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1. Introduction

Adapting to and mitigating climate change while
addressing food insecurity are top priorities in Sub-
Saharan Africa that require technologies to improve
rural livelihoods with minimal environmental costs
[1]. Artificial intelligence (AI) offers great promise
for climate-smart solutions that improve food secur-
ity outcomes. While precision agriculture is often the
foremost use case for AI in agriculture (e.g. automa-
tion of farm equipment or nutrient application), pre-
cision agriculture is out of reach for most African
farmers due to the required capital and infrastructure.

AI solutions using satellite Earth observations
(EOs), which we call AI-EO, are more accessible in
the near term. EO enables agricultural analyses and
insights at global scales, and many datasets are freely
available, making EO-based solutions affordable [2].
AI-EO-derived products such as crop type maps and
yield estimates are necessary to forecast food pro-
duction surpluses or deficits, inform trade, and aid
decisions. These products can support policies that
accelerate the design and adoption of climate-smart
agriculture and impact farmer livelihoods by increas-
ing access to actionable early warning, risk finan-
cing or insurance [3], farm inputs, markets, and cost-
reducing interventions [2, 4].

Despite their promise, AI-EO solutions for agri-
culture in Africa are still limited. Most techniques are
not generalizable across heterogeneous landscapes.
In this paper, we describe the principal sub-fields of
research in AI-EO for agriculture in Africa and dis-
cuss examples and limitations of existing work. We
also propose ten considerations for future work to
help increase the impact of AI-EO research in Africa.

2. Key AI-EO applications

In this section, we discuss AI-EO applications for
agriculture and current limitations that need to be
addressed in future work in Africa.

2.1. Cropland and crop type mapping
Cropland maps indicate where crops are growing
spatially (figure 2(a)), while crop type maps indic-
ate the specific crop is growing in each spatial unit
(e.g. maize). In EO-based yield or conditions mod-
eling, these maps are required to restrict the ana-
lysis to pixels that include cropland or a specific crop
type. Crop type maps should be updated season-
ally because farmers may change crops grown in a
particular field [2].

Cropland mapping involves classifying spatial
units (e.g. pixels with a specific spatial resolution)
as containing cropland. Crop type mapping is usu-
ally framed as a multi-class classification but can
be framed a binary classification where the posit-
ive class is the crop type of interest, and the neg-
ative class includes all other crop types and non-
crop classes. The resulting map’s spatial resolution
depends on the satellite data inputs (e.g. 10 m/pixel if
using Sentinel-2 [5]).MostMLmodels used for crop-
land and crop type classification are tree-based classi-
fiers such as decision trees and random forests. Deep
learning approaches, especially recurrent neural net-
works that learn important crop-specific growth pat-
terns in time series data, have gained popularity in
recent years and are the current state of the art [6].

While the accuracy of public cropland maps is
generally high in developed regions, prior studies
have shown significantly lower accuracy in Africa.
The errors reported for crop area estimates in [8] were
lowest in Africa, and [9] found that user accuracy was
as low as 17% in eastern Africa (e.g. figure 1).

This is partly because farms in Sub-Saharan
Africa are predominantly smallholder farms which
can be difficult to detect accurately without very high-
resolution satellite datasets (which are not freely avail-
able). Another limiting factor is the lack of publicly
available labeled African agriculture datasets.

While some recent work has proposed approaches
for improving crop type classification results with
limited labeled data using transfer learning and
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Figure 1. Example region in ESA WorldCover land cover map [7] in western France (top) and western Kenya (bottom). Both
regions show dense crop fields, but most fields are confused for shrubland in Kenya but accurately mapped as cropland in France.
Reproduced from [7]. CC BY 4.0.

few-shot learning methods like meta-learning [6],
most prior work relies on large labeled datasets that
are not currently available for Africa. Even if a model
can be trained efficiently using a small number of
labeled samples, robust evaluation of the resulting
crop type map (which involves dense inference over
an entire region) still requires many labels. While
land cover labels (including cropland) can usually
be annotated using photo-interpretation of high-
resolution satellite images, crop typemust be determ-
ined through ground-truth observation. Intercrop-
ping is a common practice in Africa that presents an
additional challenge for AI-EO methods. While it is
possible to physically identify multiple crops grow-
ing in the field from in-situ observation, it is diffi-
cult to disaggregate them at the same pixel location in
satellite data. Current methods typically treat inter-
cropped fields as a single aggregate class or use the
label for the crop assumed to be the dominant crop.

2.2. Yield estimation
Models that can support strategies for increasing
yields are essential for climate-smart agriculture in
Africa, where increases in crop production have
largely been driven by increases in the cultivated area,
not yields. Yield estimation is a regression task in
which models estimate the crop harvested per unit
area (e.g. kg per hectare). Most yield estimation work

is done at the regional or national scale, with less
work at the field scale (figure 2(b)). Yield estima-
tion methods may also be evaluated by how early
the end-of-season yield can be accurately forecast in
the growing season. Most ML approaches for yield
estimation use tree-based methods such as random
forests and XGBoost. Recent work has presented vari-
ous deep learning solutions, including Deep Gaus-
sian Processes, graph neural networks, and recur-
rent neural networks. Other approaches leverage crop
simulation and statistical regression models. How-
ever, few studies have focused on yield estimation for
Africa [10, 11].

2.3. Field boundary delineation
Field boundaries guide sampling and area estima-
tion methods to provide statistically sound estim-
ates of cropped area and are helpful for sub-field
assessments of inputs, crop performance, and pro-
duction (figure 2(c)) [12]. Some studies have used
instance segmentation methods from computer vis-
ion like Mask R-CNN [13], but most recent work has
used semantic segmentationmethods like U-Nets fol-
lowed by post-processing to isolate individual field
instances [14].

A major roadblock to field boundary delineation
in Africa is the insufficient spatial resolution of
publicly available satellite datasets. Smallholder fields
are often smaller than 1 ha (100m× 100m), thus,
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Figure 2. Example outputs from AI-EO models for (a) cropland classification in Togo. Reproduced from [5]. CC BY 4.0. (b) yield
estimation in Kenya. Reprinted from [11], Copyright 2019, with permission from Elsevier. (c) field boundary delineation in
Ghana. Reproduced from [15]. CC BY 4.0. and (d) pest detection Reproduced with permission from [16].

delineation requires very high-resolution datasets
currently only available commercially [14]. Another
challenge is that few public datasets provide field
boundary labels in Africa. Prior work has proposed
solutions using active learning [15] and combining
transfer learning with weak supervision [14].

2.4. Pest, disease, and anomaly detection
There has been some research on pest/disease detec-
tion using EO data, for example, but most studies use
high-resolution datasets that are not publicly or glob-
ally available and do not leverage modern AI tech-
niques. Techniques leveraging AI and EO can be use-
ful for detecting pest and disease impacts over large
areas during the growing season to minimize crop
damage (figure 2(c)) [16]. These approaches could
also detect other in-field anomalies, such as nutrient
deficiencies or weeds. However, few studies have used
AI-EO to detect anomalies over large areas, partly due
to limited access to high-resolution satellite datasets

and ground-truth labels needed to train and evaluate
AI models [17]. Current AI techniques for crop dis-
ease surveillance mostly focus on in-situ plant disease
diagnosis using cell phone images or ground-based
robots [18].

3. Considerations

In this section, we propose ten considerations that
should be incorporated into future work to increase
the positive impact of AI-EO research in Africa.

(i) Interdisciplinary teams are a requirement.
Developing robust, practical, and contextu-
ally relevant AI-EO methods for agriculture
in Africa requires interdisciplinary teams,
including experts in AI, agriculture/agronomy,
remote sensing, climate science, soil science,
and local and regional practices.

(ii) Consider the resource context. The intended
stakeholders’ resource context (e.g. cost,
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energy, or internet bandwidth) must be con-
sidered at all stages of the research process,
including algorithm selection/design and dis-
semination of results. For example, internet
costs may be prohibitive for running specific
AI systems (1GB of data costs an average of
4.3% of monthly net income in Africa). These
constraints are rarely considered in AI research
due to a widespread belief that AI innovations
will eventually become available to individu-
als in resource-poor settings rather than wel-
coming these requirements as drivers for AI
innovation [19].

(iii) Prioritize methods for limited labeled data.
Prioritizing research on AI-EO methods that
optimize performance with limited labeled
data is necessary for addressing the labeled
data bottleneck for agriculture in Africa.
The community should also prioritize more
community-wide efforts to create publicly
available labeled datasets for agriculture in
Africa.

(iv) Methods should be transparent and repro-
ducible. There is a need for greater transpar-
ency and accountability in AI-EO, including
proper documentation and openmethodswith
sufficient details that enable researchers across
fields to trace and replicate prior work and
compare methods to directly track progress in
the field.

(v) Work with stakeholders from the beginning.
Stakeholders and end-users should be con-
sulted early in the research and development
to ensure researchers work on problems that
solve real end-user needs. Stakeholders can
help inform the choice of metrics for evalu-
ating AI-EO methods representative of real-
world performance rather than defaulting to
commonly used metrics in AI.

(vi) Decolonize research methods and practices.
Most discussions of equity and ethics in AI
and EO have traditionally focused on the
diversity and inclusion of under-represented
groups. Decolonizing current practices in
research should be an added focus of such
efforts. Researchers need to recognize the
harms of colonialism, avoid parachute sci-
ence, and conduct research in ways that do not
perpetuate harm or reinforce negative power
structures [20].

(vii) Form meaningful partnerships with local
institutions. The majority of AI research
today is being conducted in the US, Europe,
and China, making international partnerships
between institutions in these regions and
Africa a critical component for the success
of agriculture applications in Africa. Interna-
tional partnerships could work toward creat-
ing an enabling environment for AI in Africa

that provides resources for capacity building,
recruiting talent, infrastructure for data and
computing, and inclusive innovations. These
partnerships should go beyond data collection
to ensure the benefits of AI-EO innovations
are realized, sustained, and extended by local
stakeholders.

(viii) Institutionalized investments. For the invest-
ments above to be sustainable, there is a need
for investments in research to be institution-
alized by enduring organizations focused on
the public good such as universities or govern-
ment. Core government agencies should build,
invest in, and embraceAI-EO solutions beyond
human resources to include infrastructure for
data collection, analysis, scientific research and
collaboration, and communication with broad
stakeholders [4].

(ix) Open access to high-resolution imagery.
Access to high-resolution satellite datasets
is a significant roadblock to AI-EO applic-
ation development for smallholder agricul-
ture. Community and cross-institution efforts
to purchase data from commercial providers
like Planet or Maxar for agriculture-related
research in Africa are needed. For example,
the Norway International Climate and Forests
Initiative Satellite Data Program made high-
resolution Planet basemaps freely available for
projects related to forests in the world’s tropics.
A similar initiative should be implemented for
agriculture.

(x) Limitations of AI-EO solutions should be
assessed and communicated. While there is
vast potential and excitement for AI-EO tech-
nologies for agriculture in Africa, research-
ers need to assess and communicate the lim-
itations of these solutions. Over-promising
and under-delivering on the capabilities of AI
risks disillusionment and loss of interest for
stakeholders and funders of AI-EO solutions.
While published research shows possible bene-
fits, practical demonstrations that realize the
promise of these solutions for stakeholders are
still limited. Furthermore, it is critical to per-
form rigorous evaluations to thoroughly assess
and communicate the strengths and limita-
tions of AI-EO models (indeed, any models)
used to inform decisions or policies that affect
people’s livelihoods and outcomes.

4. Opportunities for future work

There are common topics for future research that
would substantially impact many applications. To
address the lack of labeled data, the research could
focus on learning efficiently from limited labeled data
and sparse, partial, or noisy labels. More efficient and
scalable approaches to data collection are needed to
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create datasets that represent real-world conditions
and progress for agriculture in Africa. Future work
could develop approaches for intercropping in crop
type classification and yield prediction. Techniques
for multi-fidelity data fusion are also required
to combine satellite data sources with variable
temporal/spatial resolution and quality. Finally, there
is a need for more equitable programs that fund
researchers and organizations based in Africa to
develop the datasets, models, and other capabilities
required to advance AI-EO for agriculture in Africa.

Data availability statement

All data that support the findings of this study are
included within the article (and any supplementary
files).

ORCID iDs

Catherine Nakalembe https://orcid.org/0000-
0002-2213-593X
Hannah Kerner https://orcid.org/0000-0002-
3259-7759

References

[1] Sasson A 2012 Food security for Africa: an urgent global
challenge Agric. Food Secur. 1 1–16

[2] Nakalembe C et al 2021 A review of satellite-based global
agricultural monitoring systems available for Africa Glob.
Food Secur. 29 100543

[3] Benami E, Jin Z, Carter M R, Ghosh A, Hijmans R J,
Hobbs A, Kenduiywo B and Lobell D B 2021 Uniting
remote sensing, crop modelling and economics for
agricultural risk management Nat. Rev. Earth Environ.
2 140–59

[4] Nakalembe C 2020 Urgent and critical need for Sub-Saharan
African countries to invest in earth observation-based
agricultural early warning and monitoring systems Environ.
Res. Lett. 15 121002

[5] Kerner H, Tseng G, Becker-Reshef I, Nakalembe C, Barker B,
Munshell B, PaliyamM and Hosseini M 2020 Rapid response
crop maps in data sparse regions ACM SIGKDD Conf. on
Data Mining and Knowledge Discovery Workshops

[6] Tseng G, Kerner H, Nakalembe C and Becker-Reshef I 2021
Learning to predict crop type from heterogeneous sparse

labels using meta-learning Proc. IEEE/CVF Conf. on
Computer Vision and Pattern Recognition

[7] Zanaga D et al 2021 ESA WorldCover 10 m 2020 v100
(version v100)[data set] (Zenodo)

[8] Potapov P, Turubanova S, Hansen M C, Tyukavina A,
Zalles V, Khan A, Song X-P, Pickens A, Shen Q and Cortez J
2022 Global maps of cropland extent and change show
accelerated cropland expansion in the twenty-first century
Nat. Food 3 19–28

[9] Leroux L, Jolivot A, Bégué A, Seen D L and Zoungrana B
2014 How reliable is the modis land cover product for crop
mapping sub-saharan agricultural landscapes? Remote Sens.
6 8541–64

[10] Van Klompenburg T, Kassahun A and Catal C 2020 Crop
yield prediction using machine learning: a systematic
literature review Comput. Electron. Agric. 177 105709

[11] Jin Z, Azzari G, You C, Di Tommaso S, Aston S, Burke M and
Lobell D B 2019 Smallholder maize area and yield mapping
at national scales with Google Earth Engine Remote Sens.
Environ. 228 115–28

[12] Masoud K M, Persello C and Tolpekin V A 2019 Delineation
of agricultural field boundaries from Sentinel-2 images using
a novel super-resolution contour detector based on fully
convolutional networks Remote Sens. 12 59

[13] Meyer L, Lemarchand F and Sidiropoulos P 2020 A deep
learning architecture for batch-mode fully automated field
boundary detection The Int. Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences
vol 43 pp 1009–16

[14] Wang S, Waldner F and Lobell D B 2022 Unlocking
large-scale crop field delineation in smallholder farming
systems with transfer learning and weak supervision Remote
Sens. 14 5738

[15] Estes L D et al 2022 High resolution, annual maps of field
boundaries for smallholder-dominated croplands at national
scales Front. Artif. Intell. 4 744863

[16] El-Ghany N M, Abd El-Aziz S E and Marei S S 2020 A
review: application of remote sensing as a promising strategy
for insect pests and diseases management Environ. Sci. Pollut.
Res. 27 33503–15

[17] Gold K M 2021 Plant disease sensing: studying plant-
pathogen interactions at scaleMsystems 6 e01228–21

[18] Mrisho L M, Mbilinyi N A, Ndalahwa M, Ramcharan A M,
Kehs A K, McCloskey P C, Murithi H, Hughes D P and
Legg J P 2020 Accuracy of a smartphone-based object
detection model, PlantVillage Nuru, in identifying the foliar
symptoms of the viral diseases of cassava-CMD and CBSD
Front. Plant Sci. 11 590889

[19] De-Arteaga M, Herlands W, Neill D B and Dubrawski A
2018 Machine learning for the developing world ACM Trans.
Manage. Inf. Syst. 9 1–14

[20] Roldan-Hernandez L, Boehm A B and Mihelcic J R 2020
Parachute environmental science and engineering Environ.
Sci. Technol. 54 14773–4

5

https://orcid.org/0000-0002-2213-593X
https://orcid.org/0000-0002-2213-593X
https://orcid.org/0000-0002-2213-593X
https://orcid.org/0000-0002-3259-7759
https://orcid.org/0000-0002-3259-7759
https://orcid.org/0000-0002-3259-7759
https://doi.org/10.1186/2048-7010-1-2
https://doi.org/10.1186/2048-7010-1-2
https://doi.org/10.1016/j.gfs.2021.100543
https://doi.org/10.1016/j.gfs.2021.100543
https://doi.org/10.1038/s43017-020-00122-y
https://doi.org/10.1038/s43017-020-00122-y
https://doi.org/10.1088/1748-9326/abc0bb
https://doi.org/10.1088/1748-9326/abc0bb
https://doi.org/10.1038/s43016-021-00429-z
https://doi.org/10.1038/s43016-021-00429-z
https://doi.org/10.3390/rs6098541
https://doi.org/10.3390/rs6098541
https://doi.org/10.1016/j.compag.2020.105709
https://doi.org/10.1016/j.compag.2020.105709
https://doi.org/10.1016/j.rse.2019.04.016
https://doi.org/10.1016/j.rse.2019.04.016
https://doi.org/10.3390/rs12010059
https://doi.org/10.3390/rs12010059
https://doi.org/10.3390/rs14225738
https://doi.org/10.3390/rs14225738
https://doi.org/10.3389/frai.2021.744863
https://doi.org/10.3389/frai.2021.744863
https://doi.org/10.1007/s11356-020-09517-2
https://doi.org/10.1007/s11356-020-09517-2
https://doi.org/10.1128/mSystems.01228-21
https://doi.org/10.1128/mSystems.01228-21
https://doi.org/10.3389/fpls.2020.590889
https://doi.org/10.3389/fpls.2020.590889
https://doi.org/10.1145/3210548
https://doi.org/10.1145/3210548
https://doi.org/10.1021/acs.est.0c07462
https://doi.org/10.1021/acs.est.0c07462

	Considerations for AI-EO for agriculture in Sub-Saharan Africa
	1. Introduction
	2. Key AI-EO applications
	2.1. Cropland and crop type mapping
	2.2. Yield estimation
	2.3. Field boundary delineation
	2.4. Pest, disease, and anomaly detection

	3. Considerations
	4. Opportunities for future work
	References


