminary classifier. It consists of spectral-based semi-
concepts described by terms of the terminology defined
in the real-world (e.g., either water or shadow, vegeta-
tion, etc.).

— A second-stage world model consists of semantic nets
whose nodes ([3-D] object-models) incorporate the
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“stratified” or “layered” approach. This means that
in addition to the 3-D appearance properties (e.g.,
the length of a ship is between 3 and 300 m), an ob-
ject model comprises, among its attributes, a list of
color-based semi-concepts equivalent to a model-spe-
cific locational constraint (focus of attention by strati-
fication, e.g., the spectral signature of a ship does not
belong to the set of spectral categories cloud, vege-
tation, water and snow automatically detected in the
preliminary classification first stage).

These considerations imply that the degree of prior knowl-
edge embedded in the two-stage stratified hierarchical RS-IUS
model and required to complement the intrinsic insufficiency
of image features (refer to Section I above) is superior to that
adopted by the two-stage segment-based RS-IUS architecture
(see Section III-B2 above). As a consequence, the former
RS-IUS architecture is eligible for finding a better solution to
the ill-posed image-understanding problem than the latter.

c) Enhanced Two-Stage Stratified Hierarchical RS-IUS
Implementation: The main drawback of the two-stage stratified
hierarchical RS-IUS implementation proposed by Shackelford
and Davis is its need for supervised training data at every hier-
archical stage [58], [59]. Unfortunately, the costs, quality and
availability of adequate training labeled (reference) samples are
the most limiting factor for the application of scene-by-scene
inductive supervised data learning algorithms (e.g., artificial
neural networks [12]) to RS data understanding problems
across time, space and sensors (refer to Section II above) [1].

To reduce to zero the need for supervised training data of the
plug-in ML classifier implemented by Shackelford and Davis as
the preliminary spectral classification first stage, the fully auto-
mated SRC system of systems can be adopted instead, refer to
Section III-B4 below.

4) Operational Automatic SRC System of Systems: In line
with the visionary goal of a GEOSS promoted by GEO, SRC
identifies an integrated system of systems comprising: (i) an
original Landsat-like SRC (LSRC), capable of mapping ra-
diometrically calibrated 7-band Landsat-like images generated
from spaceborne optical sensors such as the Landsat-5 The-
matic Mapper (TM), the Landsat-7 Enhanced TM (ETM) ,
the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) and the Moderate Resolution Imaging
Spectroradiometer (MODIS) [60], and (ii) several down-scaled
versions of LSRC, suitable for mapping multispectral (MS)
images acquired by almost any of the existing or future planned
satellite optical imaging sensors whose spectral resolution over-
laps with, but is inferior to Landsat’s [15], refer to Tables I and
II. The down-scaled LSRC versions are generated by removing
the excess spectral channels from the 7-band LSRC rule set
while enforcing equivalences between the remaining (E)TM
bands and the sensor bands at hand [15], refer to Table II.

The degree of novelty of SRC is fourfold [15], [16], [60].
1. The integrated SRC system of systems requires neither

user-defined parameters nor reference data samples to run
upon input MS imagery acquired across time, space and
sensors, see Figs. 2–11. Therefore, SRC is termed “fully
automated” [103]. To the best of this author’s knowledge,
no multisource, multiresolution fully automated optical

TABLE I
TABLE OF ACRONYMS

image mapping system alternative to SRC does exist in
literature.

2. SRC is a one-pass (noniterative) decision-tree classifier
not adaptive to data, i.e., SRC is model-based (refer to Sec-
tion I above) where (3-D) object-models of the real (3-D)
world rely upon prior spectral knowledge exclusively.
In particular, the SRC prior spectral knowledge consists
of decision rules generated from endmember collection
spectra extracted from a wide variety of real-world MS
satellite images radiometrically calibrated into TOARF
values, with ⊇ , rather than surface
reflectance values adopted exclusively by competing ap-
proaches such as [47]. It is noteworthy that, if
then, according to (4), when atmospheric effects are re-
moved or considered negligible, the reference dictionary
of endmember spectra in TOARF values employed by
SRC coincide with ground measured or library surface
reflectance spectra [47], [65]. In other words, ground mea-
sured or library surface reflectance spectra are a subset
of the parent class of endmember collection spectra in
TOARF values adopted by SRC. This is tantamount to
saying that the only SRC requirement is to employ as
input a well-behaved MS image transformed into either

or values, the latter being an
ideal case of the former when atmospheric effects are
removed or considered negligible (refer to Section III-A
above). As a consequence, SRC may benefit from but
requires no inherently ill-posed atmospheric correction
preprocessing stage. In other words, SRC considers atmo-
spheric correction an optional MS image preprocessing
stage unlike competing classification approaches em-
ploying surface reflectance spectra, such as ATCOR3 [47],
for which solution of the ill-posed atmospheric correction
problem becomes mandatory. At best (when no spectral
distorsion is introduced, refer to Section III-A above),
a mandatory atmospheric correction stage decreases the
overall operational performance measurement of a data
product generation and delivery chain (due to a decrease in
the degree of automation, an increase of costs required to
gather ancillary data and an overall increase of timeliness,
refer to Section II).
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TABLE II
SATELLITE OPTICAL SENSORS: TECHNICAL CHARACTERISTICS

3. SRC automatically detects as output spectral-based semi-
concepts which, by definition, are affected by no spec-
tral overlap (refer to Section III-B3). While land cover
classes are provided with a superior semantic meaning, but
are difficult to detect automatically, spectral-based semi-
concepts, which are provided with an inferior semantic
meaning, are detected automatically by SRC [15], [60]. For
example, LSRC maps a pixel-based 7-band Landsat-like

MS data vector onto a discrete and finite set of forty-six
spectral categories belonging to six parent spectral cate-
gories (supercategories), which are listed below (according
to their order of detection): i) cloud, ii) either snow or ice,
iii) either water or shadow, iv) vegetation, v) either bare
soil or built-up and vi) outliers [15].

4. In terms of operational performance SRC scored high
when it was subject to independent scientific scrutiny for
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TABLE II
(CONTINUED.) SATELLITE OPTICAL SENSORS: TECHNICAL CHARACTERISTICS

validation over a wide range of spatial conditions, time pe-
riods, geographic extents and optical imaging sensors [15],
[16]. SRC was considered: (a) fully automated (see this

text above), (b) accurate, (c) near real-time (e.g., it requires
approximately 5 minutes to process a Landsat scene on a
desktop computer provided with a Dual Core Pentium pro-
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TABLE II
(CONTINUED.) SATELLITE OPTICAL SENSORS: TECHNICAL CHARACTERISTICS

cessor), (d) robust to changes in the input image acquired
across time, space and sensors, (e) capable of providing a
preliminary classification map whose semantic granularity

is much finer than that provided by the ML first stage of
the Shackelford and Davis RS-IUS implementations and
(d) not affected by the well known salt-and-pepper clas-
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TABLE II
(CONTINUED.) SATELLITE OPTICAL SENSORS: TECHNICAL CHARACTERISTICS

sification noise effect which traditionally affects ordinary
pixel-based classifiers, i.e., SRC is successful in modelling
the within-stratum variance, see Figs. 2–11. These func-
tional attributes make SRC eligible for use as the prelim-
inary pixel-based classification first stage in a two-stage
stratified hierarchical RS-IUS architecture [15], [16]. This
means that in a two-stage stratified hierarchical RS-IUS in-
stantiation (see Fig. 1) employing SRC as its pixel-based
preliminary classification first stage, second-stage tradi-
tional algorithms capable of learning from either unla-

beled or labeled data, such as unlabeled data clustering
and image segmentation algorithms, which incorporate the
“stratified” or “layered” approach are expected to per-
form better than or the same as their traditional nonstrat-
ified counterparts. This is tantamount to saying that an
operational automatic SRC system is preliminary and by
no means alternative to traditional algorithms capable of
learning from either unlabeled or labeled data which can
be enhanced by incorporating the “stratified” or “lay-
ered” approach.
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(a)

(b)

Fig. 2. (a) Meteosat Second Generation (MSG) image (acquisition date:
2007-05-16, 12:30) in TOARF values, depicted in false colors (R: band 3, G:
band 2, B: band 1). Spatial resolution: 1 km. (b) SRC output map, depicted in
pseudo colors. Water and shadow areas are in different shades of blue, clouds
in different shades of white, (thin) clouds over water, snow and ice in different
shades of light blue, vegetation types in different shades of green, (thin) clouds
over vegetation and rangeland types in different shades of light green, barren
land types in different shades of brown and grey, unknown pixels (outliers), if
any, are shown in red.

IV. ABSOLUTE RADIOMETRIC CALIBRATION ZERO-VALUE

OFFSET PARAMETERS IN SPOT AND IRS IMAGERY

This section is meant to do the following.
1. Underline that absolute radiometric calibration offset

(bias) parameters to be retrieved from the SPOT and IRS
metadata files appear to be constant with time and always
equal to zero. To date, these observations are ignored or
considered irrelevant by the majority of the RS community.

2. Investigate the calibration quality and uncertainty of the
SPOT and IRS satellite sensor series in agreement with
the QA4EO initiative, despite these issues have been rarely
the subject of scientific inquiry by the RS community.
For example, the radiometric calibration uncertainty of the
Landsat TOARD values is known to be between 5% and
10% [67]. Unfortunately, in existing literature this author
was unable to find any radiometric quality and uncertainty
estimate holding for the SPOT and IRS sensor series [101].

(a)

(b)

Fig. 3. (a) MODIS image in TOARF values, acquired on January 5, 2007, cov-
ering northern Africa and Italy, depicted in false colors (R: band 1, G: band 4,
B: band 3), spatial resolution: 500 m. (b) Output map, depicted in pseudo colors
[same as in Fig. 2(b)], automatically generated by SRC from the image shown
in Fig. 3(a).

To the best of this author’s knowledge, the SPOT metadata
DIMAP file provides offset parameters ,
to be employed in (1), which appear to be constant with time
and equal to zero. This is acknowledged by SPOT Image in a
personal communication [63] and, to some respect, by existing
literature. For example, in [47], Richter writes that in the SPOT
metadata files “the standard offset values are zero”. In [40],
which specifically deals with the SPOT-4 VEGETATION and
High Resolution Visible & Infrared (HRVIR) onboard calibra-
tion systems and vicarious calibration methods over test sites,
the offset calibration term is omitted from (1). This means
that, in the words of an anonymous referee, the SPOT DNs “are
assumed to be already equalized and corrected by a dark-object
current”. If so, a “offset parameter is used only if, after the
DN equalization step, a dynamic adaptation is required”. If no
dynamic adaptation is applied, then , which appears
to be always the case. Actually, this referee’s explanation is not
supported by the text in [40] where keywords such as “offset,”
“dark (object),” and “black (object)” are missing.

Based on this author’s experience, zero-value offset param-
eters are always retrieved from the IRS metadata files too. In
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(a)

(b)

Fig. 4. (a) IRS-P6 LISS-III image in TOARF values, acquired on July 12, 2006,
at 11:52 (CEST), covering Central Italy, depicted in false colors (R: band 4,
G: band 3, B: band 1), spatial resolution: 23.5 m. (b) Output map, depicted in
pseudo colors [same as in Fig. 2(b)], automatically generated by SRC from the
image shown in Fig. 4(a).

[47], Richter writes that in the three optical sensors carried on-
board the IRS-P6 platform, the bias “nominal value is zero
the calibration coefficient seem to be constant with time, i.e.,
independent of the scene, based on laboratory calibration”.

Thus, according to this author’s experience supported by
Richter’s observations, a list of currently ongoing European
and non-European EO satellite optical imaging sensors series
employing, in practice, absolute calibration zero-value offset
parameters is provided below.

— SPOT-1/-2 High Resolution Visible (HRV).
— SPOT-4 High Resolution Visible & Infrared (HRVIR).
— SPOT-5 High Resolution Geometric (HRG), SPOT-4/-5

Vegetation Monitoring Instrument (VMI) 1 and 2,
respectively.

— IRS-1C/-1-D Linear Imaging Self-Scanner (LISS-III).
— IRS-1C/-1-D low resolution Wide Field Sensor (WiFS).
— IRS-P6 medium resolution Linear Imaging Self-Scanner

(LISS-III).
— IRS-P6 low resolution Advanced Wide Field Sensor

(AwiFS).
Are SPOT and IRS zero-value offset parameters, apparently

generated from laboratory calibration (according to the Richter

(a)

(b)

Fig. 5. (a) ALOS AVNIR-2 image of Sicily, Italy, in TOARF values, acquisition
date: 2006-13-08, depicted in false colors (R: band 3, G: band 4, B: band 1).
Spatial resolution: 10 m. (b) Output map, depicted in pseudo colors [same as in
Fig. 2(b)], automatically generated by SRC from the image shown in Fig. 5(a).

conjecture), validated in terms of calibration quality and uncer-
tainty in agreement with the QA4EO guidelines?

In a recent conversation which took place during the ESA-Eu-
ropean Satellite Center (EUSC) Image Information Mining Co-
ordination Group (IIMCG) Conference—Pursuing automation
of geospatial intelligence for environment and security held at
the ESA facility in Frascati (Italy) on March 4–6, 2008, one of
the main research scientists involved with radiometric calibra-
tion of the SPOT satellite sensor series acknowledged technical
difficulties in assessing the absolute calibration offset parame-
ters of the SPOT-4/-5 imaging sensors [72]. This means that
offset parameters provided by the SPOT sensor series should be
considered unknown rather than null. In literature, Richter states
that in the SPOT metadata files “the standard offset values are
zero. Occasionally, however, for SPOT-4/-5 data a slightly neg-
ative offset has to be introduced for band 4 (1.6 m, medium
infra-red) in cases when the scene water reflectance is too high
(it should be close to zero)” [47, p. 100]. In [40], it is stated that
“the absolute calibration consists in estimating and monitoring
the parameter for the th spectral band considered. Actu-
ally, for many applications, the most important thing is not the
absolute calibration but the relative calibration between images
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(a)

(b)

Fig. 6. (a) Zoomed image in TOARF values extracted from a QuickBird-2
image of Campania, Italy, acquisition date: 2004-13-06, 09:58 GMT, depicted
in false colors (R: band 3, G: band 4, B: band 1), 2.44 m resolution, panchro-
matic-sharpened at 0.61 m resolution. (b) Output map, depicted in pseudo colors
[same as in Fig. 2(b)], automatically generated by SRC from the image shown
in Fig. 6(a).

of the same instrument at different dates (multidate calibration),
images acquired simultaneously in different spectral bands (in-
terband calibration), images acquired by two different sensors
(namely, SPOT-4 VEGETATION and HRVIR sensors intercali-
bration)”. The author of this work, together with an anonymous
referee, disagree with this quoted statement. In the words of
this anonymous referee, “absolute calibration is the establish-
ment of the “Gain” and “Offset,” not simply a ratio” (gener-
ated from relative calibration)! In practice, the aforementioned
statement taken from [40] would undermine the capability of
implementing operational satellite-based measurement systems
whose only requirement is the transformation of input DNs into
a community-agreed radiometric unit of measure. In line with
the Richter experience (refer to this text above) [47], this author
has observed that in several SPOT-4 and SPOT-5 scenes radio-
metrically calibrated into TOARF values computed by (1) and
(3) as a function of the absolute radiometric calibration parame-
ters retrieved from the SPOT DIMAP metadata files, scene-de-
rived land cover class-specific spectral signatures in TOARF
values: (i) may fall well outside the range of change of the same
land cover class-specific TOARF values detected across time
and space by a plethora of spaceborne optical sensors listed

(a)

(b)

Fig. 7. (a) IMAGE2006 Coverage 1 mosaic, consisting of approximately
two-thousand IRS-P6 LISS-III, SPOT-4 and SPOT-5 images, mostly acquired
during 2006, radiometrically calibrated into TOARF values and geometrically
orthorectified. Images are depicted in false colors: Red—Band 4 (Short Wave
InfraRed, SWIR), Green-Band 3 (Near IR, NIR), Blue—Band 1 (Visible
Green). Spatial resolution: 25 m. (b) Preliminary classification map of the
IMAGE2006 Coverage 1 mosaic automatically generated by SRC from the
image shown in Fig. 7(a) and depicted in pseudo colors [same as in Fig. 2(b)].

in Table II and (ii) appear to be inconsistent with library or
ground-measured surface reflectance spectra also considering
that the latter are affected by no atmospheric effect [64], [65].
These two types of inconsistencies are illustrated in the fol-
lowing example representative of many similar cases personally
experienced by this author.

Four open sea water-specific (equivalent to a dark-object)
spectral signatures in TOARF values, shown in Table III, are
extracted from the same region of interest located across a mul-
tisensor image dataset consisting of a Landsat-7 ETM , one
ASTER, one SPOT-5 HRG and one SPOT-2 HRV image of the
Low Casamance mangrove ecosystem in Senegal acquired on,
respectively, November 6th 2000, February 28th 2004, March
8th 2006 and March 1st 2006, see Figs. 8(a), 9(a), 10(a), and
11(a). In the target region of interest no sun glint phenomenon
occurs, atmospheric scattering appears negligible in the visible
and near infra-red (NIR) portions of the electromagnetic spec-
trum sensitive to the presence of haze and aerosols, whereas
the amount of atmospheric scattering occurring at the medium



122 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 2, NO. 2, JUNE 2009

(a)

(b)

Fig. 8. (a) Landsat 7 ETM� image of Senegal (path 205, row 051, acquisition
date: 2000-11-06) in TOARF values, depicted in false colors (R: band ETM5,
G: band ETM4, B: band ETM1), spatial resolution: 30 m. (b) Output map, de-
picted in pseudo colors [same as in Fig. 2(b)], automatically generated by SRC
from the image shown in Fig. 8(a).

infra-red (MIR) region of the spectrum is known to be “quite
small except for very hazy atmospheres and can be considered
negligible” [45, p. 476]. In Table III, the Landsat channels 1
to 7, identified as ETM1 to ETM7, are adopted as a reference
in the comparison of multisensor channels featuring (approxi-
mately) the same sensitivity curve (e.g., a Landsat-like band 7
is synthesized by an OR combination of channels 5, 6, 7 and 8
by ASTER, refer to Table II). In other words, the author real-
izes that the spectral bandwidth of the individual bands affects
the amount of at-sensor radiance, but differences in the spec-
tral bandwidth are considered negligible here. In addition, inter-
sensor TOARD and TOARF value comparisons should take cal-
ibration uncertainties into account, in agreement with guidelines
for evaluating uncertainty of measurement found in the QA4EO
documentation [66]. For example, the calibration uncertainties
of the Landsat-7 ETM TOARD values are % [67]. Unfor-
tunately, in existing literature this author was unable to find any
calibration uncertainty estimate for the ASTER and SPOT sen-
sors involved with this comparison.

Table III shows that in the proposed qualitative example the
sea water class (dark-object)-specific TOARF values provided

(a)

(b)

Fig. 9. (a) ASTER image mosaic of Senegal (acquisition date: 2004-02-28)
in TOARF values, depicted in false colors (R: band 4, G: band 3, B: band 1),
spatial resolution: 30 m. (b) Output map, depicted in pseudo colors [same as in
Fig. 2(b)], generated by SRC from the image shown in Fig. 9(a).

by the SPOT-5 HRG sensor fall well outside the range of change
of the corresponding TOARF values detected by the Landsat,
ASTER and SPOT-2 optical sensors, which are more in line
with the clear and turbid water reflectance values at the earth’s
surface found in existing literature (e.g., refer to [64, p. 273]).
It is noteworthy that in Table III the relative increase in the
band-specific SPOT-5 TOARF values with respect to the other
sensors’ values may be as high as 200% for band ETM2 up to
700% for band ETM5, which is far above the typical calibra-
tion uncertainty of spaceborne optical sensors (below 5% for
the Landsat-7 ETM TOARD values, see this text above).

Overall, this author has observed that SPOT-4/-5 overesti-
mation of TOARD/TOARF values may occur image-wide at
varying geographic positions and solar elevation angles. There-
fore, SPOT-4/-5 radiometric overestimation is not due to geo-
metric effects or local surface conditions. In addition, this over-
correction is far superior to typical values of calibration uncer-
tainty (see this text above). To summarize, the nature of SPOT-5
radiometric calibration inaccuracy appears to be accidental and
scene-dependent, such as out-of-band leakage effects [68].

Experimental evidence of SPOT-5 radiometric inaccuracy
can be automatically highlighted by the SRC approach (refer
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(a)

(b)

(c)

Fig. 10. (a) SPOT-5 image of Senegal (path 325, row 022, acquisition date:
2006-03-08) in TOARF values, depicted in false colors (R: band 4, G: band 3,
B: band 1), spatial resolution: 10 m. (b) Output map, depicted in pseudo colors
[same as in Fig. 2(b)], generated by SRC from the image shown in Fig. 10(a).
Unknown pixels (outliers) are shown in red. Many water and ground pixels are
mislabelled as spectral category thin cloud over water, depicted in light blue.
(c) Output map, depicted in pseudo colors [same as in Fig. 2(b)], generated by
SRC from the image shown in Fig. 10(a) after dark-object subtraction.

to Section III-B4 above). Shown in Fig. 10(b), the preliminary
classification map automatically generated by SRC from the
SPOT-5 image radiometrically calibrated into TOARF values
[see Fig. 10(a)] looks meaningless (overall, many pixel-based
spectral patterns [shapes] in TOARF values are either consid-
ered unknown or mislabeled by the SRC; for example, many
water and ground pixels are assigned with the spectral label thin
cloud over water). On the contrary, if a dark-object subtraction

(a)

(b)

Fig. 11. (a) SPOT-2 HRV (High Resolution Visible) scene of Senegal in
TOARF values, acquisition date: 2006-03-01, depicted in false colors (R: band
3, G: band 2, B: band 1). Spatial resolution: 20 m. (b) Output map, depicted in
pseudo colors [same as in Fig. 2(b)], generated by SRC from the image shown
in Fig. 11(a).

is employed in series with (1) and before (2), in line with [45],
then the SRC map automatically generated from the SPOT-5
image, shown in Fig. 10(c), becomes consistent with the SRC
maps generated from the radiometrically calibrated Landsat,
ASTER and SPOT-2 images shown in Figs. 8(b), 9(b), and
11(b) respectively.

The conclusion that SPOT calibration quality and uncertainty
are actually unknown may explain why, for example, the sole
commercial operator of the SPOT satellites, SPOT Image, pro-
vides its SPOT product levels 1A (location root mean square
[RMS] error m), 1B (location RMS error m), 2A (geo-
referenced to a standard map projection without using ground
control points [GCPs], location RMS error m), 2B (geo-
referenced with GCPs, location RMS error m) and 3 (geo-
referenced with GCPs and orthorectified, location RMS error

m) with a geometric quality certification, but no radio-
metric quality index [41].

On the contrary, this conclusion is in contrast with SPOT
commercial services where mosaics of co-registered orthorec-
tified, but radiometrically uncalibrated SPOT images are sold
to end users who may not be aware of the fact that these mo-
saics require a scene-by-scene understanding approach (because
one scene represents, say, apples while the contiguous scene
may represent oranges). This conclusion is also in contrast with
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space agencies, such as the Flemish Institute for Technological
Research NV (VITO), which continue to collect and analyze
large-scale multitemporal SPOT observational data and to dis-
tribute derived information products without claiming that more
progress on automating the classification of RS data requires
continuous and traceable Cal/Val activity [71].

About the calibration quality of the IRS sensor series, Richter
observed that in the three optical sensors carried onboard the
IRS-P6 platform, the bias “nominal value is zero the analysis
of a couple of scenes showed that a nonzero bias is required to
obtain reasonable surface reflectance spectra A fine tuning
of the calibration coefficients may be necessary to obtain better
agreement between scene-derived surface reflectance spectra
and library or ground measured spectra” [47, p. 104]. In line
with this statement by Richter, this author has encountered sev-
eral IRS image instances whose radiometric calibration quality
appears troublesome. Nonetheless, based on experimental
evidence collected over more than two-thousand SPOT and
IRS images processed in the framework of the IMAGE2006
European mosaic project conducted by the EC-Joint Research
Center (JRC) as part of the EU GMES Fast-Track Service
Land Monitoring project [69], this author considers the IRS
combination of zero-value offset parameters with nonzero
gain parameters more effective overall than SPOT-4/-5’s. As
a consequence, in the IMAGE2006 mosaic IRS images have
been preferred to SPOT-4/-5 imagery whenever the former
were available and free of clouds, see Fig. 7.

In common practice, to recover from the aforementioned er-
roneous zero-value offset parameters, an additional relative cal-
ibration step is recommended in series with the SPOT-4/-5 (and
maybe IRS) absolute radiometric calibration (1). For example,
a user-driven standard dark-object subtraction, typically used to
remove the additive atmospheric scattering (haze) effects [45],
can be scheduled in series with (1) or (3), e.g., refer to [70].
In dark-object subtraction techniques, the DN to subtract from
each band may be the band minimum, an average based upon
a user-defined region of interest (typically, a water body of in-
variant spectral properties, a shadow area or a black object fea-
turing 0% reflectance) or a specific value to be user-defined
(e.g., selected from the DN frequency histogram of the whole
RS image) [45], [65].

To summarize, a community-agreed RS data preprocessing
protocol comprising a relative calibration step in series with the
absolute radiometric calibration of SPOT-4/-5 (and maybe IRS)
imagery should become mandatory to validate the unknown cal-
ibration quality of SPOT-4/-5 (and maybe IRS) data. Other-
wise, this unknown radiometric quality should be dealt with by
scene-by-scene data processing approaches unsuitable for ap-
plications such as:

i) quantitative estimates of either physical (e.g., LAI) or
biochemical variables (e.g., Fraction of Absorbed Pho-
tosynthetically Active Radiation, FAPAR) such as those
provided in the frame of the VEGETATION For Africa
(VGT4AFRICA) project, led by the VITO, based on the
SPOT-4/-5 VEGETATION sensor series [71];

ii) operational automatic generation of standardized, ad-
vanced and validated information products (e.g., clas-
sification maps) across time (e.g., image time series),

space (e.g., image mosaics), and sensors in line with the
GEOSS and GMES requirements;

iii) photointerpretation of image datasets across time and
space in scientific applications such as land cover change
detection at geographic scales ranging from local to
global.

The obvious drawback of a SPOT-4/-5 (and maybe IRS) data
processing chain which, to become eligible for use in an opera-
tional satellite-based measurement system, includes a manual or
semi-automatic missing offset parameters retrieval sub-system
is that its operational performance measurement becomes infe-
rior to that of alternative spaceborne data sensors provided with
complete and reliable absolute radiometric calibration offset and
gain parameters.

To conclude, in agreement with the new QA4EO guidelines,
the current vagueness about the SPOT and IRS calibration
quality and uncertainty should be the subject of further in-
quiries by the RS community at the earliest opportunity and
at the highest official level, such as the GMES bureau and the
CEOS WGCV. On a personal basis, for the sake of truth and
in the interest of the RS community involved with the develop-
ment of operational satellite-based measurement systems, this
author would personally welcome a comment by SPOT Image
and the Indian Space Research Organisation (ISRO) about the
aforementioned SPOT and IRS Cal/Val-related issues.

V. COMPARISON OF THE RADIOMETRIC CALIBRATION

CAPABILITIES OF EUROPEAN VERSUS NON-EUROPEAN

SATELLITE OPTICAL SENSORS

The rationale of European Technology Platforms (ETPs)
is to contribute to industrial competitiveness, boost research
performance and provide a positive impact on EU’s policies.
Among possible fields suitable for long-term public-private
partnerships, the GMES project was identified [73]. In the
framework of ETPs, the EU Lisbon treaty explicitly aimed at
fostering the competitiveness of EU industries. Is competi-
tiveness of the European EO satellite industry undermined by
inadequate Cal/Val strategies?

According to Section IV above, lack of one-of-two ra-
diometric calibration parameters affects a currently ongoing
European EO satellite optical sensor series, namely, SPOT-4/-5.

In addition, to date the German RapidEye constellation of
five very high spatial resolution (VHR) satellites, successfully
launched on September 6, 2008, does not appear to provide
stakeholders with radiometrically calibrated images [74]. This
latter case can be considered a relevant example of how an un-
derestimation of the Cal/Val issue may reduce the commercial
impact of RS optical imaging technology. In fact, on the one
hand the unsurpassed one-day time resolution of the RapidEye
satellite sensor constellation provides end users with multisen-
soral multitemporal sequences of VHR images. On the other
hand, to compensate for differences in solar illumination and
enhance multisensoral data consistency and comparability, the
radiometric calibration of RapidEye image time series should
be considered mandatory.

Finally, neither the ongoing Project for On-Board Autonomy
(PROBA)-1 Compact High Resolution Imaging Spectrometer
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(CHRIS) (20 m MS) nor the future PROBA-2 satellite, consid-
ered by ESA as a Third Party Mission to be launched in 2009,
are provided with an onboard calibration system [75].

Based on the aforementioned considerations, it is possible to
conclude that only a minority of currently ongoing EU satel-
lite optical missions, namely, the EUMESAT METEOSAT 2nd
Generation (MSG) Spinning Enhanced Visible and IR Imager
(SEVIRI), the ENVISAT AATSR and the ENVISAT MERIS,
appears to be provided with complete and more reliable onboard
calibration systems. It is noteworthy that the future planned
GMES Sentinel-2 (to be launched in October 2012) and Sen-
tinel-3 optical missions will adopt the same onboard sun-based
calibration system approach adopted by AATSR and MERIS.

With regard to the issue of EO data radiometric quality, a
comparison of the aforementioned currently ongoing EU satel-
lite optical missions with competing EO sensors developed by
EU’s global competitors may be rather difficult. For example,
many, if not all, of the optical sensors mentioned in this text
rely on vicarious calibration and it is not always clear how “offi-
cial” and traceable Cal/Val activity is established to combine on-
board and vicarious calibration results (e.g., in agreement with
the QA4EO guidelines [37]). Although fuzzy, this comparison
cannot be considered completely favourable to the EU optical
sensors.

On the one hand, several non-EU platforms do not provide
calibrated sensors, thus EU sensors cannot be considered behind
in the global competition for EO data acquisition from space.
To the best of this author’s knowledge, examples of non-EU
sensors affected by serious radiometric calibration problems are
those of the CBERS-2B subsystems, namely, a CCD camera
(bands 1–4) and an InfraRed Multi-Spectral Scanner (IRMSS,
bands 5–7). This statement is not obvious.

1. It implies that for the time being CBERS-2B cannot be
considered suitable for Landsat “gap-filling” which may
become necessary before December 2012 when the next
Landsat mission is due to be launched6 [76].

2. It is somehow in contrast with the “perfect behavior” of
the CBERS satellite series, which must not be intended in
terms of sensor series, claimed in [77] where it is written
that the “CBERS Program, in a first moment, considered
two remote sensing satellites only, namely CBERS-1 and
-2. The success of both launches, by the Chinese Long
March 4B, and the perfect behavior of CBERS-1 and
CBERS-2 had immediate effects. Indeed, both govern-
ments decided to expand the cooperation and include new
satellites of the same class, CBERS-2B and CBERS-3
and 4, as a second stage of Sino Brazilian cooperation.”
It is noteworthy that in spite of their radiometric calibra-
tion problems, more than 700 000 CBERS images per

6Launched in April 1999, Landsat-7 ETM� continues to acquire data glob-
ally. The Scan Line Corrector failure in April 2003 has affected ground coverage
and the switch to Bumper Mode operations in April 2007 has degraded the in-
ternal geometric accuracy of the data, but the radiometry has been unaffected.
Launched in March 1984, Landsat-5 TM� continues to acquire global data.
A technical failure of one of the transmitters in 1987 means that only data ac-
quired within an acquisition circle of a ground station can be downlinked. The
TM scanner was switched to Bumper Mode operations in April 2002, which
has degraded the internal geometric accuracy of the data, but the radiometry has
been unaffected [79]. A major system failure of the Landsat-5 TM mission is
considered very likely to occur within the year 2010 [76].

year are distributed, free of charge, among RS scientists
and practitioners by the Brazilian Instituto Nacional De
Pesquisas Espaciais (INPE). Actually, these end users are
willing to interpret costless noncalibrated RS imagery on
a scene-by-scene basis for applications whose geographic
extent may range, in practice, from local to regional scales
exclusively [1], [78]. Follow-on missions to CBERS-2B,
namely, CBERS-3 to -6, are expected to solve the radio-
metric calibration problems of CBERS-2B.

On the other hand, all the best-known United States (US) EO
satellite optical missions, either ongoing or terminated, oper-
ated by either scientific institutions or private space companies,
ranging from low to very high spatial resolution, such as the
National Oceanic and Atmospheric Administration (NOAA)
Advanced Very High Resolution Radiometer (AVHRR), the
Moderate Resolution Imaging Spectroradiometer (MODIS)
TERRA (EOS AM) and AQUA (EOS PM) sensors, Landsat-5
TM, Landsat-7 ETM , IKONOS-2, QuickBird-2, OrbView-3,
etc., feature either good or excellent radiometric calibration
capabilities [13], [15], [16], e.g., see Figs. 3, 6, 8, and 9. For ex-
ample, the ETM sensor has three onboard calibration devices
for the reflective bands and has also been calibrated vicariously
using Earth targets. The gain trends from the ETM sensor are
regularly monitored on-orbit using the onboard calibrators and
vicarious calibration. The calibration uncertainties of ETM
at-sensor spectral radiances are %. Overall, ETM is the
most stable of the Landsat sensors, changing by no more than
0.5% per year in its radiometric calibration [67]. This is one
of the reasons why existing RS literature considers Landsat-5
TM and Landsat-7 ETM missions capable of providing data
having tremendous scientific utility and the Landsat combi-
nation of spatial and spectral resolutions being fine enough to
address most of the environmental and ecological problems
and to map natural resources [80], which requires a follow-on
mission to Landsat-7 [1, p. 451].

Furthermore, India’s (in Section IV, refer to IRS versus
SPOT) as well as Japan’s EO satellite optical sensors (e.g.,
refer to ASTER and ALOS AVNIR-2 in Table II) appear to
be at least not inferior to their European competing sensors in
terms of claimed radiometric calibration capabilities that have
been personally validated by this author (e.g., refer to Figs. 4,
5, 7, and 9).

To date, the author of this paper has been unable to assess
the radiometric calibration properties of other non-European
VHR satellite optical missions distributed through European
companies such as the FORMOsa SATellite (FORMOSAT)-2
and the KOrean MultiPurpose SATellite (KOMPSAT)-2, both
distributed by SPOT Image.

Overall, the aforementioned comments in combination with
those in Section IV are in strong disagreement with potential
options for Landsat “gap-filling” considered by USGS during
the Landsat Science Team held at Fort Collins, CO, USA, on
6th–8th January 2009 [76]. If Landsat-5 fails in the coming
months (after 25 years in operation a major system failure
is considered very likely to occur within the year 2010), this
failure would cause a time gap in the Landsat data coverage
until the year 2013, since the follow-on Landsat mission
should be launched in December 2012. In [76], eligible sensors
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for Landsat “gap-filling” are considered the CBERS-2B, the
IRS-P6 AWiFS, the SPOT sensor series and the RapidEye
constellation. This paper contradicts this statement by consid-
ering all these sensors unable to satisfy, to date, the demand for
continuous traceable Cal/Val-related activities advanced by the
new QA4EO initiative [19].

The timing of Landsat data availability is not fixed and the
availability of future Landsat-like data is still a subject of debate,
though the US intention is to make these data available free of
charge in the same manner as Landsat. Thus, in agreement with
the new QA4EO guidelines about Cal/Val-related activities, Eu-
ropean space agencies and institutions should discuss their own
Landsat “gap-filling” initiatives with the GMES bureau at the
earliest opportunity [76].

VI. OTHER SENSOR SPECIFICATIONS CAUSING AN INCREASE

IN THE TIMELINESS OF EITHER ONGOING OT FUTURE EU
SATELLITE OPTICAL IMAGING SENSORS

There are two more reasons that cause an additional reduction
of the usability domain of SPOT imagery and, perhaps, of future
EU satellite optical imaging sensors. In practice, these technical
factors increase sensor timeliness (refer to the definition in Sec-
tion II above).

A. Large Time Baseline Between PAN and MS Image Pair
Acquisition

Ongoing SPOT-5 panchromatic (PAN, 2.5 m resolution) and
MS (10 m resolution) imaging sensors do not acquire PAN and
MS image pairs simultaneously, but about 3 sec apart which
corresponds to a space baseline of some ( 30) kilometers.
For comparison, this time difference is equivalent to some
fractions of a second in both IKONOS-2 and QuickBird-2
satellite sensors whose PAN and MS image spatial resolutions
are, by the way, finer (i.e., better) than SPOT-5’s, see Table II.
This problem causes any SPOT-5 MS image PAN-sharpening
attempt to be affected by huge visual “terrain effects” if no
preliminary pixel-by-pixel co-registration of the SPOT-5 PAN
and MS image pair is performed. Unfortunately, a SPOT-5 PAN
and MS image pair co-registration process featuring a standard
co-registration error below 1/2–1/5 of a pixel [81], [82], may
become extremely difficult in real-world RS data applications,
e.g., when a typical SPOT-5 image size is 24000 24000 pixels
and when the image depicts terrain areas where it is difficult to
detect conjugate point pairs (e.g., mountainous areas covered
by snow) [15].

To summarize, by requiring relative calibration in series with
the absolute radiometric calibration (refer to Section IV above)
in addition to MS and PAN image pair co-registration before
MS image PAN-sharpening takes place, SPOT-5 is affected by
a timeliness far superior to that of its rival VHR sensors, namely,
IKONOS-2, QuickBird-2, etc.

It is noteworthy that in the Astroterra system characteris-
tics of the follow-on missions to SPOT-5, namely, Astrium’s
SPOT-6/-7 to be launched in 2012 and 2017 respectively, si-
multaneous PAN and MS image acquisition is planned [83].

B. Change in Spectral Resolution Causing an Increase in
Inter—Band Data Correlation and Sensitivity to the Presence
of Haze and Aerosols

In the near future the fourth generation of EO satellite sen-
sors should move towards the FIEOS paradigm (refer to Sec-
tion III-A above) where onboard automatic data processing ca-
pabilities require RS data to be well behaved and well under-
stood (also refer to Sections I and II above) [49]. To satisfy the
operational requirements of FIEOS, future planned RS imaging
sensors should carefully balance an increase in spatial reso-
lution with changes in spectral resolution which may have a
negative impact upon the implementation of operational satel-
lite-based measurement systems. A reasonable criterion to as-
sess a novel combination of spatial and spectral sensor resolu-
tions should start from existing literature, where the Landsat-5
TM and Landsat-7 ETM combination of spatial and spectral
resolutions is considered a reference standard, fine enough to
address most of the environmental and ecological problems and
to map natural resources [80].

In spite of these considerations, the design characteristics of
future European EO satellite optical imaging sensors appear to
move away from both the Landsat sensor characteristics and,
perhaps, the FIEOS scenario as discussed below.

The satellite constellation Pleiades-1/-2, to be developed by
the French Space Agency (Centre National d’Etudes Spaciales,
CNES) by the year 2009 and 2012 respectively, featuring PAN
spatial resolution equal to 0.60 m and MS spatial resolution
equal to 2.8 m at nadir, and the follow-on missions to SPOT-5,
namely, Astrium’s SPOT-6/-7 to be launched in 2012 and 2017
respectively, featuring PAN spatial resolution equal to 2 m and
MS spatial resolution equal to 8 m at nadir [83], lose the MIR
channel of the SPOT sensor series in favour of a visible blue (B)
band [84]. This change in spectral resolution implies that:

1. Pleiades-1/-2 and SPOT-6/-7 will become alternative to a
plethora of VHR sensors such as GeoEye-1, IKONOS-2,
QuickBird-2, OrbView-3, FORMOSAT-2, KOMPSAT-2,
etc., featuring the same spectral resolution (see Table II).
Unfortunately, the future Pleiades-1/-2 spatial resolution
is expected to be coarser than that of some of its non-EU
rivals already in orbit (e.g., GeoEye-1).

2. Irrespective of spatial resolution, the (spectral) informa-
tion content (amount of information) of a 4-band Pleiades
image is expected to be inferior to that of a 4-band
SPOT-4/-5 image of the same depicted surface because
the interband correlation of the former sensor is superior.
This is tantamount to saying that the spectral separability
of potential targets decreases in MS images acquired by
the Pleiades imaging sensor in comparison with ongoing
SPOT-4/-5’s. Moreover, the MIR channel to be lost in
the Pleiades optical sensor has been described as the best
band overall [70]. Its wavelengths are sensitive to water
absorption and, as such, it is useful for vegetation moisture
content, soil moisture and soil versus vegetation differen-
tiation, as well as snow versus cloud discrimination. In
combination with a Near-IR (NIR) channel it was largely
employed to compute so-called bare soil spectral indexes
[15], [60], [85].
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3. It is well known that light scattering due to atmospheric
conditions and aerosols is inversely proportional to the en-
ergy wavelength , i.e., shorter wavelengths of the spec-
trum are scattered more than the longer wavelengths (refer
to Section III-A above). For example, in the MIR wave-
lengths the amount of atmospheric scattering is known to
be “quite small except for “very hazy” atmospheres and can
be considered negligible” ([45], p. 476). For example, the
well-known Landsat-7 ETM automatic cloud cover as-
sessment (ACCA) algorithm considers band B of limited
utility because of its sensitivity to scattering across atmo-
spheric conditions. Therefore, it ignores this band in cloud
detection [38]. Analogous to ACCA, the fully automated
SRC system of systems (refer to Section III-B4 above) is
designed to be scarcely affected by atmospheric scattering
by taking visible bands into scant consideration [15], [60].
In practice, weights of visible channels are low in the SRC
decision rules based on a convergence-of-evidence mech-
anism. The only case in which SRC considers band B very
useful (i.e., provided with great weight) is the generation
of haze and aerosols binary output masks [15].

4. In line with theoretical considerations 2 and 3 expressed
above, SRC experimental results gathered in [15], [16]
show that replacing a MIR band with a B band causes
(when spatial resolution is maintained the same): (i) a
significant reduction in the cardinality of the set of target
spectral categories, estimated at about 30%, and (ii) a
consistent reduction in the reliability of target spectral
categories, starting from a mislabeling probability above
10% in the dichotomous one-class vegetation/nonvegeta-
tion image partition problem.

The obvious conclusion is that, in comparison with the cur-
rently ongoing SPOT sensor series, the future planned Pleiades
and SPOT missions gain in spatial resolution, but are moving
farther away from the development of the onboard automated
image processing capabilities required by the FIEOS scenario
and from the spectral resolution of the Landsat missions con-
sidered the most successful EO satellite optical sensor series.

VII. LACK OF OPERATIONAL RS IMAGE UNDERSTANDING

SYSTEMS DUE TO THE OMISSION OF A RADIOMETRIC

CALIBRATION PREPROCESSING STAGE

In this section, Cal/Val activity is investigated in EO data re-
search and development projects carried on in recent years by
the ESA and the EC-JRC adopted as two case studies. Since
these two EU institutions are deeply involved with the GMES
program and have been members of the CEOS for more than
twenty years, it would be reasonable to expect these two insti-
tutions to consider radiometric calibration an essential prepro-
cessing component of operational RS-IUSs in agreement with
the new QA4EO initiative.

A. First Case Study: ESA

ESA is the coordinator of the space component of GMES and
is ensuring the flow of EO data into the GMES services along
with access to these data [23]. However, to face the challenge
of implementing operational satellite-based measurement sys-
tems, ESA should not limit its efforts to the harmonization of

the GMES data flow and data access. Rather, in agreement with
this text above, ESA should also ensure that all the acquired
data can be assembled into image time series and/or image mo-
saics of consistent radiometric and geometric quality at different
spatial scales. In other words, to guarantee interimage compa-
rability across time, space and sensors, ESA should require the
operators of contributing satellite missions to apply operational,
standardized, consensus-based image preprocessing operations
according to the following sorted sequence.

1. Radiometric calibration. It is noteworthy that RS image ra-
diometric calibration should be performed before orthorec-
tification and co-registration and not the other way around.
The reason is twofold. First, transformation of raw DNs
into a finite radiometric scale such as TOARF values in
range [0, 1] allows checking for radiometric consistency
of pixel values after image orthorectification and co-reg-
istration take place. Second, radiometric metafiles report
the raw image size (in lines and columns) which does not
hold after that orthorectification and co-registration occur.
In other words, on the one hand, to perform radiometric
calibration in series with orthorectification and co-regis-
tration, two ancillary metafiles (or file headers) should be
read instead of a single one. On the other hand, to perform
radiometric calibration before orthorectification makes no
difference to the latter.

2. Orthorectification (which requires an ancillary digital ter-
rain model).

3. Co-registration.
4. Atmospheric correction (which requires ancillary data), if

any [47], [61], refer to Section III-A above.
5. Topographic correction (which requires an ancillary digital

terrain model [62]), if any.
To date, lack of ongoing RS image preprocessing proto-

cols shared between ESA and its EU institutional partners,
such as the DLR and the EC-JRC, together with insufficient
data management and data sharing policies, has had dramatic
consequences. For example, in the framework of the GMES
IMAGE2006 component and development of the European
mosaic project between ESA, DLR and the EC-JRC [69],
SPOT-4 HRVIR, SPOT-5 HRG and IRS-P6 LISS-III MS
images acquired across the European geographic extent were
orthorectified by DLR without applying any preliminary ra-
diometric calibration step (which is inconsistent with the RS
image preprocessing protocol proposed above in this text).
Next, these orthorectified images were delivered by DLR to the
ESA and the EC-JRC. However, the original IMAGE2006 raw
data calibration metafiles generated by the SPOT and IRS data
providers were made available to the DLR and EC-JRC exclu-
sively. In other words, the ESA IMAGE2006 online archive
consists of orthorectified images provided with no radiometric
calibration metadata. As a consequence, in the framework of
the ESA Category 1 data free access policy [87], scientific users
are unable to transform the orthorectified images belonging to
the IMAGE2006 dataset at continental scale into a common
radiometric scale. This occurs despite the ESA, DLR and
EC-JRC are members of the CEOS which officially supports
the QA4EO initiative and in spite of the well-known principle
that data management, including data sharing and redundancy
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(duplication), is often more critical than data collection in
guaranteeing the integrity (i.e., accuracy and completeness) of
a database [88].

It is hoped that following implementation of the new QA4EO
guidelines, where ESA has a leading role, access to an ESA
IMAGE2006 online archive comprising complete RS data with
radiometric calibration metadata files will be made available to
stakeholders in the short term.

B. Second Case Study: EC-JRC

In recent years the EC-JRC has been conducting a plethora
of RS image research and development activities aimed at sup-
porting EC policies that range from environment and sustain-
ability issues, such as global land cover and land cover change
mapping of RS image mosaics [25], [28], to protection and se-
curity issues, such as built-up damage assessment and refugee
camp monitoring in VHR imagery [89]. Quite surprisingly, most
of these investigations have inferred quantitative information
from input RS images acquired across time and/or space and/or
sensors that have never been preprocessed into a common unit
of measure belonging to an international system of radiometric
units. Some examples of these scientific studies are summarized
below.

a) Applications for the Environment and Its Sustainability:
In [25] the IMAGE2000 and CORINE Land Cover (CLC) up-
dating for the year 2000 (CLC2000) project delivered twenty-
nine (!) national mosaics and one European mosaic consisting
of 25 m-resolution orthorectified Landsat-7 ETM images fea-
turing a Root Mean Square Error (RMSE) of 25 m. No radio-
metric calibration requirement was adopted in the IMAGE2000
project specification. This implies that firstly the IMAGE2000
mosaics at national and continental scales were generated on
a scene-by-scene basis either manually or, at best, semi-auto-
matically at a high cost in terms of manpower. Secondly, the
radiometric quality of the IMAGE2002 is unsuitable for use
in operational satellite-based measurement systems. This appli-
cation example is particularly significant because, despite the
fact that the radiometric calibration of Landsat imagery is par-
ticularly straightforward and effective, hundreds of RS scien-
tists in twenty-nine (!) EU nations completely ignored any ra-
diometric calibration preprocessing requirement in the context
of RS image mosaicking at continental scale. This omission
may be justified by considering that back in the 1990s, when
the IMAGE2000 project requirements were set, the main issues
were probably data distribution and result dissemination rather
than raw image transformation into a radiometric unit of mea-
sure.

In [26], the Global Land-Cover (GLC)-2000 is a global
mosaic for the year 2000 consisting of SPOT-VGT images at
1-km resolution. About data radiometry, it states that “absolute
sensor calibration is in the order of 5%, while temporal varia-
tion is less than 2% for visible and near-infrared bands. This is
achieved by using the onboard calibration lamp together with
measurements in specific conditions over reference targets.
Equalization between detectors in each array is monitored every
2 weeks and equalization function parameters are uploaded
to the instrument processor for on-board correction. While

this process is fully satisfactory for visible and near-infrared
channels, it is not sufficient for the short-wave infrared camera
whose detectors are randomly damaged by proton impacts. As
a result, short-wave infrared images often display stripes corre-
sponding to detectors damaged shortly after the updating of the
on-board equalization functions.” In practice, the GLC-2000
project appears to completely ignore radiometric calibration
issues addressed above in this paper. As a consequence, no
operational land cover mapping algorithm can be applied to
images acquired across time and space that do not belong to a
common radiometric scale. In fact, the GLC2000 project adopts
a so-called “regionally tuned” approach where each regional
product is generated “independently with the lead scientists
taking responsibility for the choice and implementation of
image postprocessing and classification methods”. This is
tantamount to saying that the GLC2000 image mosaic has to
be classified on a scene-by-scene basis (one scene representing
apples, another oranges, etc.).

In [27], the IMAGE2006 mosaic at European scale consists
of SPOT-4/-5 and IRS-P6 LISS-III imagery, see Fig. 7 and refer
to Section IV and Section VII-A above. Wherever available
and free of clouds, the latter is preferred to the former, see
Section IV above. IMAGE2006 employs a RS image absolute
radiometric calibration preprocessing stage, but it completely
ignores the lack of radiometric calibration offset parameters
discussed in Section IV above. Additional critical issues related
to the IMAGE2006 data management and data sharing policy
among the ESA, EC-JRC and DLR are discussed in Section
VII-A above. It is noteworthy that the complete omission of
a radiometric calibration preprocessing stage affecting the
IMAGE2000 mosaics was, at least in part, corrected in the
IMAGE2006 project where, however, only one-of-two per
band radiometric parameters is available and employed for
calibration without validation. This reveals that in the last 10
years or so the issue of calibration has gained some positions,
perhaps not as many as necessary, on the agenda of EU space
agencies and research institutions.

In [28], where technical capabilities for monitoring de-
forestation in a pan-tropical scale are reviewed, keywords
“radiometric calibration/normalization/processing” are used
only once to state that “more recently new global land cover
datasets at finer resolution (250–500 m) were generated from
TERRA-MODIS Initial examples at this scale include the
MODIS vegetation continuous fields (VCF) products depicting
sub-pixel vegetation cover traits at a spatial resolution of
500 m. The systematic geometric and radiometric processing
of MODIS data has enabled the implementation of operational
land cover characterization algorithms of global VCF tree
cover. These are now available to researchers and are being
incorporated into various forest cover and change analyses.”
In this quotation, the statement “the systematic geometric
and radiometric processing of MODIS data has enabled the
implementation of operational land cover characterization al-
gorithms” is of fundamental importance. This operational issue
is not stressed any further in [28]. Rather, it is perfectly in line
with this paper where it states that radiometric calibration is a
necessary, although not sufficient, condition for development
of operational automatic RS-IUSs (see Sections I and II above).
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It is even more amazing that in a paper dealing with the har-
monization of global land cover maps, where one of the co-au-
thors was a former member of the CEOS WGCV, the keyword
“radiometric calibration” never appears [30].

Finally, it is noteworthy that in another global land cover
project, namely the GlobCover joint initiative of the ESA, the
EC-JRC and several other public institutions, an operational
service capable of delivering global composite and land cover
maps using as input observations from the 300 m MERIS
sensor onboard the ENVISAT satellite mission was developed
[29]. The GlobCover service was shown over a period of
19 months [December 2004–June 2006], for which a set of
MERIS Full Resolution (FR) image composites (bi-monthly
and annual), radiometrically calibrated into surface reflectance
values, and a Global Land Cover map is being produced. The
GlobCover composites are derived from a set of MERIS FR
image processing modules such as cloud detection, atmospheric
correction, geolocalization and re-mapping. The GlobCover
Land Cover map is compatible with the United Nations (UN)
Land Cover Classification System (LCCS). Unfortunately, al-
most nothing is known about the MERIS image understanding
algorithm and its degree of automation [29]. Since no infor-
mation is provided to application developers for the MERIS
image understanding system to be reproduced, no assessment
and comparison of this black-box image mapping approach
with alternative systems is possible to date. This is tantamount
to saying that this MERIS image classifier, provided with
no documented community-agreed quantitative OPI (refer to
Section II above), disagrees with the QA4EO guidelines.

b) Applications for the Protection and Security of the Cit-
izen: Risk management involves both prevention, such as map-
ping of hazardous areas, and a posteriori evaluation of dam-
aged areas. To provide fast-response (within few hours) actions
imposed by Civil Protection entities, risk management implies
real-time monitoring [2]. An operational spaceborne RS system
for risk management must satisfy the following system require-
ments [15].

• A satellite constellation specific for the purpose of risk
management. In particular:
— The revisit time (time period between two acquisitions

on a given site) must be suitable for real-time moni-
toring, ranging from few hours to one day.

— On a case-to-case basis, spatial resolution and the spa-
tial coverage must be appropriate for the required appli-
cation. In general, the finest spatial resolution ( m)
is required for monitoring man-made objects whereas
characteristic spatial scales of urban areas are between
10 and 20 m [48].

• A satellite acquisition selection and programming proce-
dure must introduce a time delay compatible with satellite
revisit time.

• Cartographic products (maps of hazardous and damaged
areas) of validated quality generated from the satellite
data must be made available with the shortest time delay
from data acquisition on a case-to-case basis. To reduce
this time delay, the implementation of operational satel-
lite-based measurement systems robust across time, space
and sensors, which rely upon the availability of RS satellite

data of demonstrably traceable and validated geometric
and radiometric quality, becomes mandatory (see sections
above in this text).

In the framework of risk management, algorithms found in
existing literature appear far more suitable for toy problems and
academic speculations than real-world RS data applications.
For example, in [89], a built-up damage detection methodology
uses as input two multiscale and multisensor VHR QuickBird-2
MS and PAN image pairs of the same area acquired before
and after a catastrophic event (tsunami). Run upon this single
testing dataset, the proposed methodology is claimed to reach
an overall accuracy of 93.97%, with best performance in the
discrimination between nonflooded and flooded built-up struc-
tures and in the recognition of collapsed built-up structures with
debris in place. Indeed, a classification algorithm using as input
a specific combination of multiscale multisensor multitemporal
images not belonging to a common radiometric scale offers
no guarantee of robustness to changes in the input dataset. By
avoiding any investigation of the proposed system’s robustness
to changes in the input dataset, paper [89] fails to satisfy at least
one of the following algorithm benchmarking criteria proposed
in [90] and [91].

• At least two real and standard/appropriate data sets must be
adopted to demonstrate the potential utility of an algorithm,

• The proposed algorithm must be compared against at least
one existing technique.

• At least one fifth of the total paper length should be devoted
to evaluation.

In [92], a procedure for the calculation of a 2nd-order statistic
rotation-invariant contrast index extracted from a single-scale
gray-level co-occurrence matrix (GLCM) is presented as a
“built-up presence index” estimator. The proposed 2nd-order
contrast statistic estimator is employed in a multitemporal anal-
ysis of a mosaic of SPOT-5 PAN images at 2.5 m resolution.
This approach for detecting changes in textured images has
several theoretical limitations which may reduce its robustness
to changes in the input dataset.

i) This work completely ignores the radiometric calibration
preprocessing requirement mandatory in multitemporal
image analysis.

ii) The third-order version of the Julesz conjecture states
that if two textured images of finite size have identical
third-order statistics (which implies identical second- and
first-order statistics), then they must be physically iden-
tical, i.e., they are visually undistinguishable by defini-
tion. In other words, third- rather than second-order statis-
tics should be investigated in texture analysis [93]–[95].

iii) Texture detection, such as (textured) image decomposi-
tion, is a multiscale rather than single-scale image pro-
cessing task [96], [97].

iv) The implemented 2nd-order contrast statistic estimator is
a general-purpose (nonselective, non-“intelligent”) tex-
ture feature extractor by no means sensitive to built-up
areas exclusively. Therefore, its name, “built-up presence
index”, appears quite misleading.

To conclude, the aforementioned drawbacks identify RS
image understanding approaches unsuitable for operational
applications in risk management.
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TABLE III
ON THE X-AXIS: EQUIDISTANT BAND INDEXES MONOTONICALLY INCREASING WITH SPECTRAL WAVELENGTH, FROM VISIBLE BLUE TO MEDIUM INFRA-RED

(ALSO REFER TO TABLE II). ON THE Y-AXIS: TOARF VALUES IN RANGE [0, 1]� 100 OF OPEN SEA WATER SPECTRAL SIGNATURES EXTRACTED FROM THE

SAME SEA WATER REGION OF INTEREST LOCATED ACROSS THE FOUR RS IMAGES SHOWN IN FIGS. 8(A), 9(A), 10(A), AND 11(A). ABOUT THE ADOPTED

NOTATION, ETM1 IDENTIFIES A LANDSAT-7 ENHANCED THEMATIC MAPPER (ETM) BAND 1-LIKE IMAGE, AND SO ON, UP TO BAND ETM7, RANGING FROM

VISIBLE BLUE TO MEDIUM INFRA-RED, WHEREAS BAND ETM6, DEALING WITH THE THERMAL INFRA-RED, IS OMITTED. FOR EXAMPLE, A SPOT-2/-5 BAND 1
IS APPROXIMATELY EQUIVALENT IN TERMS OF SPECTRAL SENSITIVITY CURVE TO ETM2, AN ASTER BAND 1 IS EQUIVALENT TO ETM2, ETC.

C. Final Remarks About the Two Case Studies

All the aforementioned RS image applications, aside from
those dealing with radiometrically calibrated data, namely, the
MODIS VCF project and the GlobCover initiative, cannot rely
upon operational automatic land cover mapping algorithms,
but either “regionally tuned” or scene-by-scene classification
procedures.

In practice, underestimation of the radiometric calibration
preprocessing stage forces the development of scene-by-scene
classification and postprocessing procedures whose costs in
terms of manpower (which includes the collection of ground
truth data, if any), RS data processing expertise of human oper-
ators and timeliness increase monotonically with the size of the

image mosaic. For these reasons scene-by-scene interpretation
approaches have been featuring a negligible impact upon both
scientific and commercial RS data applications. As reported in
Section II above, to date only 10% of the RS data stored in the
ESA EO archives has ever been downloaded by stakeholders
[24], while the percentage of the literally hundreds of so-called
novel digital image processing algorithms presented each year
in scientific literature that are actually implemented in com-
mercial RS image processing software toolboxes still remains
far below reasonable expectations [10].

VIII. CONCLUSION

Although often ignored in RS common practice, continuous
traceable Cal/Val-related activities, well defined and controlled
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through community-agreed reference standards in accordance
with the new GEO-CEOS WGCV QA4EO initiative, are con-
sidered crucial in achieving harmonization and interoperability
of EO data and derived information products generated from a
variety of sources at all scales—global, regional and local—as
envisaged under the visionary goals of the well-known GEO-
GEOSS and GMES programs. The original contribution of this
work to existing knowledge on the Cal/Val subject is to consider,
based on existing literature, continuous traceable Cal/Val activ-
ities, from sensor build to end-of-life, a necessary, although not
sufficient, condition for development of operational automatic
RS-IUSs requiring as input RS images that are well behaved
and well understood, namely, sensor delivered data that are: (i)
calibrated into a physical unit-of-measure related to a commu-
nity-agreed radiometric scale and (ii) validated in terms of ra-
diometric and geometric quality.

As a consequence, this paper delivers a timely reminder to
the space agencies and commercial satellite industries of their
responsibility to provide the scientific and commercial commu-
nities with radiometrically calibrated RS data of validated geo-
metric and radiometric quality suitable for use in operational
satellite-based measurement systems.

It is noteworthy that the degree of match of the radiometric
calibration characteristics of ongoing EU spaceborne missions
with Cal/Val guidelines promoted by the new QA4EO initiative
is either low or very low. For example, experimental evidence
collected by this author reveals that the calibration quality of
the absolute radiometric calibration metadata of SPOT-4/-5
(and maybe IRS) imaging sensors appears to be questionable.
Despite being neglected by the RS community, this subject
deserves further scientific investigation at institutional level.
Other ongoing EU spaceborne missions, such as RapidEye and
PROBA, appear to deliver EO data that are not radiometrically
calibrated and, therefore, validated in terms of calibration
quality and uncertainty as required by the QA4EO initiative.
As such, they are not eligible for use in operational automatic
RS-IUSs.

In comparison with ongoing SPOT-4/-5 sensor characteris-
tics, future planned EU Pleiades-1/-2 and the follow-on As-
trium’s SPOT-6/-7 missions will feature a finer spatial resolu-
tion capability, counterbalanced by a change in spectral resolu-
tion that is expected to increase their interband data correlation
and sensitivity to the presence of haze and aerosols. This work
estimates that in comparison to SPOT-4/-5, Pleiades-1/-2 and
Astrium’s SPOT-6/-7 may be affected by a spectral information
loss responsible for: (I) a significant reduction in the cardinality
of the set of target spectral categories, estimated at about 30%,
and (II) a consistent reduction in the reliability of target spectral
categories, starting from a mislabeling probability above 10% in
the dichotomous one-class vegetation/nonvegetation image par-
tition problem.

Unfortunately, little is known about the Cal/Val requirements
of future planned EU spaceborne optical imaging sensors. For
example, it is known that the Sentinel-2/-3 missions developed
in the frame of the GMES project will adopt the same sun-based
onboard calibration system technology employed by AATSR
and MERIS. What about the radiometric calibration character-
istics of Pleiades-1/-2 and the follow-on Astrium’s SPOT-6/-7

missions? If these future EU satellite missions will not be able
to satisfy Cal/Val reference standards in agreement with the
QA4EO initiative, they may be considered unfit to support an
operational, automatic, consensus-based and standardized RS
data processing chain robust to changes in input data acquired
across time, space and sensors. In other words, the radiometric
quality of these satellite missions would be inadequate to deal
with the major scientific challenges to the RS community within
the next 10 years, such as the following.

• Achieving the visionary goal of developing operational
GEOSS and GMES system instantiations.

• Providing Landsat “gap-filling”, if required.
• Addressing the FIEOS development scenario where opera-

tional near real-time satellite-based measurement systems
should be implemented.

• Reversing statistics according to which, to date, only 10%
of the data stored in the ESA EO databases has ever been
downloaded by stakeholders.

• Fulfilling many of the resolutions arising from interna-
tional ecological, economic and social summits, such as
the Johannesburg World Summit on Sustainable Develop-
ment (WSSD) held in August 2002, calling for better uti-
lization of cartographic solutions as well as other geo-in-
formation solutions, such as satellite mapping services, to
monitor key bio-geo-physical processes and their changes
at geographic scales ranging from local to global.

• Fulfilling many of the resolutions arising from ETPs and
the EU Lisbon treaty aimed at fostering the competitive-
ness of EU industries.

In practice, if not provided with complete and reliable radio-
metric calibration metadata in agreement with the international
QA4EO initiative, MS images generated from future EU satel-
lite optical missions will be almost exclusively suitable for ei-
ther scene-by-scene quantitative interpretation or nonscientific
qualitative (visualization) applications in commercial internet
map servers or geo-browsers such as Google Earth, NASA’s
World Wind and Microsoft’s Virtual Earth whose popularity has
become impressive in recent years [98]. It is noteworthy that the
aim of commercial web-based map servers and geo-browsers is
not RS image visual interpretation, but to use geography as a
way of searching and viewing spatial information, i.e., to search
for information provided with a geographic footprint [99]. As a
consequence, these commercial web-based services require as
input 3-band Red-Green-Blue (RGB) images in either natural or
false colors featuring little to no scientific utility. This conver-
gence of interests between the EO space industry, internet ser-
vice providers and value adding companies is confirmed by a re-
cent announcement that SPOT Image was named a Google Earth
Enterprise Partner. In this new partnership with Google, SPOT
Image will deliver “ready-to-use” image datasets (perhaps con-
sisting of RGB images in either natural or false colors pro-
vided with no scientific utility?) for Google Earth and Google
Earth Enterprise users to integrate the information content of
SPOT satellite imagery into web-based Google Maps (2-D) and
Google Globe (3-D) services [100].

Unfortunately, should their application domain be limited to
commercial nonscientific qualitative (rather than quantitative)
web-based services, future EU satellite optical missions, such as
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Pleiades-1/-2 and Astrium’s SPOT-6/-7, appear to be less com-
petitive than their alternative non-EU satellite optical sensors
already in orbit (e.g., GeoView-1) in terms of spatial resolution.

To avoid these potential drawbacks, a relevant section of the
RS community committed to the development of operational
automatic RS-IUSs should urgently require future planned EU
satellite optical missions to be subject to a continuous, traceable,
well-defined and controlled through community-agreed refer-
ence standards Cal/Val activity, in agreement with the QA4EO
initiative, to become eligible for use in an operational GEOSS
and GMES framework and for Landsat data “gap-filling”, if
required.

Finally, this work shows that several recent or ongoing
European projects focusing on global land cover and land cover
change, risk management and fast reaction to catastrophic
events where EO satellite optical images are examined across
time, space and sensors, neglect the transformation of raw DNs
into a common radiometric unit of measure. In practice, EU
space agencies and scientific institutions that, in recent years,
have underestimated the importance of Cal/Val-related activi-
ties for EO data quality assurance in spite of their twenty-year
membership in the CEOS show their reluctance (inadequacy?)
to move from scientific to operational EO data applications.
It is hoped that following implementation of the new QA4EO
guidelines the development of operational automatic RS-IUSs,
capable of accomplishing many of the resolutions arising from
the GEOSS and GMES programs, will become a reality in a
timely manner.
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