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Abstract—The soil moisture changes (∆��) have a significant 
influence on forestry, hydrology, meteorology, agriculture, and 
climate change. Interferometric Synthetic Aperture Radar 
(InSAR), as a potential remote sensing tool for change detection, 
was relatively less investigated for monitoring this parameter. 
DInSAR phase (�) is sensitive to the changes in soil moisture (��) 
and, thus, can be potentially used for monitoring ∆��. In this 
study, the relations between � and ∆�� over wheat, canola, corn, 
soybean, weed, peas, and bare fields were investigated using an 
empirical regression technique. To this end, dual-polarimetric C-
band Sentinel-1A and quad-polarimetric L-band Uninhabited  
Aerial Vehicle Synthetic Aperture Radar (UAVSAR) airborne 
datasets were employed. The regression model showed the 
coefficient of determination (R2) of 40% to 56% and RMSE of 4.3 
vol.% to 6.1 vol.% between the measured and estimated ∆�� for 
different crop types when the temporal baseline (∆�) was very 
short. As expected, higher accuracies were obtained using 
UAVSAR given its very short ∆� and its longer wavelength with 
R2 of 47% to 59% and RMSE of 4.1 vol.% to 6.7 vol.% for 
different crop types. However, using the Sentinel-1 data with the 
long ∆� and shorter wavelength (5.6 cm), the accuracies of ��� 
estimations decreased significantly. The results of this study 
demonstrated that using the � information from Sentinel-1 data is 
a promising approach for monitoring ��� at an early growing 
season or before the crop starts growing, but using L-band SAR 
data and lower temporal baselines are recommended once the 
biomass increases. 

 
Index Terms—Synthetic Aperture Radar, Interferometric 

Phase, Soil Moisture, Change Detection.  

I. INTRODUCTION 

NTERFEROMETRIC Synthetic Aperture Radar (InSAR) is a 
remote sensing technique for monitoring a broad range of 

phenomena, such as permafrost studies [1], analysis of 
groundwater-related subsidence [2], [3], volcanology [3], and 
tectonics [3]–[5]. Measuring the topography of a surface and 
the displacement of the earth surface over time are other 
applications of InSAR [3], [6], [7]. Recently, this technique has 
been used to estimate soil moisture (��) as a change in the 
characteristic of the surface [8]–[10]. However, InSAR 
technique was relatively less investigated for monitoring �� 
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compared to other microwave methods such as theoretical and 
physical models [11], [12]. 

Researchers reported movements of surface that were related 
to watering when they were working with SEASAT data in 
1989, confirming a relationship between �� and interferometric 
phase (�) [13]. Thus, the � that is obtained by combining two 
radar images is an important parameter for soil moisture change 
(∆��) estimation [8], [9], [14]. In addition to ∆��, there are 
other factors that affect the phase between the two observations, 
including deformations, vegetation, wind speed/direction, and 
atmosphere condition [12], [14]. Although these effects have 
been recognized at least since 1989, the studies on ∆�� 
monitoring using the � and coherence are limited to a few 
studies that have been mainly conducted using the laboratory 
experiments [15]–[18], as well as a few studies on using the 
airborne or satellite data [19]–[23]. Researchers have been 
interested in studying the effect of ∆�� on � for two main 
reasons, (1) correcting the corresponding error in displacement 
estimation, and (2) using InSAR technique for monitoring ∆��. 

Interferometric phase (�), coherence magnitude (�), and 
closure phase or phase triplet (Ξ) are three Differential InSAR 
(DInSAR) parameters that are used for �� monitoring [10], 
[14]. Hensley et al. [22] compared repeat-pass polarimetric-
interferometric data generated from UAVSAR flights with in-
situ �� measurements to analyze the correlation between ∆�� 
and �. Their results showed that the interferometric correlation, 
either for the HH or VV polarizations, decreases as a function 
of increasing �� differences between the observations. 
Moreover, Barrett et al. [12] used the DInSAR method to 
estimate ∆�� over agricultural fields. Their results showed the 
correlation coefficients (r) varying between 0.51 and 0.81, 
depending on crop types. Moreover, it was observed that the C-
band cross-polarization pairs provided the highest r values over 
the barley and potato fields with r = 0.51 and r = 0.81, 
respectively. In another study, De Zan et al. [8] proposed a 
model based on plane waves to model the vertical complex 
wavenumbers in the soil as a function of geometrical and 
dielectric properties and the complex interferometric 
coherences using L-band airborne SAR data. Additionally, 
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Zwieback et al. [10] used airborne L-band data to investigate 
the correlation between ∆�� and �, �, and Ξ using regression 
techniques. Their results showed that � was more sensitive to 
�� compared to the other two indicators. The highest sensitivity 
derived at the HH polarization. Zwieback et al. [14] also 
analyzed whether �� can be estimated from the three DInSAR 
observations with the purpose of separating �� and effects of 
displacements on �. They estimated �� from the three DInSAR 
observables including �, �, and Ξ without making any 
assumptions about �� complex spatiotemporal dynamics. Their 
results showed �� time series up to an overall offset can be 
estimated using �. They concluded that separating 
displacements and ∆�� was challeging using only DInSAR 
observations. De Zan et al. [9] also used ALOS-2/PALSAR-2 
L-band images to retrieve �� from SAR Ξ. They showed that 
there were ambiguities to estimate �� using only Ξ. They used 
� to solve the ambiguities effect. Their results illustrated that 
there waS a high degree of correlation between 50 and 75 %. 
Furthermore, Molan et al. [9] studied the possibility of the ∆�� 
estimation using � and Ξ in the semi-synthetic multi-looked 
interferograms. Their results showed Ξ and decorrelation were 
increased with increasing ∆��. Additionally, their results 
showed that the variations of �, �, and Ξ were associated with 
land cover type. Overall, their results illustrated � and Ξ were 
unsuitable for estimating ∆�� [23].  

None of the previous studies has investigated the potential of 
� to estimate ∆�� in C-band. Moreover, the suitability of � for 
estimating ∆�� depends on multiple factors, such as land cover, 
but these dependencies have not been thoroughly studied, 
especially using C-band data. Additionally, the relationship 
between � and ∆�� at different crop growth stages has not been 
investigated in previous studies. Therefore, this study's aims are 
itemized in the following: (1) investigation of the potential of � 
in C-band data for ∆�� estimation over wheat, canola, corn, 
soybean and bare fields using linear regression models, (2) 
comparing the potential of � in C-band for ∆�� estimation with 
the potential of � in L-band. The main focus of this study was 
on C-band results; however, L-band was also assessed to 
investigate wavelength effects. To this end, Sentinel-1 (C-band) 
and airborne UAVSAR (L-band) data over two study areas in 
Canada were employed. The small spatial and short ∆� are 
expected to reduce the impacts of the other potential factors 
(e.g., deformation, atmosphere, and topography). Furthermore, 
as the sensitivities of different polarizations to �� are not 
necessarily identical, the sensitivity analysis was also 
performed for different polarizations. 

II. RADAR INTERFEROMETRY 

The � is the phase difference between the two Single Look 
Complex (SLC) images. In a radar system with a quad-
polarization framework [24], each SLC pixel corresponds to a 
scattering matrix S (Equation (1)).  

� = �
��� ���

��� ���
� (1) 

where ��� is the backscatter from j receiving and k 

transmitting polarizations. 

Each SLC pixel can also be described by a scattering vector 
q; in the lexicographic basis (reciprocal backscatter situation), 
� = [��� ��� ���]�. In a polarimetric framework, if �� 
and �� are two scattering vectors of two SLC images, the 
interferometric signal can be represented by the covariance 

matrix ��‚� = ⟨����
� � where † denotes conjugate transpose and 

the 〈 ⋅ 〉 denotes an ensemble average, which can be estimated 
by spatial multilooking [25], [26] of acquisitions m and n: 

��‚�(�) =
����‚��

�(����‚��)(����‚��)

= |��‚�(�)|����‚�(�) 

(2) 

where coherence magnitude |�| and � are the magnitude and 
argument of the complex correlation coefficient ��‚� for a 

specified polarimetric projection vector ω, respectively [24].  � 
is a polarimetric unitary projection vectors (e.g., � =
[0 0 1]� for VV).  

The � parameter can be decomposed into multiple 
contributions. The phase of the received signal is not 
determined by only the effects of ∆�� and vegetation changes 
(∆�) but also other factors, including deformations, wind 
speed/direction, atmospheric conditions, and the topography 
are effective. Short spatiotemporal baselines are preferred in 
practice to diminish the additional influences, such as 
deformation and the topography. After removing the flat earth 
and topographic phase components, the � can be decomposed 
as follows [10], [15], [27].  

������� = ���� + ����� + ���� + �����_���

+ ����_� + ����_� + ������ 

(3) 

In which ���� models the phase term associated with the 

surface deformation [28], [29]. ����� is the phase changes due 
to the surface changes [30]. ���� is the phase changes due to 

the vegetation changes [31]. �����_��� is the Residual 

Topographic Error (RTE) component. ����_� is the difference 

of the atmospheric impacts for the two acquisitions. ����_� is 

the difference of the phase component due to the difference of 
the orbital errors of each image. ������ models the phase 
component associated with the noises. 

III. STUDY AREAS AND DATASET  

   In this study, Sentinel-1A (C-band) data along with Soil 
Moisture Active Passive Validation Experiment 2016 Manitoba 
(SMAPVEX16-MB) [32] ground measurements, as well as 
airborne UAVSAR (L-band) data along with Canadian 
Experiment for Soil Moisture in 2010 (CanEx-SM10) [33] 
ground measurements were used. The corresponding study 
areas and datasets are explained and compared in the following 
three subsections. 

A. SMAPVEX16-MB campaign and Sentinel-1 (C-Band) data 

The SMAPVEX16-MB campaign was conducted near 
Winnipeg, Manitoba (MB), Canada, with an area of 26 km by 
48 km (latitude= 49.3°N to 49.8°N and longitude= 97.7°W to 
98.2°W) (see Fig. 1 (a)). During the SMAPVEX16-MB 
campaign, in-situ measurements of soil and vegetation 
characteristics were collected over 50 agricultural fields to 
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support calibration and validation of the Soil Moisture Active 
Passive (SMAP) satellite mission [32]. Table II presents the 
average meteorological conditions and �� at ground 
measurement stations at the time of image acquisitions. Wheat, 
winter wheat, canola, corn, soybeans, and oats are the major 
crops grown in this area [32]. �� were mainly measured at the 
soil depth of 5 cm, but it is also measured at the depths varying 
between 5 cm and 50 cm over the permanent stations. The �� 
measurements at 0-5 cm were used in this study. In-situ 
measurements from one of the fields of wheat, canola, corn, 
soybean, and bare were considered to investigate the objective 
of this study for different crop types. In this campaign, �� 
measurements at 0–5-cm of soil, vegetation biomass change 
(∆�), and vegetation height change (∆ℎ) were extracted and 
were used for the analyses (see Section 5). The sites which were 
used in this study are shown in Fig. 1 (a). The temporal pattern 
of ∆�� variability is consistent with ������� variability. Fig. 2 
(a) shows the time series of ∆��, �������,vegetation ∆�, and 
vegetation ∆ℎ for three samples. All differences are from the 
master at DOY 191. 

In total, 12 C-band Sentinel-1A single look complex (SLC) 
images were used in this study. These data were acquired 
between May 13 2016 and Aug 24 2016 in the Interferometric 
Wide Swath (IW) mode, which are freely accessible from 

https://search.asf.alaska.edu (see Table 1 for more details). 
Sentinel-1A IW mode data provides SLC images with the 5m 
by 20m spatial resolution at the VV and VH polarizations. IW 
mode acquired three sub-swaths using the Terrain Observation 
with Progressive Scans SAR (TOPSAR) with a swath width of 
251.8 km [30]. The TOPSAR mode replaces the conventional 
ScanSAR mode, obtaining the same resolution and coverage as 
ScanSAR, but with a better Signal-to-Noise Ratio and 
Distributed Target Ambiguity Ratio. 

B. CanEx-SM10 campaign and UAVSAR (L-Band) data 

CanEx-SM10 campaign covers an area of approximately 
45 ×  70 km and is located in Kenaston, Saskatchewan (SK), 
Canada (51° 30' N, 106° 18' W) (see Fig. 1 (b)). L-band 
UAVSAR data were collected while measuring ground data 
during the CanEx-SM10 campaign. Measurements of 
vegetation properties and soil were accumulated from Jun 2 
2010 to Jun 14 2010 during this campaign to support algorithm 
development, validation, and calibration processes of the Soil 
Moisture Ocean Salinity (SMOS) and SMAP satellite missions 
[33]. The area is covered by grassland, pastures, and rainfed 
agricultural fields. �� was measured hourly at the permanent 
stations at sevesral soil depths, and over twenty fields using the 
Stevens Hydraprobe sensors [10], [33].

 
 

Fig. 1. Locations of the two study areas in Canada and the distributions of the sampling points on: (a) an interferogram between DOY 154 and DOY 166 of the 
SMAPVEX16-MB campaign, and (b) an interferogram between DOY 156 and DOY 159 of the CanExSM10 campaign. 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3096063, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

4 

In-situ measurements of vegetation characteristics (i.e., 
vegetation height (h), leaf area index (LAI), biomass (b)) and 
soil (i.e., temperature (T), moisture (��), bulk density, 
roughness (S)) were conducted over this study area. Widespread 
swelling and shrinking are not expected because the soil is 
mainly loamy [14], [33]. Remote sensing airborne and satellite 
data were acquired very close to the time of ground 
measurements [33]. We used the 0–5 cm soil moisture 
measurements. In this case study, we did our tests over five 
fields of wheat, canola, bare, weed and peas. However, most of 
these fields were bare or partially covered with the harvest 
leftovers [33]. Since the temporal baselines (∆�) are shorter 
than 11 days for the data collected for this campaign, the land 
cover change is negligible [10]. The meteorological conditions 
and range of the �� at the time of image acquisitions are 
provided in Table I. During the data acquisition, soil surface 
measurements (e.g., T, ��, S), vegetation properties (e.g., h, 
LAI, and b) and crop type were collected for most fields [33]. 
The locations of these measurements are shown in Fig. 1 (b). 
The temporal pattern of ∆�� variability is consistent with 
������� variability. Fig. 2 (b) shows the temporal progress of 
∆�� and ������� for three samples. The master was at DOY 
165. The �� measurements at the depth of 0–5 cm were used 
for the tests. 

We used six L-band UAVSAR images at the approximately 
zero spatial baselines for the tests (see Table I). The UAVSAR 
data are quad-polarization (VV, VH, HH, and HV) and have a 
resolution of 0.8 m and 1.7 m in the azimuth and range 
directions, respectively [34], [35]. UAVSAR, a Jet Propulsion 
Laboratory (JPL)-built reconfigurable, polarimetric L-band 
synthetic aperture radar (SAR), is specifically designed to 
obtain airborne repeat-track SAR data for differential 
interferometric measurements [33]. 

 

 
 
Fig. 2. (a) and (b) illustrate time series changes of DInSAR phase, soil moisture, 
and vegetation over the SMAPVEX16-MB and  CanEx-SM10 campaigns, 
respectively. The blue bars denote the measured precipitation rate in bare fields. 
  

TABLE I 
DATES OF SATELLITE IMAGES ACQUISITIONS AND METEOROLOGICAL CONDITIONS AT THE TIME OF THE ACQUISITIONS 

 

D
ata 
 Date (d m y) 

IACS (degree) 3-days P (mm) ��� (vol. %) Wind (knots) Temp. (◦C) 
[near–far] [min-max] [min-max] [Ws, Wd] [Air, Soil] 

S
en

tinel-1
A

 

13 May 2016 [35.98-41.70] [0-0] [15.2-38.5] [4.990, 322.4] [03.7, 05.7] 
25 May 2016 [36.20-41.64] [30.2-38.14] [17.1-39.4] [2.172, 92.50] [15.1, 14.8] 
01 Jun 2016 [30.56-36.37] [22.6-29.3] [26.8-44.9] [4.657, 71.98] [12.4, 13.6] 
06 Jun 2016 [36.20-41.64] [0.9-7.4] [19.7-42.3] [7.695, 321.5] [13.5, 14.1] 
13 Jun 2016 [30.30-36.53] [23.8-27.6] [24.8-40.9] [0.732, 172.5] [12.5, 13.8] 
03 Jul 2016 [33.10-39.65] [1.3-8.60] [13.4-33.1] [1.500, 83.49] [14.5, 16.2] 
07 Jul 2016 [30.30-36.53] [0 -0] [15.4-38.1] [0.018, 17.49] [15.3, 18.1] 
15 Jul 2016 [33.10-39.65] [16.3-26.60] [27.1-43.4] [2.300, 155.9] [17.4, 18.] 
24 Jul 2016 [35.98-41.72] [24.8-31.1] [28.7-42.8] [2.327, 248.9] [18.2, 19.1] 
31 Jul 2016 [30.30-36.53] [7.1-9.6] [11.2-42.7] [1.101, 145.0] [19.1, 20.7] 

05 Aug 2016 [35.98-41.70] [32.3-37.4] [21.9-41.3] [1.136, 270.8] [16.0, 17.0] 
12 Aug 2016 [30.30-36.53] [19.80-26.0] [25.7-39.4] [0.303, 280.0] [16.5, 19.0] 
17 Aug 2016 [35.98-41.85] [4.30-10.2] [17.4-41.2] [0.394, 236.4] [16.1, 18.9] 
24 Aug 2016 [30.30-36.53] [0.02-0.7] [12.5-38.9] [1.354, 291.4] [17.4, 19.2] 

U
A

V
S

A
R

 

05 Jun 2010 [36.43-47.86] 0 [28.4-38.4] [-,-] [-, 13.7] 
06 Jun 2010 [36.43-47.86] 0 [27.5-38.0] [-,-] [-, 14.2] 
09 Jun 2010 [36.43-47.86] 19.4 [29.0-38.0] [-,-] [-, 12.8] 
13 Jun 2010 [36.43-47.86] 17.6 [32.3-41.0] [-,-] [-, 11.9] 
14 Jun 2010 [36.43-47.86] 6.3 [30.1-39.5] [-,-] [-, 11.2] 
15 Jun 2010 [36.43-47.86] 0 [31.5-39.8] [-,-] [-, 11.3] 

IA��= Incidence angle over the study area, ���= average volumetric soil moisture, 3-days P= average accumulative three-day precipitation at the stations, 
Ws= average wind speed at the stations, Wd= average wind direction at stations, Air= average air temperature and Soil= average 0-5 cm soil temperature  
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C. Comparison of the two field campaigns 

The main specifications of the two campaigns are listed in 
Table II. The major difference between the two campaigns is 
related to the data acquisitions which are in two radar 
frequencies, including high-frequency C-band and low-
frequency L-band. This allows us to investigate the difference 
between short and long wavelengths in estimating ∆�� under 
different vegetation conditions. Another obvious difference 
between the two field campaigns is the period for collecting 
field data. During the CanEx-SM10 campaign, the ∆� of the 
interferograms is much shorter than the ∆� of interferograms 
for the SMAPVEX16-MB. By examining the results of this 
difference, the effect of ∆� on the estimation of ∆�� is 
evaluated. The different growth stages as a discrepancy of the 
two campaigns allowed us to investigate the plants' influences 
on ∆�� estimation more precisely. The spatial resolution of the 
two sensors is another difference where the resolution of 
Sentinel-1A IW SLC data is 5 × 20 �, and the resolution of 
UAVSAR is 0.8 � in azimuth and 1.7 � in range.  

IV. ASSUMPTIONS 

In order to reduce the complexity of Equation (3), the phase 
components were divided into two sub-groups of (A) nuisance 
components (i.e., �����_���, ����_�, ����_�, and ������), which 

were not considered in the analysis, and (B) considered 
components (i.e., φ���� and ����), which were considered in the 

analysis. The reason is the effects of nuisance components are 
very small and negligible compared to the impacts of ∆�� and 
∆� on � due to the small spatiotemporal baselines of the data 
used in this study. Therefore, the error of removing them with 
existing methods reduces the correlation between ∆�� and �. 
By the above explanations, the following sub-sections elaborate 
on the assumption, which were considered to minimize the 
magnitude of these nuisance components and to prevent 
decreasing the correlation between ∆�� and �. 

A. Nuisance components 

According to the short spatiotemporal baselines, ����, 

�����_���, ����_�, ����_�, and ������  in Equation (3) were not 

considered in the calculation. This is because the magnitudes of 
these components are negligible compared to ∆�� and ∆� in 
short spatiotemporal baselines (∆T < 12 days, Perpendicular 
Baseline Difference (PBD) < 150 m ) [10], [14]. After removing 

the ����_� and ����_� or reducing the ������ using spatial 

filtering, the correlation between ������� and ∆�� is reduced. 
This means that removing these components adds additional 
errors that affect the correlation between ������� and ∆�� 
more than the magnitude of nuisance components. Therefore, 
the elimination of these components was not considered in this 
research. However, a method based on two variable normal 
distribution of ������� and ∆�� was considered to eliminate 
the contributions of nuisance components in ∆�� estimation by 
removing abnormal data (see section 5.3). Moreover, since ∆� 
is shorter than 11 days for all the pairs in the CanEx-SM10 
campaign and shorter than 25 days for most of the pairs in the 
SMAPVEX16-MB campaign, ���� was considered negligible. 

������� for pairs in CanEx-SM10 campaign does not have 
�����_��� due to zero spatial baseline, and �����_��� has also 

been considered negligible for SMAPVEX16-MB campaign, as 
this component magnitude is negligible compared to ∆�� and 
∆� contribution. 

B. Considered components 

   Due to the significant effects of the two components of 
∆�� and ∆�, especially in C-band, these two components are 
used in the development of the linear model in this study. More 
penetration of L-band in the vegetation causes slight vegetation 
changes to have less effect on the radar signal in L-band than 
the C-band. Therefore, modelling �� variations is more 
accurate at L-band during the crop growing season [14], [36], 
[37]. 
1) Phase ����� 

Four hypotheses, explained by [10], describe the physical 
process underlying �����, which are taken from the origins of 
the �� effects on received signal. Null (no relationship between 
����� and ��), wetting/drying cycle impacts on swelling soil 
behavior, penetration depth of signal, and dielectric impacts on 
the signal are the four hypotheses. The physical processes of 
hypotheses are not necessarily mutually exclusive. However, in 
this study, the modelling between ∆�� and � was established 
by a linear regression model described in regression model and 
estimation sub-section because the linear regression model has 
provided appropriate results with acceptable accuracy in [10], 
[14], [31]. 
2)  Phase φ_veg 

The impacts of vegetation canopy on the electromagnetic 
scattering have been studied in [31], [42], [43]. φ between two 

 

TABLE II 
COMPARISON OF THE TWO FIELD CAMPAIGNS 

 

 SMAPVEX16-MB campaign (Sentinel-1A IW) CanEx-SM10 campaign (UAVSAR) 
Mission duration May 1 to Aug 31, 2016  Jun 1 to Jun 17, 2010 
Land cover types  wheat, canola, corn, soybean, and bare  wheat, canola, weeds, peas, and bare 
Centre frequency C-Band 5.405 GHz (a wavelength of 5.546 cm)  L-Band 1257.5 MHz (a wavelength of 23.85 cm) 
Altitude 693 km  13 km 
Repeat cycle 12 days   - 
Polarization VV and VH  Full Quad-Polarization 
Incidence angle  20° − 46°  25° − 65° 
Bandwidth 56 MHz (0-100 MHz programmable)  80 MHz 
Spatial resolution 5 � × 20 �   0.8 m in Azimuth and 1.7 m in Range 
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acquisitions which is derived in vegetation growth steps can be 
significantly affected depending on the sensor frequency [31], 
[43]. For example, the vegetation growth in the initial and final 
steps are invisible in low-frequency data (e.g., L-band) [31], 
[43]. Due to many unknown effects of plant changes on the 
interferometric signal in C-band (high frequency), advanced 
modelling of the effect of vegetation changes on the φ was 
avoided because of avoiding further complexity. According to 
the objective of this study, the modelling between φ and ∆M_v 
was established using a linear model (see Section 5.5.1) to 
investigate the suitability of using φ for ∆M_v estimation in C-
band over different land covers. However, φ_veg was not 
considered in the CanEx-SM10 campaign because L-band data 
is used in this campaign and the invisibility of small vegetation 
changes due to very short ∆T (i.e., <11 days). 

V. DATA ANALYSIS 

A. SAR data processing 

For the SMAPVEX16-MB campaign, we tried to form 
interferograms between pairs with perpendicular baseline 
difference less than 150 m [12], [21], which resulted in a total 
of 31 interferograms (see Table III). In order to generate 
interferograms of this campaign, the InSAR pairs were co-
registered using the S1-TOPS co-registration module in S1-
toolbox [38]. Co-registration accuracy can be reached at a 1/100 
azimuth pixel level by applying the cross-correlation matching 
procedure. Then, |�| and � were produced for the InSAR pairs 
using S1-toolbox [38]. Subsequently, the flat earth and 
topographic phase correction was applied to the interferograms 
of the SMAPVEX16-MB campaign. Finally, to prepare 
products for analysis, a filter adaptively applied to the products 
to reduce noise effects. 

In the CanEx-SM10 campaign, we estimated covariance 
matrices ��‚� between acquisitions n and m by combining the 

radar data interferometrically [24]. The raw interferograms had 
an unknown phase offset and trends. The offset was referenced 
using a nearby persistent scatterer for each field separately; see 
[10] to analyze the sensitivity with respect to the referencing. 
However, the data contain kilometre-scale residual phase 
contributions because of the atmosphere and orbital errors, 
which we do not attempt to eliminate. In this campaign, the 
complex interferograms were formed for all the possible image 
pairs from the CanEx-SM10 campaign, resulting in 15 
interferograms (see Table III). In the CanEx-SM10 campaign, 
the flat earth and topographic phase correction was not 
necessary because of the zero spatial baselines between the 
InSAR pairs. 

According to Table III, the perpendicular baselines of the 
DInSAR pairs for the CanEx-SM10 campaign are zero and for 
the SMAPVEX16-MB campaign are from 6 m to 135 m. The 
DInSAR pairs for the CanEx-SM10 campaign had ∆� from 1 
to 10 days and for the SMAPVEX16-MB campaign, they are 
between 12 and 96 days. These pairs were selected based on to 
have: (1) the Doppler centroid difference below ∼10 Hz to 
minimize the decorrelation, (2) the spatial baselines as small as 
possible. For example, the pairs with perpendicular baselines 

less than 150 m for the SMAPVEX16-MB campaign were 
selected, and the pairs had approximately zero perpendicular 
baselines for the CanEx-SM10 campaign, and (3) ∆� less than 
100 days for the SMAPVEX16-MB campaign, and less than 10 
days for the CanEx-SM10 campaign. 

B. In-situ data processing 

After generating interferograms and applying the flat earth 
and topographic phase correction to the SMAPVEX16-MB 
interferograms, the � associated with the ground measurement 
sites were extracted and used for the analysis. In the analysis 
process, the noisy data were omitted using a statistical filter. A 
statistical filter based on two variables normal distribution is 
considered to eliminate the contributions of nuisance 
components by removing noisy data [39], [40]. The decisions 
for normality at α = 0.05 and the 95% confidence intervals were 
considered to remove noisy samples in all analyses, such as 

TABLE III 
CHARACTERISTICS OF SENTINEL-1A AND UAVSAR DINSAR PAIRS 

 

S
entinel-1

A
 IW

 S
L

C
 pairs in S

M
A

P
V

E
X

16
-M

B
 

no. MID SID ∆T PBD DCD 
1 13 May 25 May 12 126 3.71 
2 13 May 06 Jun 24 135 -4.63 
3 13 May 24 Jul 72 73 0.72 
4 13 May 05 Aug 84 118 3.93 
5 13 May 17 Aug 96 60 -2.9 
6 25 May 06 Jun 12 6 8.33 
7 25 May 24 Jul 60 27 3.67 
8 25 May 05 Aug 72 72 0.64 
9 25 May 17 Aug 84 12 -3.78 
10 06 Jun 24 Jul 48 21 4.37 
11 06 Jun 05 Aug 60 110 8.28 
12 06 Jun 17 Aug 72 81 6.46 
13 24 Jul 05 Aug 12 6 7.91 
14 24 Jul 17 Aug 24 6 2.67 
15 05 Aug 17 Aug 12 8 5.24 
16 01 Jun 07 Jul 36 15 6.48 
17 01 Jun 13 Jun 12 9 8.91 
18 01 Jun 31 Jul 60 117 -1.96 
19 01 Jun 12 Aug 72 52 7.75 
20 01 Jun 24 Aug 84 8 -2.75 
21 07 Jul 13 Jun 24 76 1.74 
22 07 Jul 31 Jul 24 6 -0.09 
23 07 Jul 12 Aug 36 53 1.97 
24 07 Jul 24 Aug 48 84 -2.55 
25 13 Jun 31 Jul 48 71 -1.66 
26 13 Jun 12 Aug 60 55 -3.76 
27 13 Jun 24 Aug 72 82 2.11 
28 31 Jul 12 Aug 12 47 -2.06 
29 31 Jul 24 Aug 24 17 1.96 
30 12 Aug 24 Aug 12 47 -0.26 
31 03 Jul 15 Jul 12 21 +1.07 

U
A

V
S

A
R

 pairs in C
anE

x-S
M

10 

1 05 Jun 06 Jun 1 0 3.07 
2 05 Jun 09 Jun 4 0 -0.76 
3 05 Jun 13 Jun 8 0 0.32 
4 05 Jun 14 Jun 9 0 0.74 
5 05 Jun 15 Jun 10 0 -0.28 
6 06 Jun 09 Jun 3 0 3.18 
7 06 Jun 13 Jun 7 0 -2.43 
8 06 Jun 14 Jun 8 0 -3.91 
9 06 Jun 15 Jun 9 0 0.09 
10 09 Jun 13 Jun 4 0 3.31 
11 09 Jun 14 Jun 5 0 0.02 
12 09 Jun 15 Jun 6 0 -0.51 
13 13 Jun 14 Jun 1 0 -0.61 
14 13 Jun 15 Jun 2 0 1.1 

MID= Master Image Date, SID= Slave Image Date, ∆T= Temporal 
Baseline, PBD= Perpendicular Baseline Difference (m), T/f= Track/frame, 
DCD= Doppler Centroid Difference (Hz). 
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scattering plots, model estimation and its assessment process, 
as well as Δ�� estimation. For instance, the scatter-plots 
between � and Δ�� along with their two-variables normal 
distribution are shown in Fig. 3. This indicates that the green 
scatters are used as normal data in analyses and the red ones 
were recognized as noisy data and were removed. 

C. Visual analysis 

The scatter-plots of � and ∆�� were generated for different 
polarizations and crop types for visual analysis of the 
relationship (see section 6.1). Additionally, a quantitative 
analysis of the � for the two study areas was performed to 
determine the impacts of crop types, ∆��, and ∆� (see section 
6.2). This quantitative analysis of � was performed to 
investigate the source of errors in more details. By comparison 
between changes in � and � associated with ∆��, the source of 
errors was determined. For instance, a lack of correlation 
between ∆�� and both � and � showed that the error is not 
based on deformation as � is not affected by deformation. 
However, the source of reducing the correlation between ∆�� 
and � is highly due to deformation if the correlation between 
∆�� and � is high and between ∆�� and � is low. Furthermore, 
this quantitative analysis is significantly affected by the 
difference in wavelength of the two campaigns, as the 
penetration of the L-band (∼23 cm) is greater in the vegetation 
cover and, consequently, maintains higher coherence than the 
C-band (∼5.6 cm). 

D. Regression model and estimation 

The relationship between Δ�� and � is established by a 
linear regression model. It was assumed that � could be 
modelled by a simple regression model as a function of Δ��, 
and vegetation change (Δ�) in short spatiotemporal baselines, 
especially for significant changes of Δ�� [10], [14]. The wet 
biomass (b) and crop height (h) measured during the 
SMAPVEX16-MB campaign were considered as vegetation 
descriptor. During this campaign, crops were fully developed 
and, thus, Δ� is significant. Therefore, both terms of Δ�� and 
Δ� were used in the regression model to model �. However, 
during the CanEx-SM10 campaign, most of the fields were bare 
or partly covered with harvest residues [33]. Therefore, the 

vegetation term was removed in the model for the CanEx-SM10 
campaign. due to the very short ∆�, the vegetation changes 
were negligible for the fields covered with vegetation, and long 
wavelength (L-band) data [31], [41]. 
1) Regression model 

Equation (4) that was presented by [10] is the regression 
model that we have used in this study to describe the �. 

��� = ����
Δ�� + ���Δ� + ϵ�� (4) 

where the coefficient ����
 denotes the Δ�� impacts on the 

�.The effects of the Δ� is represented by the coefficient ���. ϵ 
denotes the error term of the i, j interferogram.  
2) Estimating the regression parameters 

The regression parameters were computed using 60% of the 
ground measurements which were selected randomly for both 
case studies. The rest of the dataset (40%) was used to evaluate 
the performance of the model. The Generalized least square 
(GLS) method [42] was applied for estimation of the model 
parameters (i.e., ����

 and ���). In this process, regression 

errors require a covariance matrix [10], which was modelled 
similar to [29]. In the regulation process, the statistical filter 
was used to reduce the effect of noise.  

We used different sets of explanatory variables. For the 
SMAPVEX16-MB campaign, two configurations were 
considered for the estimation process.  

Configuration 1: the vegetation wet biomass changes (Δ�) 
and Δ�� were used in the model regulation (see Equation (4)).  

Configuration 2: the vegetation height changes (Δℎ) and Δ�� 
were used in the model regulation (see Equation (4)).  

The dates for the data (Δ�� and �) in bare fields were 
selected to be consistent with the date that vegetation data were 
collected in both configurations. Because, the same conditions 
(like weather) make a more reliable situation to analyze and 
compare results between the fields with vegetation cover and 
bare field. 

For the CanEx-SM10 campaign, the vegetation term was not 
considered in the estimation process and only one configuration 
with ∆�� was used in the estimation process.  

E. Accuracy assessment 

In order to evaluate the model, 40% of the ground 
measurements, which were not considered for the regression 
model parametrization, were exclusively used. The numbers of 
samples in each field are demonstrated in Fig. 4, Fig. 6,Fig. 10, 
and Fig. 11. Like other studies [43], statistical metrics, 
including coefficient of determination (R2), root mean square 
error (RMSE), bias, and standard deviation (StDv) were 
calculated for the accuracy assessments.  

VI. RESULTS AND DISCUSSIONS 

A. Phase analysis 

The scatter-plots of ∆�� and � for different polarizations and 
different crop types with different ∆� values are shown in Fig. 
4 and 5. A positive and approximately linear relationship is 
observed between Δ�� and �, which correspond well with the 
results of [10], [12], [14]. However, the results for vegetation 
fields, especially for the SMAPVEX16-MB campaign (Fig. 5), 

 
Fig. 3.  The scatter-plots between � and Δ�� along with their two-
variable normal distribution. 
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show a low correlation. For instance, the scatter plots are 
associated with the VV polarization in the peas field in the 
CanEx-SM10 campaign (Fig. 4 (d)) and the ones are associated 
with the VV and VH polarizations in wheat fields in the 
SMAPVEX16-MB campaign (Fig. 5 (a) and (f)) show a 
nonlinear relationship between Δ�� and �. Although the results 
of vegetation fields in the SMAPVEX16-MB campaign (Fig. 5) 
show less correlation between Δ�� and �, the results of ∆� 
shorter than 25 days (the green dots in Fig. 5 (a-d) and (f-i)) 
show a high correlation. 

From Fig. 4 and 5, it is observed that increasing the ∆� results 
in lower correlations. For example, lower distribution in scatter-
plots associated with the CanEx-SM10 is observed due to low 
differences between different ∆� (∆� are shorter than 11 days). 
However, the effects of ∆� are significant for the 
SMAPVEX16-MB campaign, where ∆� values are between 12 
and 96 days. This matter is discussed more in Section 6.7. 

As it can be observed in Fig. 4 and 5, the highest correlation 
is obtained in the bare field, especially using the HH and VV 
polarizations with R2 of 88% and 79%, respectively. According 
to Fig. 4, it can be observed that the higher distribution in 
scatters associated with the UAVSAR data is observed in the 
VH polarization for weed, wheat, and then canola with R2 of 
22%, 23%, and 36%, respectively. Despite bare field, weed 
shows the highest correlation in the VV and HH polarizations 

with R2 of 80% and 79%, respectively. Regarding Sentinel-1 
data, the plots show more distribution in scatters with R2 of 
19%, 23%, 38%, and 49% for soybean, corn, canola and wheat, 
respectively. In a comparison between different polarizations, 
it is observed that the co-polarizations (HH and VV) show 
higher correlations than cross-polarization (VH) with R2 of 
55% to 80% depending on different crop fields in CanEx-
SM10, and R2 of 19% to 50% depending on different crop fields 
in SMAPVEX16-MB. By comparing the results from the two 
study areas, it is observed that the correlations are higher in the 
L-band (R2 vary between 54% to 88%) compared to C-band (R2 
vary between 19% to 76%) depending on different fields. This 
is because, at a higher frequency (or shorter wavelength), the 
signal is highly affected by other factors, such as atmospheric 
condition, wind, and vegetation. Our results were similar to 
those of [9], [31]. 

B. Coherence analysis 

Fig. 6 and 7 show the observed relation between Δ�� and � 
for different crop types and different polarizations. The plots 
show a negative and approximately linear relationship between 
� and Δ�� which are similar to the results of the previous 
studies [18], [23]. Like the analysis of ∆�� and � scatters, noisy 
data was detected and was removed using the statistical filter in 
these results. 

 

 
 
Fig. 4. The scatter-plots of � and Δ�� for the CanEx-SM10 campaign. 
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Fig. 5. The scatter-plots of � and Δ�� for the SMAPVEX16-MB campaign. 
 
 

 

 
 
Fig. 6. The scatter-plots of � and Δ�� in CanEx-SM10 campaign. 
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According to Fig. 7 (the plots associated with SMAPVEX16-
MB campaign) and by comparing different ∆� values, it is 
observed that the � significantly decreases by increasing ∆�. 
However, these results are not observed in the plots associated 
with the CanEx-SM10 campaign (Fig. 6), which could be due 
to the very short ∆� differences (i.e. shorter than 11 days). The 
correlations between Δ�� and � also decreases by increasing 
∆�. These are more discussed in Section 6.7. Table IV presents 
the maximum and minimum of � values for different ∆�, 
polarizations, and crop types. Comparing different � values, 
bare field showed the higher and wheat showed the lower � 
values in both campaigns (see Fig. 7 and Table IV). According 
to Fig. 7, the highest correlations between Δ�� and � in the 
SMAPVEX16-MB campaign were obtained in the VV 

polarization for bare, canola, and wheat with R2 of 86%, 46%, 
40%, respectively. Additionally, the lowest correlations were 
obtained in the VH polarization for corn and soybean with R2 
of 7% and 21%, respectively. According to Fig. 6, the highest 
correlations in the CanEx-SM10 campaign were also obtained 
in the VV and HH polarizations with R2 of 39% to 82%, 
depending on different fields. Furthermore, the lowest 
correlations were obtained in the VH polarization for weed, 
canola, and wheat with R2 of 11%, 12%, and 15%, respectively. 

It is also observed that the scatters for the bare fields have 
higher � and higher correlation. � and � behave similarly in 
different polarizations and it is observed that � associated with 
co-polarization (��� and ���) have more correlation than cross-
polarization (���). Therefore, according to � and � scattering 

 

 
 
Fig. 7. The scatter-plots of � and Δ�� in SMAPVEX16-MB campaign. 
 

 
TABLE IV 

COHERENCE VALUES FOR DIFFERENT CROP TYPES, TEMPORAL BASELINES, AND POLARIZATIONS. 
 

S
M

A
P

V
E

X
16

-M
B

  wheat canola corn soybean bare 

  max min max min max min max min max min 

��� 
∆� < 25 0.62 0.18 0.63 0.22 0.63 0.21 0.68 0.32 0.75 0.45 

25 < ∆� < 61 0.50 0.11 0.50 0.14 0.54 0.08 0.62 0.27 0.81 0.49 
61 < ∆� < 97 0.34 0.17 0.52 0.13 0.40 0.10 0.48 0.04 0.75 0.39 

��� 
∆� < 25 0.69 0.19 0.55 0.26 0.61 0.25 0.69 0.34 0.80 0.39 

25 < ∆� < 61 0.55 0.06 0.42 0.17 0.47 0.14 0.58 0.21 0.72 0.34 
61 < ∆� < 97 0.42 0.02 0.31 0.16 0.44 0.14 0.44 0.08 0.68 0.29 

C
an

E
x

-S
M

10
 

  wheat canola weed peas bare 

  max min max min max min max min max min 

��� 
∆� < 4 0.61 0.26 0.79 0.47 0.75 0.41 0.73 0.31 0.80 0.53 

4 < ∆� < 8 0.71 0.27 0.79 0.36 0.56 0.47 0.64 0.33 0.84 0.59 
8 < ∆� < 11 0.84 0.47 0.76 0.48 0.83 0.43 0.89 0.43 0.83 0.70 

��� 
∆� < 4 0.60 0.20 0.65 0.23 0.55 0.24 0.74 0.45 0.67 0.36 

4 < ∆� < 8 0.63 0.15 0.75 0.26 0.47 0.21 0.56 0.24 0.69 0.38 
8 < ∆� < 11 0.43 0.18 0.43 0.37 0.42 0.17 0.71 0.30 0.61 0.46 

��� 
∆� < 4 0.66 0.26 0.65 0.43 0.50 0.35 0.74 0.32 0.82 0.53 

4 < ∆� < 8 0.61 0.37 0.64 0.38 0.60 0.33 0.53 0.39 0.80 0.61 
8 < ∆� < 11 0.75 0.52 0.75 0.52 0.72 0.55 0.89 0.45 0.84 0.64 
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results, it is concluded that the co-polarization observations 
include more information for retrieving Δ��. According to 
Table IV, the difference between the lowest and highest values 
of � in cultivated lands is very large. This indicates the effects 
of different vegetation conditions at the time of imaging on the 
� are noticeable. Therefore, the scatter distribution of � in crop 
fields is much higher than in the bare field. � and � in different 
polarizations behave similarly, for example, scatter-plots 
associated with VH are more dispersal. Comparing the two case 
studies in Fig. 6 and 7, it is observed that the � for the CanEx-
SM10 campaign (L-band) have higher correlations than those 
of the SMAPVEX16-MB campaign. This study observed that 
longer wavelengths (or lower frequencies) are less affected by 
plant growth. These results are consistent with previous studies 

(e.g., [12], [21]). For example, fewer correlations are observed 
in Fig. 6 and 7 over vegetated fields of the SMAPVEX16-MB 
campaign, which is related to C-band and its higher frequency 
which is highly affected by ∆�. It is worth noting that these 
results are well correspond to those of several studies such as 
[10], [12]. 

C. Regression model 

1) Regression model estimation 
As described in Section 5.5.2, the regression model was 

adjusted using Δ�� and �. The estimated coefficients for the 
two configurations (e.g., configuration 1: ����

 and ���, and 

configuration 2: ����
 and ���) are depicted in Fig. 8 (a-h) for 

the SMAPVEX16-MB campaign.  

 

 
 
Fig. 8. The coefficients of the regression models (see Equation (6)) in the SMAPVEX16-MB campaign. (a)-(d) show the coefficients of the configuration 1, 
and (e)-(h) show the coefficients of the configuration 2. The �� coefficients are depicted in (a), (c), (e), and (g), and the vegetation descriptor coefficients are 
shown in (b), (d), (f), and (h). 
 

 

 
 

Fig. 9. The �� coefficients of the regression models for each field over the CanEx-SM10 campaign. 
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As shown in Fig. 8, all the obtained ����
 coefficients were 

positive, which indicates a positive relationship between � and 
Δ��. The vegetation describer coefficients (i.e., ��� and ���) 
also indicate a positive relationship between � and vegetation 
changes, indicating that an increase in plant growth makes an 
increase in � and the ����

 coefficients. This can be observed 

in Fig. 3 (a-h), in which the obtained ����
 coefficients in 

configuration 1 behave similarly to ones obtained in 
configuration 2 for different fields in both polarizations. 
However, due to varying types of data used for vegetation 
descriptor, the obtained ��� coefficients show different 
behaviour in the two configurations. The size of the effect of 
����

 exceeds 2 ��� ����� (i.e., an increase of 10 vol. % in 

�� and a change of 11.4� in �) in 68% of the samples for the 
VV polarization and 54% of the samples for the VH 
polarization in configuration 1. These are also 76% of the 
samples in the VV polarization and 69% of the samples in the 

VH polarization in configuration 2. 
For the CanEx-SM10 campaign, we estimated the �� 

regression coefficients ����
 only when the vegetation term in 

Equation (4) was considered negligible. This was explained in 
Section 5.5.2. The estimated ����

 coefficients for different crop 

types and different polarizations are plotted in Fig. 9.  
In this campaign, like SMAPVEX16-MB, all the coefficients 

are positive except for one of them in the VH polarization, 
which indicates a positive relationship between � and Δ��. 
����

 exceeds 5 ��� ����� (i.e., an increase of 10 vol. % in 

�� and a change of 28.6� in �) for 83%, 59%, and 78% of the 
samples in the HH, VH, and  VV polarizations, respectively. 
2) Accuracy assessments  

Statistical indices (e.g. R2, RMSE, bias, and StDv) were used 
to evaluate estimation accuracy. The results are presented and 
discussed in the following subsections for the two study 
regions. 

 

 
 

Fig. 10. Regression between the estimated and measured � for the SMAPVEX16-MB campaign (a)-(j) for configuration 1 (����
 ��� ���), and (k)-(t) for 

configuration 2 (����
 ��� ���). 
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By comparing the estimated � using the adjusted regression 
model and the obtained � from the interferograms, the 
accdjusted model's accuracy in both configurations is presented 
in Table V for the SAMPVEX16-MB campaign. The 
explanatory power of the regression model is greatest for bare 
fields in both configurations (Table V). Comparing different 
polarizations, it is observed that the regression model provides 
better results for the VV polarization than VH in both 
configurations. These results are the consequences of the less 
correlation between � and Δ�� in their scatter-plots of the VH 
polarization. 

Comparing the two configurations, the calibration of the 
configuration 2 (����

 ��� ���) provides more reliable results, 

indicating that the Δℎ, as Δ� descriptor in Equation (4), was 
modelled better than Δ�. However, Equation (4) could not 
accurately model Δ� for both configurations in C-band, 
especially over corn field (RMSE of 1.48 rad, bias of 0.54 rad), 
because this band is highly affected by Δ�. Comparing different 
crops in Table V, the regression model provides better results 
for canola and soybean, and wheat with R2 of 46.9%, 45.8%, 
43.9%, and RMSE(bias) of 0.97(-0.22), 1.18(-0.14), and 1.09(-
0.05) rad, respectively.  

In summary, it is concluded that configuration 2 (i.e., using 
Δℎ as Δ� in Equation (4)) provides better results compared to 
configuration 1 (i.e., using Δ� as Δ� in Equation (4)). 
Therefore, configuration 2 are only considered in the following 
process. 

TABLE V 
ACCURACY OF THE MODEL REGULATION FOR SMAPVEX16-MB CAMPAIGN. 

 

  VV VH 

 
 # 

R2 
(%) 

RMSE 
(rad) 

Bias 
(rad) 

StDv 
(rad) 

R2 
(%) 

RMSE 
(rad) 

Bias 
(rad) 

StDv 
(rad) 

C
on

fi
gu

ra
ti

on
1 

(�
�

�
�
, �

�
�
) wheat 37 39.7 1.12 0.20 1.12 19.6 1.48 -0.15 1.49 

canola 36 42.5 1.09 -0.31 1.06 19.6 1.41 -0.37 1.38 

corn 37 27.4 1.25 0.21 1.25 13.9 1.48 -0.54 1.40 

soybean  36 40.3 1.06 0.25 1.05 20.9 1.41 0.30 1.40 

bare  38 67.7 0.78 0.07 0.79 54.3 0.97 0.05 0.98 

C
on

fi
gu

ra
ti

on
2 

(�
�

�
�
, �

�
�
) wheat 37 43.9 1.09 -0.05 1.10 25.9 1.37 -0.18 1.38 

canola 36 46.9 0.97 -0.22 0.96 23.1 1.22 0.15 1.23 

corn 37 38.2 1.18 -0.14 1.19 13.7 1.34 -0.13 1.35 

soybean  36 45.8 1.03 0.35 0.99 13.6 1.48 -0.28 1.47 
bare  38 76.9 0.66 0.03 0.67 59 0.92 -0.07 0.92 

 

 

 
Fig. 11. Regression between the estimated and measured � over the CanEx-SM10 campaign. 
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Fig. 11 shows a comparison between the estimated � using 
linear regression and the obtained � of the interferograms for 
the CanEx-SM10 campaign. Table VI also shows the model 
regression accuracy for different crop types. In this campaign, 
like the SMAPVEX16-MB campaign, the regression model 
provided better results for the bare fields (RMSE = [0.38 - 0.61] 
rad, R2 = [55% - 72%], bias = [0.02 - 0.06], and StDv = [0.38 - 
0.62] rad, depending on the polarization types). Comparing 
different polarizations, the results of the VV and HH 
polarizations have better accuracy (RMSE = [0.38 - 0.99] rad, 
R2 = [49% - 72%], bias = [0.02 - 0.44] rad, and StDv = [0.38 - 
0.9] rad, depending on the land cover types). The lower 
accuracy in the VH polarization is due to the low correlation in 
the previous results. Because of using L-band in the CanEx-
SM10 campaign, the results show better accuracy than the 
SAMPVEX16-MB campaign (C-band) for vegetation fields, 
which is due to more penetration of L-band than C-band. The 
differences and errors are discussed in sections 6.6 and 6.7. 
Other insignificant changes (e.g., little changes in vegetation, 
wind condition, and atmospheric condition) have more effects 
on C-band, which causes the correlation and estimation 
accuracy to decrease more. For example, RMSE (StDv) varying 
from 0.38 (0.38) to 1.04 (.9) rad and from 0.78 (0.79) to 1.48 
(1.49) rad were obtained for L-band and C-band, respectively. 

D. Accuracy assessment of the ��� estimation 

The estimated Δ�� using the adjusted regression model was 
compared to the in-situ data for investigating the potential of 
the model to estimate Δ�� from the �. As discussed, because 
of the better results of configuration 2 (����

 ��� ���) for 

SMAPVEX16-MB campaign, the processing and analysis are 
only conducted for the configuration Δℎ and Δ��. 

The estimated and in-situ Δ�� are compared for each field 
and for each polarization to compute the statistical indices (see 
Fig. 12 and 13). The regression model worked well for Δ�� 
estimation over bare fields for both campaigns (with lowest 
RMSE, bias, and StDv), which indicates valuable information 
of � for Δ�� estimation. Comparing the results obtained for the 
two campaigns, the model also provided more reliable results 
for the vegetated fields in L-band, which is due to longer 
wavelength and very short ∆�. For the SMAPVEX16-MB 
campaign, the results of the canola and soybean fields provided 
promising accuracy. However, the model did not generally 
provide reliable results over vegetated fields in C-band. The 
lowest accuracy is related to the vegetated fields in C-band (See 
Table VII). Finally, comparing different polarizations shows 
that co-polarization ��� and ��� are more suitable for Δ�� 
estimation. 

 
TABLE VI 

ACCURACY OF THE MODEL REGULATION FOR THE CANEX-SM10 CAMPAIGN. 
 

 HH VH VV 

 # 
R2 
(%) 

RMSE 
(rad) 

bias 
(rad) 

StDv 
(rad) 

R2 
(%) 

RMSE 
(rad) 

Bias 
(rad) 

StDv 
(rad) 

R2 
(%) 

RMSE 
(rad) 

Bias 
(rad) 

StDv 
(rad) 

wheat 32 53.5 0.94 0.32 0.89 38.1 1.04 0.36 0.99 52.4 0.76 0.31 0.70 
canola 33 55.8 1.26 -0.81 0.99 41 1.04 -0.38 0.99 55.1 0.99 -0.44 0.90 
weeds 13 56.9 0.79 -0.33 0.75 40 1.29 -0.49 1.24 52.7 0.69 0.38 0.60 
peas  14 49.6 0.91 0.41 0.84 41 1.05 -0.42 0.99 53.1 0.92 0.31 0.90 
bare  32 72.9 0.61 -0.02 0.62 55.6 0.57 0.13 0.56 69 0.38 0.06 0.38 

 

 

 
 

Fig. 12. Regression between the estimated and measured Δ�� over the SMAPVEX16-MB campaign. 
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E. Differences between polarizations 

Although Δ�� and Δ� have similar effects on all the 
polarizations, various polarizations behave differently with 
those changes, which is because of scattering characteristics of 

different polarizations [35], [36], [44], [45]. For example, it was 
observed that the cross-polarization ��� variations have less 
correlation with changes in Δ�� compared to the correlation of 
variations of the co-polarizations � with Δ��. These results are 

 

 
Fig. 13. Regression between the estimated and measured Δ�� over the CanEx-SM10 campaign. 

 
  

TABLE VII 

 ACCURACY OF ∆�� ESTIMATION USING � AND THE REGRESSION MODEL. 
 

  SMAPVEX16-MB   CanEx-SM10 

  VV VH   VV VH HH 

w
h

ea
t R2 (%) 31.6 8.70 

w
he

at
 R2 (%) 56 32.4 51.2 

RMSE (vol. %) 9.35 12.19 RMSE (vol. %) 4.11 5.52 4.68 
bias (vol. %) -2.37 -4.39 bias (vol. %) 0.160 0.810 0.700 
StDv (vol. %) 9.17 11.53 StDv (vol. %) 4.17 5.55 4.70 

C
an

o
la

 R2 (%) 41.3 22.1 

C
an

ol
a R2 (%) 52.7 35.8 51.2 

RMSE (vol. %) 8.19 9.29 RMSE (vol. %) 4.09 5.24 4.19 
bias (vol. %) 2.89 -1.12 bias (vol. %) 0.07 -2.06 -0.45 
StDv (vol. %) 7.77 9.35 StDv (vol. %) 4.16 4.89 4.23 

C
or

n
 R2 (%) 22.1 2.70 

W
ee

d
s R2 (%) 52.4 40.1 47.8 

RMSE (vol. %) 9.34 11.91 RMSE (vol. %) 5.43 6.12 5.87 
bias (vol. %) -1.20 -2.95 bias (vol. %) 0.95 2.03 0.85 
StDv (vol. %) 9.39 11.69 StDv (vol. %) 5.56 6.01 6.05 

S
oy

b
ea

n
 R2 (%) 33.8 19 

P
ea

s 

R2 (%) 56.2 38.7 54.3 
RMSE (vol. %) 9.29 11.27 RMSE (vol. %) 5.42 6.73 5.49 

bias (vol. %) 2.30 2.35 bias (vol. %) 0.95 0.38 -0.29 
StDv (vol. %) 9.13 11.18 StDv (vol. %) 5.54 6.98 5.69 

B
ar

e 

R2 (%) 74.7 52.7 

B
ar

e 

R2 (%) 77.5 59.8 68.6 
RMSE (vol. %) 4.67 6.38 RMSE (vol. %) 3.50 4.76 4.46 

bias (vol. %) 0.25 -0.34 bias (vol. %) 0.18 0.52 0.27 
StDv (vol. %) 4.73 6.46 StDv (vol. %) 3.55 4.81 4.53 
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consistent with the results reported in [10], [14]. Various 
polarizations behave differently for different crop types. For the 
SMAPVEX16-MB campaign, the coefficients associated with 
the wheat field or other crop types are different in the VV and 
VH polarizations. According to the two configurations for this 
campaign (Fig. 9), ��� is also different for various 
configurations in each polarization. In the estimation process 
for the CanEx-SM10 campaign (i.e., L-band data), the 
estimated coefficients of the regression model in the VV and 
HH polarizations behaved similarly, but the values of the 
coefficients in the HH polarization is more than the ones in the 
VV polarization. For this campaign, the coefficients associated 
with the VH polarization have more variability, which shows 
instability in the relationship between ��� and Δ��.  

More reliable results and accuracy are associated with the 
VV and HH polarizations in the accuracy assessment section. 
The VH polarization presents unstable results for both 
campaigns, which can be due to the lower correlation in the � 
and � scatter-plots. Comparing the co-polarization results for 
the two campaigns, the VV polarisation results over the 
SMAPVEX16-MB campaign showed lower accuracy, which is 
due to the higher frequency of C-band and more ∆� in the 
SMAPVEX16-MB campaign.  

F. Differences between crop types 

In this study, the effects of different vegetation covers are 
investigated for the SMAPVEX16-MB campaign (C-band) in 
more details. Various vegetation covers affect differently the �, 
which leads to having various effects in Δ�� estimation. Since 
configuration 2 (Δℎ and Δ��) in the SMAPVEX16-MB 
campaign provides better results, the focus of this section is on 
vegetation height changes. Fig. 14 shows temporal changes of 
vegetation height, Δ��, �, and estimated Δ�� using the 
regression model. According to this figure, it is observed that 
the efficiency of the regression model is highly dependent on 
how Δℎ and Δ�� change. For example, according to Fig. 14 (b 
and d), the model provided better results when the Δℎ and Δ�� 

behave similarly. However, Fig. 14 (a and c) show the model 
was not reliable for different changes in Δℎ and Δ��. By 
comparing the estimated and measured Δ�� in Fig. 14 (b), 
especially on Jun 13, 2016, it is observed that the model does 
not provide reliable results with the high vegetation change 
rates. In fact, higher vegetation growth rate and further plant 
growth lead to lower accuracy of the regression model. For 
example, the correlation between Δ�� and � for the wheat and 
corn fields are less than those of canola and soybean fields due 
to their higher growth rate.  

Comparing the accuracy of Δ�� estimation for different 
crops in Fig. 12 (SMAPVEX16-MB campaign) and according 
to Fig. 14, the regression model was failed for Δ�� estimation 
in the corn and wheat fields with long ∆� in C-band. The model 
was also unable to provide reliable results in other crop fields 
(e.g., canola and soybean) over the SMAPVEX16-MB 
campaign because of long ∆� and high-frequency data (C-
band). However, Fig. 13 shows that the model provides reliable 
results with acceptable accuracy for Δ�� estimation for the L-
band. This is because of ∆� < 11 days and higher penetration. 
Consequently, the results show that the linear regression model 
was not able to model plant changes. In fact, a large error 
entered in the Δ�� estimation for high Δ� and its high rate. 

G. Sources of errors 

   The � is not only affected by Δ�� but also by all changes 
that occurred during the ∆� which can reduce the correlation 
between � and Δ�� and causes more errors in Δ�� estimation 
using the regression model. In this section, the errors that are 
related to the phase component, which was not considered in 
the modelling, are first discussed. Then, the errors associated 
with the type of modelling (e.g., modelling of � as a simple 
regression function of Δ�� and Δ�) are discussed. 

In this study, the components of ����, �����_���, ����_�, 

����_�, and ������ were considered insignificant and 

negligible, and they were not considered in the regression 
model (see Equation (1)) to reduce the complexity of the 

 
Fig. 14. Temporal changes of Δℎ, Δ��, �, and the estimated Δ�� for a sample over (a) wheat, (b) canola, (c) corn, and (d) soybean fields. 
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DInSAR equation. However, it is worth noting that noise 
samples' effect was reduced by identifying noisy samples, 
which decrease correlation using the statistical filter. The error 
of removing the DEM component (�����_���) depends on the 

accuracy of the DEM and the DEM resolution. This error can 
change � [46], [47]. The error caused by atmospheric delay 
(����_�) depends on the conditions and water vapour in the 

atmosphere, and this error has effects on the � signal [48]–[50]. 
This error also depends on the sensor frequency (i.e., more 
severe for lower frequencies) [6], [51]. According to the 
purpose of this study, there were some periods of precipitation 
during ∆� in both case studies, which causes a change in the 
atmospheric conditions and, thus, reduces the correlation 
between Δ�� and �. 

The regression model has an error in estimating Δ�� over the 
vegetated areas due to linear modelling and ignoring some 
effective parameters. According to the fact that the vegetation 
coefficients of the model were estimated separately for each 
field and for both configurations of the SMAPVEX16-MB 
campaign, the results showed that the model was not able to 
model plant changes accurately in C-band, causing errors in 
Δ�� estimation. Changing in wind speed and direction, 
especially in areas with vegetation cover, also reduces the 
correlation between � and Δ��, which is due to changes in 
physical conditions of vegetation. This error for vegetation with 
higher height  reduces the correlation between � and Δ��, due 
to the greater impact on the plants. Consequently, the linear 
regression model was not able to accurately estimate Δ�� over 
the vegetated fields for long ∆� and in high frequencies (C-
band). However, for the CanEx-SM10 campaign, the model 
provides reliable results for the vegetated fields, which is due 
to the longer wavelength of the L-band (~24cm) and the very 
short ∆�. These results are consistent with previous studies 
(e.g., [9], [10], [21]).  

VII. CONCLUSIONS 

   In this study, the estimation of Δ�� using � observation 
was investigated in the C-band of Sentinel-1 satellite data over 
the SAMPVEX16-MB campaign and in the L-band of the 
UAVSAR airborne data over the CanEx-SM10 campaign. We 
applied a linear regression model to establish the relationship 
between Δ�� and �. The results showed that the model could 
accurately estimate Δ�� over bare fields for short ∆�, where 
the deformation and other changes that depend on ∆� are 
negligible. However, the results were not appropriate for the 
vegetated fields, especially for the SMAPVEX16-MB 
campaign, where the data were at high frequencies (C-band). 
Comparing the data from two campaigns, L-band provided 
better results of Δ�� estimation in the vegetated fields due to 
the invisibility of vegetation changes for longer wavelengths, 
such as L-band in shorter ∆� (shorter than 11 days). In general, 
the regression model could not accurately model vegetation 
changes, which caused more errors in the results of the 
SMAPVEX16-MB campaign because of the significant effects 
of �� on the C-band and the lack of proper modelling of �� 
effects. 

Errors in this research that reduced the accuracy of Δ�� 
estimation, are listed into three groups: (1) the initial 
assumptions, (2) lack of proper modelling of the effects of �� 
in the regression model, (3) lack of modelling of the effective 
parameters, such as roughness, swelling behaviour, and wind 
changes. However, the results showed that it would be feasible 
to use 6-day Sentinel-1 interferograms to monitor �� over bare 
fields. Moreover, future SAR missions, such as NASA-ISRO 
SAR Mission (NISAR), or Hydroterra would provide multi-
frequency data or short spatiotemporal baseline, which are more 
suitable for monitoring ��. Furthermore, the results showed 
that Δ�� could be estimated using � for ∆� > 25 days with an 
average RMSEs of 5 vol. % and 7.5 vol. % over bare fields and 
vegetation areas, respectively. Comparing InSAR technique to 
other microwave methods for �� monitoring, which are based 
on physical models or backscatter ratios, using radar intensity 
or backscatter ratios provide more promising accuracy, 
especially for �� change detection over vegetation areas [11], 
[52]. 

We demonstrated that � has adequate information to 
estimate Δ�� for short spatiotemporal baselines, especially for 
longer wavelengths, such as L-band. The linear regression 
model can provide reliable results over bare fields in the C-band 
and L-band for all the polarization. However, this model cannot 
properly model �� effects on �, especially in C-band (lower 
penetration), causing unreliable results for Δ�� estimation over 
vegetation fields.  
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