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Abstract
Uganda is the third-largest refugee-hosting country partly due to its open-door policy—deemed
one of the most progressive. When new refugees arrive, refugee settlements are established rapidly,
and irreversible changes to the landscape are inevitable. We utilize satellite data to map land cover
(LC), land use, and burned area (BA) to assess their relationship in the context of large-scale
refugee resettlement in Bidi Bidi—Uganda’s largest refugee settlement. We show inevitable
dramatic changes in LC, e.g. built-up residential zones increased from 1.8% to 30%, while cropland
increased from less than 0.7%–25.6% during our study period (2015–2019). In contrast, BA that
affected more than 80% of the area was drastically reduced during the establishment phase
(August–December 2017). Substantial reduction in BA was observed predominantly within the
residential zones, but outside of the zones, BA was hardly affected by the arrival of refugees. Our
study shows that these changes in LC and BA are mainly missing in the readily accessible
satellite-derived data products, which impede assessment, planning, and implementation of
humanitarian response programs. We discuss the importance of mapping at the appropriate spatial
and temporal scales and the importance of context, sector, and geographic domain knowledge
expertise in developing critical information products for informing programs to support
vulnerable populations.

1. Introduction

Understanding the linkages between land cover (LC)
and land use (LU) and fire dynamics is essential
for land management [1]. This linkage is particu-
larly critical when traditional practices such as bush
burning for rangeland management and crop field
preparations pose significant threats to human life,
especially when rapid changes in population increase
vulnerability in already fragile environments within
refugee settlements [2–5].

Fire is an essential part of the African savanna
ecosystems, with frequent fire activity determin-
ing the vegetation structure and composition. Local
communities have developed knowledge and prac-
tices for regulating fire activity without eliminat-
ing it to minimize the undesirable effects of fire
[6, 7]. Many livelihood activities in Africa involve

fire, including cooking, land preparation for agri-
culture, hunting, deterring wildlife damage to crops
or livestock, improving quality and quantity of for-
age, preventing bush encroachment, and fire man-
agement [6]. Despite the significant scale of burning
and the dangers fires pose to the local population,
very few studies have assessed the significance of fires
at the regional (Northern Uganda) scale and their
relationship to LU and LC change. The likely con-
tinued influx of refugees makes understanding these
relationships essential.

Satellite Earth-observation (EO) data provides
critical, relevant, and timely information support-
ing development planning, including urban growth
analysis [8], urbanization [9], drought monitoring
and early warning [10–12], cropland and agricul-
tural LU mapping [13–17], agricultural monitor-
ing and food security [18–20], and burned area
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(BA) estimation [21, 22]. This study is particu-
larly interested in using EO data to understand
the relationships between BA and LU [23, 24] and
the relationship between refugee settlements and
LC [25–28]. However, the lack of up-to-date and
high-resolution LC maps remains a critical barrier
to their use in supporting policy planning, particu-
larly in regions dominated by smallholder agricul-
ture that are most vulnerable to food insecurity,
including most refugee settlements [25]. EO-derived
products such as readily available cropland maps,
e.g. LC CCI [29] and MCD12Q1 IGBP [30], are
too coarse. Similarly, the publicly available moderate
resolution imaging spectroradiometer (MODIS) BA
Product (MCD64A1 Collection 6 [21]) that provides
over 20-years of global coverage at 500 m spatial res-
olution is too coarse to capture small and fragmented
burns which are the most common fire type in Africa
[21, 24, 31, 32]). This can lead to a severe under-
estimation and misinterpretation of both the land-
scape changes and their drivers and can impact short-
and long-term management strategies of refugee
settlements [22, 33–36].

Refugee settlements in Uganda are largely miss-
ing in datasets with diverse downstream applications,
including improving emergency responses and early
warning of climate hazards [37]. Due to low tem-
poral and spatial resolution, many existing products
do not cover the settlement scale LC dynamics. This
limitation is evident in readily accessible population
datasets, including [38] and [39]. Settlement scale
mapping is not only resource-intensive but often
requires specialized mapping, very high-resolution
data, and local knowledge to provide context-specific
insights to interpret results [40]. There have been
few studies seeking to understand the dynamics,
consequences, and livelihood implications of ongo-
ing large-scale resettlement in Uganda (for example
[41]) and studies leveraging EO (for example [42]).
These studies can be critical and are often the only
source of information needed to ensure appropriate
humanitarian responses.

1.1. Study goal
To examine the relationship between BA and land
cover and land use change (LCLUC) in large-scale
refugee resettlement, we begin our analysis with a
brief background of the study area–Bidi Bidi Refugee
Settlement. We map LCLUC pre-and post-settlement
establishment (2015–2019) and analyze pixel-level
dynamics to understand the role of fire in LU trans-
ition. We quantify road density and analyze readily
accessible population data, both critical features of LU
transition that can explain spatial changes.

2. Study area

Bidi Bidi is the largest refugee settlement in Uganda,
located in Yumbe district east of the river Nile.

Our study area is approximately 850 km2 with the
five refugee residential zones (figure 1) that total
250 km2 juxtaposed with host communities. Host
community leaders designated the zone locations in
an area primarily grazing [43]. Several host com-
munity village centers (including Odrevu, Baringa,
Ezeli, and Yumbe) are located within our larger study
area and are directly accessible from the settlement
zones. Yumbe district has a tropical climate with
mean annual rainfall ranging from 1050 to 1350 mm
and an annual temperature ranging from 24 ◦C to
27 ◦C (see figure 2) [7]. Except for a small patch of the
forest toward the East, Bidi Bidi was primarily a grass-
land area with scattered short trees and shrubs with
croplands locatedmainly to the southwest and north-
east [44]. Subsistence farming remains the primary
source of livelihood [44].

Refugee residential Zone 1 was established imme-
diately after violent clashes broke out in Juba, South
Sudan in July 2016, and closed to new arrivals approx-
imately two months later, when planned capacity was
exceeded1. Later arrivals were settled in Zones 2–5
before the settlement was closed in December 2016.
By May 2017, Bidi Bidi was home to an estimated
287 000 refugees [45].

2.1. Uganda’s refugee crisis
Africa’s largest refugee-hosting country Uganda has a
‘progressive’ refugee policy that allows refugees access
to basics required to rebuild their lives. Although
Uganda is home to over 1.4 million refugees, the
country falls in the low human development cat-
egory, and the lack of funding is challenging its liberal
refugee-hosting history. Uganda has a long refugee-
hosting history dating back to the 1940s. However,
more extensive hosting started later in 1955 when an
estimated 79 000 Southern Sudanese refugees arrived,
followed by Congolese and Rwandese refugees in
1959/1960 who settled in present-day Oruchinga and
Nakivale [46]. Historically, most of the refugees in
Uganda have been from Congo, Rwanda, and Sudan,
but the country has also hosted many more refugees
[46]. While some refugees can return, the major-
ity remain displaced and permanently settled in the
refugee settlements [47]. With continued political
strife in the region, this trend has created a perpetual
emergency response cycle and a growing refugee pop-
ulation in Uganda. New refugee arrivals are often
similar to previous influxes characterized by a very
high proportion of women and children. By the
end of 2017, after Bidi Bidi was established, the
refugees and asylum seekers were estimated at 1.3
million people, with nearly 986 626 persons from
South Sudan, 236 406 from the Democratic Republic
of Congo, and 39 658 from Burundi [47].

1 Oral communication with Settlement Commandant November
2016.
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Figure 1. Location of Bidi Bidi refugee settlement, Uganda.

Figure 2.Mean annual rainfall and land surface temperature (LST) 2002–2018 for Yumbe District.

3. Data andmethods

3.1. LC classification
A single annual (10 m) mosaic was extracted from
Sentinel-2 images with less than 20% cloudy pixels
between 1 May and 30 September each year, begin-
ning with 2015 before establishing the settlement

until 2019. May to September is the peak of the
growing season in the region. It is selected to
ensure we minimize errors of commission and omis-
sion between cropland and other natural vegetation
[48, 49]. Specifically, 2015–2018 images were down-
loaded from USGS Earth Explorer. Images with the
least cloud cover over Bidi Bidi (May to November)

3
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Table 1. Data sets used in this study.

Task Data Source

Land cover mapping 2015–2018 Sentinel-2 L1C USGS Earth Explorer
2019 Sentinel-2 L2A GEE ee.ImageCollection COPERNICUS/S2_SR

Burned Area Estimation Sentinel-2 Sentinel-hub.com
Landsat USGS Earth Explorer

Road Delineation PlanetScope Monthly Mosaics Planet Labs
Training data Planet Monthly Mosaics, Google Earth Pro Imagery
Shapefiles Settlement and Zone boundaries Obtained from UNHCR during fieldwork in 2016

Figure 3. Comparison of four remotely sensed products with different spatial resolutions moving from high (left) to low (right).
Planet Scope (3 m; 1 November 2016), Sentinel-2 (10 m; 30 October 2016), Landsat-8 (30 m; 5 December 2016), MODIS (500 m;
1 November 2016). The red box highlights the location of the photographed area.

during the growing season were manually selected
and atmospherically corrected to Level-2A surface
reflectance products using the Sen2Cor algorithm
[50] and uploaded to Google Earth Engine (GEE).
2019 Level-2A images were accessed directly in GEE.

Mosaics were created from Level-2A Sentinel-2
imagery in GEE, excluding cloudy and shadow pixels,
using the Sentinel2Cloud probability masks (see table
in appendix 1 for the full list of images each year).
Median pixel mosaics were then clipped to the Bidi
Bidi boundary obtained from the United Nations
High Commissioner for Refugees (UNHCR) dur-
ing fieldwork in 2016. Only the 10 meter (Bands
2, 3, 4, and 8) and 20 meters (Bands 5, 6, 7,
8A, 11, and 12) were used for this study. The
20-meter bands were pan-sharpened to 10 meters
before training the LC classifier. The Normalized Dif-
ference Vegetation Index (NDVI) was calculated as((

NDVI= ρnir−ρred

ρnir+ρred

))
and added to each mosaic.

NDVI data are a common data source for LC map-
ping and have been shown to improve model accur-
acy when added as an input variable [16, 51].
Random Forests was selected after several experi-
ments, including running the support vectormachine
[52], Classification and Regression Trees [53] and
Random Forest [54] classifiers in GEE. It had the
highest overall accuracy (OA) for all years and all
classes. Table 1 summarizes the datasets used in
this study.

3.2. Training data
LC training data (urban, shrub/forest, cropland, and
grassland) were collected through a combination
of image interpretation in GoogleEarth Pro and
QGIS using monthly mosaics from PlanetLabs API
(www.planet.com) and screen labeling directly in the

GEE JavaScript API. Planet’s monthly and quarterly
Basemaps have a high temporal and high spatial res-
olution (3 m) and were used to dis-aggregate sim-
ilar LC types, particularly between agricultural and
grassland classes that were sometimes difficult to dis-
cern. Figure 3 highlights the increasing lack of dis-
cernible spatial details from on-the-ground photos to
MODIS (500 m) resolution. 80% of the data were
used for training and 20% for validation. To assess
the accuracy of the classifiers, we used a Confusion
Matrix. We report the full error matrix indicating
the level of agreement of the derived classes and the
training data [55].

3.3. BA estimation
BA maps were derived from Sentinel-2 and Landsat-
8 imagery. While Sentinel-2 was the predominant
input due to the higher spatial and temporal res-
olution, we used Landsat-8 data when less than
two cloud-free Sentinel-2 images were available per
month and before January 2016 when the availability
of Sentinel-2 data was inconsistent.

Four annual (2015–2019) BA maps were pro-
duced representing the fire year (FY) (August–July)
for Northern Hemisphere Africa proposed by [56].

The annual BA maps were derived semi-
automatically using the Burned Area Index for
Sentinel-2 (BAIS2) (equation 1) to automaticallymap
BA derived from the arithmetic difference between
pre-fire BAIS2 and post-fire BAIS2 estimates [57]. A
variable threshold (0.32–0.4), dependent on vegeta-
tion cover and image quality, was applied to enhance
visual differentiation between burned and non-BAs.
For each image pair, we started with a BAIS2 dif-
ference of 0.4 and decreased the threshold by 0.05
increments until the automated BA mask had the

4
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best balance between including all the new BA pixels
and excluding the unburned areas, clouds, and shad-
ows. The BA mask was then manually adjusted to
reduce the misclassification of low severity fires. Two
rounds of visual interpretation and burn scar digit-
izing were performed by comparing the BA mask
to false-color composite Sentinel-2 (12-8A-4) and
Landsat-8 (7-5-4).

BAIS2= 1−
√

B06 ∗B07 ∗B8A
B4

∗ B12−B8A√
B12+B8A

+1.

(1)

Annual BA maps were compared to the BA
derived from the MODIS MCD64A1 Collection 6
product [21], a publicly available BA product com-
monly used in fire research [24, 31, 32]. This was done
to test if MCD64A1 captured the year-to-year variab-
ility. MCD64A1 provides a long time series needed
to differentiate between natural and anthropogenic
drivers of fire activity changes. Fire-CCI small fire
dataset for 2016 (20 m) from the European Space
Agency’s Climate Change Initiative [58] was used to
test the accuracy of our high-resolution BA maps.
Since Fire-CCI covered a calendar year instead of a FY,
we recalculated the annual BAmap for 2016 using the
calendar year to enable the comparison.

3.4. LC change and BA dynamics
We combed results from sections 3.1 and 3.3 analyzed
pixel-level LC trajectories. For example, to assess if the
fire was explicitly the cause of natural vegetation giv-
ing way to urban or cropland. The results from this
analysis are included in section 5.1.

3.5. Population and road density analysis
To assess population dynamics, we used readily
available population datasets, including the Face-
book High-Resolution Population Density Map [38],
Landscan [59], WorldPop [60] and the World Set-
tlement Footprint [39]. A summary description and
summary of findings are included in supplementary
material (appendix C available online at stacks.iop.
org/ERL/17/064019/mmedia).

Road density was calculated from hand digitizing
roads from PlanetScope images for 2015 (pre), 2017
(during the establishment phase), and 2019 post-
settlement establishment.

4. Results

4.1. LC in Bidi Bidi 2015–2019
LCmaps for Bidi Bidi from 2015 to 2019 are shown in
figure 4. The average OA was 0.9936, while the aver-
age consumers’ and producers’ accuracy was 0.994
and 0.979, respectively. The overall training size is
shown in table 2. The producer’s accuracy (the num-
ber of reference sites classified accurately divided by

the total number of reference sites for that class)
for all years and LC classes except for the 2019
shrub/forest class was 0.895. supplementary mater-
ial (appendix B) include a detailed Confusion Mat-
rix of LCmaps by year and by class showing omission
and commission errors. These results show that the
highest confusion occurred between the cropland and
grassland classes.

Figure 5 and table 3 summarize the LCLUC stat-
istics calculated from the 10-meter product. In 2015,
before the establishment of Bidi Bidi, the built-up
areas accounted for 3.4%, increasing to 5% in 2016
and reaching 6.7% in 2019. Within residential zones,
built-up areas rapidly increased from 1.8% (2015)
to 4.5% in 2016, reaching 26% in 2017/18 and 32%
in 2019. Zones 2–5 established shortly after Septem-
ber 2016 are not included in the 2016 map. Crop-
land areas stood at just 4.6% in 2015 within the larger
settlement boundary and less than 0.7% within the
zones, primarily concentrated to the southeast of the
settlement (see figure 5). Cropland area increased to
5.4% in 2016, with a significant jump to 9.4% in 2017,
13.8% in 2018, and reached 16.9% in 2019. Within
residential zones, croplands areas quickly expanded to
5.5% in 2017 from 0.7% in 2015 and reached 18.5%
and 25.4% in 2018 and 2019. This rapid built-up and
cropland area expansion coincided with the drastic
reduction of natural vegetation from 92% (97.5%
within zones) in 2015 to 76.4% (42.1% within res-
idential zones) in 2019. Shrub/forest declined to just
7.2% in 2019, from 24.7% in 2015 and 3.1% within
zones from 16.3% in 2015.

4.2. Burned area (BA)
The binary BA maps (figure 6) are based on the dif-
ference between pre-and post-fire BAIS2 estimates.
Results show that BA stood at 66.53% prior to the
arrival of refugees during the 2015–2016 FY, reducing
to 53.38% in 2016–2017 before increasing to 59.38%
and 60.71% in 2017–2018 and 2018–2019 respectively
in the entire settlement area (table 4 summarize the
BA statistics).We suspect BAwas primarily associated
with grassland management by the host community
that lived on and used the land for grazing. Results
also show that BA exceeded 70% within areas later
designated as settlement zones before their estab-
lishment (see table 3 in supplementary materials).
After establishing the refugee settlements, BA drastic-
ally decreased due to the increase in emergency-
related activities, including road construction. BA
decreased by over 13% during FY 2016–2017, while
the reduction within the settlement was even more
pronounced. BA decreased by 50% within the first
two zones established before the fire season in 2016
but rebounded in 2017 and 2018 outside of the
settlements. However, BA within the zones slightly
increased (Zone 1 and 4) or reduced even further
(Zones 2, 3, and 5).
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Figure 4. Top: landcover maps for Bidi Bidi refugee settlement derived at 10 m resolution from Sentinel-2 data. Refugee
residential zone boundaries are denoted with black boundaries. Bottom: zoomed into Zone 2 shows the rapid expansion in
built-up class in 2017 followed by the rapid expansion of cropland in 2018 and 2019.
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Table 2. Confusion matrix indicating agreement for random forests classification by class by year and overall training size.

2015 2016 2017 2018 2019

Training size 1374 986 339 387 393
Features generated 60 748 30 035 36 454 63 987 50 970
OA 0.996 0.996 0.998 0.997 0.981

Consumers accuracy

Urban/Built-up 0.994 0.984 0.996 0.997 0.995
Cropland 0.998 0.993 0.998 0.992 0.979
Grassland 0.996 0.997 0.998 0.997 0.977
Shrub/Forest 0.998 0.997 0.998 0.999 0.993

Producer’s accuracy

Urban/Built-up 0.974 0.986 0.998 0.997 0.998
Cropland 0.920 0.913 0.979 0.973 0.963
Grassland 1.000 0.999 0.999 1.000 0.998
Shrub/Forest 0.996 0.999 0.993 0.996 0.895

Figure 5. LC time-series 2015–2019 in the larger settlement area Bidi Bidi (a) and within designated settlement zones (b) showing
a steady decrease in natural vegetation and a steady increase in the urban and agricultural classes. Natural vegetation (Nat.Veg.)
includes forest/shrub and grassland.

Table 3. LCLUC in Bidi Bidi refugee settlement showing the percentage breakdown of LC classes within the larger settlement boundary
and within designated residential zones 1–5.

Bidi Bidi 2015 2016 2017 2018 2019

Urban 3.4 5.0 5.1 6.1 6.7
Cropland 4.6 5.4 9.4 13.8 16.9
Grassland 67.4 68.8 70.0 65.9 69.2
Shrub/Forest 24.7 20.8 15.6 14.2 7.2
Shrub/Forest+ Grassland 92.0 89.6 85.6 80.1 76.4

Within ZONES 2015 2016 2017 2018 2019

Urban 1.8 4.5 26.0 26.0 32.6
Cropland 0.7 1.7 5.5 18.5 25.4
Grassland 81.2 80.6 62.3 51.1 39.0
Shrub/Forest+ Grassland 97.5 93.8 68.5 55.4 42.1
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Figure 6. BA maps for Zone 1 and Zone 2 for Bidi Bidi refugee settlement derived at 30 m showing reduced BA where roads and
buildings were constructed but slightly to no changes elsewhere.

Table 4. Percentage annual BA calculated by FY (August–July) based on Sentinel-2 data.

2015-2016 2016–2017 2017–2018 2018–2019

Zone 1 85.47 45.12 49.11 50.09
Zone 2 83.33 48.32 35.77 33.52
Zone 3 76.14 51.56 45.26 42.27
Zone 4 67.76 39.24 60.42 58.48
Zone 5 54.85 45.55 36.92 28.42
Outside residential zones 66.67 54.05 60.54 62.18
Bidi Bidi 62.93 53.38 59.38 60.71

5. LC versus BA

By plotting BA and LC data, trends emerge, although
our study period is insufficient to assess the BA/LC
relationships. For example, while the BA area did
not change in the larger settlement area (Bidi Bidi),
we see very little BA within built-up areas, which
reduced to zero by 2019. Our data show a pos-
itive relationship between BA and cropland area,
which we expected since fires are often used to clear
new areas for agriculture and land preparation. BA
declines as the vegetated area declines within the
natural vegetation (shrub and grassland combined)
(figure 7). In the supplementary, appendixDwe sum-
marize how the products from this study compare
with existing readily accessible global data products,
including LC CCI and MCD12Q1 IGBP LC maps
and Fire-CCI and MCD64A1 BA datasets. These
products being the go-to for global and regional
studies, we evaluate their utility for our study area’s
unique context.

5.1. LC change and BA dynamics
Our pixel-level assessment of BA and LCLUC showed
in figure 8 confirms field observations that most of
the urban conversion at the establishment of the set-
tlement in 2017 (natural vegetation largely grassland
areas to built-up) was to establish homes and roads.
Built-up class expansion (transitions shown in blue)
at the establishment in 2017 did not follow fire dis-
turbance because bulldozers were used to clear areas.
In 2017–2018, 2018–2019, we see more pixels con-
verted from natural vegetation to cropland follow-
ing (shown in orange). The entire settlement results
are included in supplementary material (appendix
E), table E1 showing the pixel-level BA and LCLUC
dynamics andmaps showing the transitions fromyear
to year for the whole study area.

5.2. BA and road density
Most road establishments occurred between June
2016 and December 2016 with the highest increase
in road density occurring in Zones 2 and 4 with

8
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Figure 7. Percent of annual BA within specific LC classes in settlement zones 1–5. LC was estimated for a calendar year, while BA
was calculated for FY (August–July). For example, FY2016 means 01 August 2015–31 July 2016.

Figure 8. LCLUC and BA dynamics before and after the establishment of Bidi Bidi in Zone 2.

9
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Figure 9. Annual road density (a) and percent BA within zones in Bidi Bidi (b).

approximately 1732% and 3093%, respectively,
primarily shrub areas as shown in our LC results
(see figure 9(a)). Roads were created rapidly with
bulldozers by UNHCR.

6. Discussion

Bidi Bidi experienced a drastic increase in population
(July–December 2016) which led to a rapid expansion
in its built-up areas (shelter for new arrivals, roads,
and other infrastructure), a slight increase in crop-
land in the first year, followed by rapid increases in
the subsequent years. This study shows a reduction in
natural vegetation,makingway for built-up and crop-
land areas, consequently decreasing fuel connectivity,
likely causing the decrease in BA. However, the total
BA in the larger settlement did not varymuch andwas
close to pre-settlement levels (60%) by 2019.

Similar to precipitation, fire activity has a well-
defined season. Most BA was detected right after the
end of the rainy season (December–March). How-
ever, BA was detected even during the rainy season.
BA reduced within the natural vegetation and became
more prominent within cropland areas signifying an
increased use for cropland management. Although
four years is a short time to analyze trends in BA, our
analysis highlights the need to develop higher resolu-
tion datasets in this context.

Except for a few main roads, Bidi Bidi was
built from the ground up, leading to a substantial
increase in road density and built-up area shortly after
refugees arrived. Rapid cropland expansion was inev-
itable. All zones were fully established by the end of
2017. Other than cropland expansion, reduction of
the natural vegetation during the establishment phase
and shortly after can be attributed to high demand
for firewood for cooking, grass for hut thatching, and
livestock grazing (See figure 3).

Drastic decrease in BA after settlement establish-
ment (2016/17 FY), particularly within residential

zones, clearly illustrates rapid population growth
(built-up class) and LC fragmentation on BA (see
figure 9) [61]. Infrastructure development right
before and immediately after the arrival of refugees
decreased fire spread [62]. However, the increase in
BA, both outside and within some zones, was unex-
pected in the two years following the settlement estab-
lishment. Moreover, BA was hardly affected by the
refugees’ arrival outside of the settlements. This find-
ing contradicts a common assumption that cropland
expansion reduces BA extent within cropland and
surrounding areas [23]. Additionally, [62] sugges-
ted that a drastic decrease in landscape connectivity
can almost eliminate fire activity in African savan-
nas. Still, we found this was not the case for Bidi
Bidi during our study period. Figure 10 provides a
clear example that while an increase in road dens-
ity and housing undoubtedly reduced the BA within
settlements, fire activity still occurred if vegetation
was present.

MCD64A1 detected less than a third of the
BA extent in this study, consistent with [22] who
showed that a hybrid Sentinel-2A and Landsat-8
30-m product captured more detail than the 500-m
MODIS BA product, with systematically higher BA
extent. Considering Bidi Bidi experienced a drastic
increase in population density during our study
period, which lead to a decrease in fuel connectiv-
ity, a reduction in fire size is expected [35]. The smal-
ler the fires, the higher the probability that they will
not be detected, which is especially true with crop-
land landscapes [36]. Additionally, we detect BA dur-
ing the rainy season while no fires were detected in
theMCD64A1 becausemost of these post-season fires
are agricultural.

While global coarse-resolution products, LC CCI
(300 m) and MCD12Q1 IGBP (500 m) (see sup-
plementary appendix D), showed almost no changes
within Bidi Bidi between 2015 and 2019, our LC
maps depicted an overwhelming reduction of natural
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Figure 10. 2015 and 2017 roads and BA in Zone 1 and Zone 2.

vegetation. The road density analysis further supports
the main findings of drastic grassland conversion to
built-up within settlements and cropland in neigh-
boring areas. The lack of changes within cropland
classes and a complete absence of the urban class
within Bidi Bidi illustrates how small and vulner-
able regions can be overlooked when datasets are
developed for regional-or global-scale studies. There-
fore, caution must be exercised when this data is used
for local studies. Here, we demonstrate how a global
BA product could severely underestimate BA, while a
global LC product fails to capture the LC change, and
settlements are not detected for population estimates.

7. Conclusions

This study developed 10 m resolution LC maps
and 30 m BA maps for the Bidi Bidi refugee
settlement in northern Uganda. This study high-
lights the need to map and monitor settlement
scale and context-relevant dynamics in this case for
humanitarian response.

LC maps are critical for planning and man-
aging resources. More so in regions with vulnerable
populations and humanitarian emergencies. High-
resolution, accurate maps are needed to support
decision-makers in designing programs, policies, and
mitigation strategies that ensure their communit-
ies’ needs are met. The maps need to be available
for long-term planning and policy purposes, but

most importantly, they are necessary in response
to rapidly evolving crises. These resources need to
be up-to-date, and in the case of smallholder sys-
tems, they must be available at the appropriate scale.
Currently, the majority of openly accessible maps
are created from low-to-moderate resolution imagery
and do not sufficiently, if at all, detect refugee
settlement LU.

Rapid changes in human population migration
due to conflict can leave a lasting impact on the nat-
ural landscape. This study shows that remote sensing
data cannot explain all the consequences. However,
remote sensing tools remain critical for monitoring
the long-term impacts of human activity on the land-
scape, particularly where ground data are challenging
to obtain or are non-existent.

Drastic increase in population led to substan-
tial clearing of natural vegetation in Bidi Bidi. This
can compound and magnify the risks of environ-
mental and social hazards such as soil erosion, flood-
ing, loss of local watersheds, and biodiversity, and
conflicts over LU and resource access impacting both
refugees and host communities alike. Therefore,map-
ping and monitoring the trajectories and managing
their consequences need to be integral to settlement
management programs.

This study also demonstrates the importance and
prevalence of fire in Northern Uganda, a savanna
ecosystem, providing evidence that drastic increases
in population density do not permanently eliminate
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fire. While sudden changes in human pressure can
have an immediate effect on BA, this study supports
the self-regulating fire theory, where fire suppression/
exclusion leads to an accumulation of fuel, which
increases the probability of fire in the future [63, 64]

Appendix C includes a summary of the limita-
tions of readily accessible global products (LC, BA,
and population). We show that while useful for mon-
itoring global dynamics many products fall short in
capturing critical details for humanitarian action and
have limited utility in response planning. Therefore,
it is important that the EO community work with
humanitarian actors to develop contextually useful
data to produce temporally and spatially appropriate
products with representative training and validation
data co-developed with end-users.

Finally, geographical and sector domain know-
ledge is required when developing information
products that explain landscape changes. Firsthand
knowledge of the trajectory of events in Bidi Bidi
helped inform the analysis in this study and was
invaluable for interpreting the results moreover a dia-
logue with humanitarian actors can further inform
and improve the utility of datasets.

While higher resolution BA maps show a drastic
improvement, 20–30 m resolution is still too coarse
to accurately discern andmap small agricultural fires,
which are common in wooded savannas [65, 66].
Additionally, LC classification could benefit from
ground truth data specifically to reduce confu-
sion between spectrally similar classes grassland
versus cropland, cropland vs urban/build-up/bare
and grassland vs forest/shrub LC types. An absence
of global high-resolution yearly population data lim-
ited our ability to study the direct impact ofmigration
on land management and ecosystem services in Bidi
Bidi. Therefore, we had to use changes in road dens-
ity and proportion of agricultural land as proxies for
anthropogenic influences.

Future work will focus on extending the time
frame of this analysis to study the immediate changes
in LC and BA after the arrival of refugees and under-
stand how sustainable the current open-door policy is
for both hosting and refugee communities.Moreover,
extending the study area to cover additional settle-
ments in northern Uganda and a collection of social-
economic datawill help quantify LCLUCon a broader
scale and provide a comprehensive analysis of the
social and economic impacts of these conversions.
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The data that support the findings of this studywill be
openly available following an embargo at the follow-
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