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[1] Spaceborne instruments provide a unique view of global vegetation fire activity
many times a day. In this study, we assessed the fire characterization information
provided by two major products: the Terra and Aqua MODIS Thermal Anomalies
product (MOD14 and MYD14, respectively) and the Wildfire Automated Biomass
Burning Algorithm (WF_ABBA) product derived from GOES East Imager. Using higher
spatial resolution imagery data from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) and Landsat Enhanced Thematic Mapper Plus (ETM+)
instruments, we analyzed the characterization of subpixel fires detected by MOD14,
MYD14, and WF_ABBA over parts of Brazilian Amazonia. Our results suggest that
MODIS and GOES fire radiative power (FRP) estimates derived for individual fire‐pixel
clusters are subject to errors due to the effects of the point spread function of those
instruments (underestimation of up to 75%), improper fire background characterization
(overestimation of up to 80% assuming a 10 K cold bias in background temperature), and
omission of small fire lines. Detection limits were approximately 11 and 9 MW for
MOD14 and MYD14, respectively, and were equivalent to 27 and 19 MW for
WF_ABBA data acquired coincidently with MOD14 and MYD14, respectively. We
found a positive correlation between FRP and percentage tree cover indicating that FRP
is sensitive to biomass density. Fire area and temperature estimates derived from the
application of Dozier’s (1981) approach to GOES data did not agree with our reference
data (i.e., ASTER and ETM+ active fire masks and in situ fire temperature data),
suggesting that large and variable errors could affect the retrieval of those parameters.
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1. Introduction

[2] Quantification of vegetation fire activity and the asso-
ciated emissions from biomass burning has been approached
via remote sensing and modeling techniques [Andreae et al.,
2004; Freitas et al., 2005; Kaufman et al., 1990, 1992;
Reid et al., 2009; Setzer and Pereira, 1991]. In both cases,
satellite active‐fire detection data represent one of the most
important parameters for calculating source emissions. Fire
alert systems also depend heavily on satellite data to monitor
fire activity since in many cases this is the only form of

systematic observation available (e.g., Fire Information for
Resource Management System: http://maps.geog.umd.edu/
firms/, Advance Fire Information System: http://afis.meraka.
org.za/afis/, Sentinel: http://sentinel1.ga.gov.au/acres/sentinel/,
INPE (Brazilian Institute for Space Reaserch): http://sigma.cptec.
inpe.br/queimadas/index_in.php, among others).
[3] Biomass burning applications based on remote sen-

sing active fire data ideally require characterization of fire
properties (e.g., total radiative energy, area, temperature)
to calculate emissions [Boschetti and Roy, 2009; Ellicott
et al., 2009; Freitas et al., 2005; Ichoku et al., 2008; Jordan
et al., 2008; Palacios‐Orueta et al., 2005; Reid et al., 2009],
demanding quality pixel data that can only be achieved by
nonsaturating satellite sensors [Justice et al., 2002; Kaufman
et al., 1998]. Fire characterization using satellite data has
been attempted primarily via application of the bispectral
approach to estimate fire area and temperature [Dozier, 1981]
and via estimation of fire radiative power (FRP) using middle
infrared data [Kaufman et al., 1998; Wooster et al., 2003].
[4] The application of the bispectral method can be useful

to produce first guess estimates of fire area and temperature
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over actively burning areas occupying a subpixel sized (but
nevertheless large) fraction of the pixel footprint [Dozier,
1981]. However, previous theoretical assessments have
indicated that limitations with Dozier’s approach can lead to
large errors affecting a range of real fire conditions [Giglio
and Kendall, 2001]. Specifically, the Dozier method pro-
duces poor results when the target fire temperature falls
outside the 600 and −1200 K range. Meanwhile, the more
recent development of FRP derived from moderate and
coarse resolution instruments showed great potential for
emissions modeling applications since FRP was found to be
well correlated with biomass consumed in a fire [Kaufman
et al., 1996; Roberts et al., 2005; Pereira et al., 2009;
Wooster, 2002]. To date, validation of both approaches has
been extremely limited.
[5] In this study we assessed the quality of the fire char-

acterization data available in the 1 km spatial resolution
Thermal Anomalies product [Giglio et al., 2003] derived
from the Moderate Resolution Imaging Spectroradiometer
(MODIS) on board the Terra and Aqua satellites (MOD14
and MYD14, respectively) and the 4 km spatial resolution
Wild Fire Automated Biomass Burning Algorithm
(WF_ABBA) [Prins and Menzel, 1992] derived from the
Geostationary Operational Environmental Satellite (GOES)
East Imager. We based our analyses on subpixel fire infor-
mation derived from 30m imagery acquired by the Advanced
Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), which flies on board the Terra platform along
with MODIS, and Landsat Enhanced Thematic Mapper Plus
(ETM+) imagery. The ASTER and ETM+ instruments
provided the reference data to assess fire area estimates
produced by WF_ABBA and to substantiate FRP retrievals
from MODIS and GOES. Also, data from prescribed burns
conducted during three individual field campaigns were
used to support our assessment of fire temperature estimates
derived from the GOES data. We analyzed vegetation fires
across Brazilian Amazonia, a region characterized by large
biomass burning activity where satellite data represent the
primary source of information for emissions models and fire
managers.

2. Data and Methods

2.1. MODIS Data

[6] We used the FRP estimates available with every active
fire pixel reported in the MOD14 and MYD14 fire products
derived from the Terra and Aqua MODIS [Giglio et al.,
2003]. The MODIS FRP retrieval is based on the relation-
ship between the emitted fire energy and the middle infrared
brightness temperature and is expressed as [Kaufman et al.,
1998]:

FRP ¼ 4:34� 10�19 T 8
4 � T 8

4b

� �
Wm�2; ð1Þ

where T4 and T4b are the brightness temperature estimates
(K) in the 4 mm region (i.e., band 22, although band 21 is
used when band 22 becomes saturated) for the target and the
background pixels, respectively. The constant in equation
(1) is derived empirically for the spectral interval of
MODIS channel 21–22 [Kaufman et al., 1998]. The empir-

ical derivation of equation (1) is valid for FRP retrievals of
fires with flaming temperatures greater than 600 K, occu-
pying a pixel fraction less than 0.1 [Wooster et al., 2003].

2.2. GOES Data

[7] GOES WF_ABBA derivation of instantaneous fire
area and temperature is based on a modified version of the
Dozier bispectral method. Two simultaneous equations are
solved for fire area and temperature:

L4 ¼ pB �4; Ttð Þ þ 1� pð ÞB �4; Tbð Þ þ 1� "4ð Þ�4sL4Solar ð2Þ

L11 ¼ pB �11; Ttð Þ þ 1� pð ÞB �11; Tbð Þ ð3Þ

L4 and L11 are the 4 and 11 mm radiances, respectively;
B(l, T) is the Planck function; p is the fraction of the pixel
on fire; Tb is the estimated background/nonfire brightness
temperature; Tt is the average instantaneous fire tempera-
ture; L4Solar is the 4 mm reflected solar radiance; t4s is the
4 mm transmittance; and "4 is the 4 mm emissivity. Giglio
and Kendall [2001] showed that under ideal conditions, the
accuracy of Dozier’s fire size and temperature estimates is
best when the target fire temperature is 600–1200 K and the
fire occupies P > 0.0005 of a pixel. Fire conditions where
adjacent burned area is ∼50 times larger than the active fire
can warrant a threshold of p > 0.005. In this study we
assessed the WF_ABBA fire temperature and size estimates
derived from full native spatial resolution GOES East
imagery using the method above.
[8] Wooster et al. [2003] demonstrated that it is possible to

derive physically sound FRP values by approximating
Planck’s radiation law using a fourth‐order power law
applied to middle infrared remote sensing data over the range
of typical vegetation fire temperatures (i.e., 600–1500 K).
After relatively simple considerations are made following the
approximation above, FRP estimates can be calculated
through the application of the following equation [Wooster
et al., 2005]:

FRP ¼ �

a
L2;f � L2;b
� �

S; ð4Þ

where L2,f and L2,b are here represented by the GOES
Imager channel 2 radiances (W m−2 sr−1 mm−1) estimated for
the target pixel containing the fire and for the background
pixels, respectively; s is the Stefan‐Boltzmann constant
(5.67 × 10−8 Wm−2 K−4); a is a constant derived for the
particular spectral response function of channel 2 (value for
GOES−12 Imager: 3.08 × 10−9 Wm−2 sr−1 mm−1 K−4); and
S is the ground equivalent pixel area (m2).
[9] Derivation of GOES FRP must take into consideration

the significant along‐scan pixel overlap that occurs during
normal Imager operation [Menzel and Purdom, 1994]. Under
such conditions, every point on the surface is effectively
imaged by two adjacent pixels. Consequently, two adjacent
along‐scan WF_ABBA fire pixels may be produced re-
presenting one subpixel surface fire. This condition could
lead to an overestimation of GOES FRP for fires composed
of two or more pixels based on (4), as the term S would be
artificially increased. To deal with the uncertainties in
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subpixel fire location and the effects of along‐scan pixel
overlap, we calculated GOES FRP for fire‐pixel clusters
containing two or more adjacent pixels in the along‐scan
direction by assigning variable weights to those pixels. The
weighting criterion was based on the brightness tempera-
ture of each pixel; brighter pixels were assigned greater
relevance in the FRP calculations. For example, for a fire
composed of three adjacent pixels in the along‐scan
direction we calculated the GOES FRP using the following
two steps:
[10] 1. Rank pixels according to their brightness tem-

peratures (e.g., T2 > T1 > T3)
[11] 2. Assign greater weight to brighter pixels in the

calculations by adjusting the pixel area in (4) using

FRP1 ¼ �

a
L1;f � L1;b
� �� S1 � S2\1ð Þ

FRP2 ¼ �

a
L2;f � L2;b
� �� S2ð Þ

FRP3 ¼ �

a
L3;f � L3;b
� �� S3 � S2\3ð Þ

FRPcluster ¼ FRP1 þ FRP2 þ FRP3

; ð5Þ

where the symbols are similar to equation (4) except for Si\j,
which indicates the area of overlap between adjacent pixels i
and j (i.e., the intersection of the projected pixel area on the
surface calculated for adjacent pixels). Another way to deal
with the GOES Imager pixel overlap is to eliminate every
other adjacent fire pixel along the same scan line. We opted
to use the weighting method above to preserve and take
advantage of the fire signal coming from all fire pixels
detected by the WF_ABBA algorithm, in particular because
of the relatively high omission error rates found for that
product [Schroeder et al., 2008].

2.3. ASTER and ETM+ Data

[12] We used 285 ASTER and ETM+ scenes to estimate
active fire areas in the Brazilian Amazonia. The scenes were
distributed in the main areas of fire activity in the region and
were acquired during 2001–2005. Active fire masks at 30 m
spatial resolution were produced for ASTER and ETM+
data following the approach described in the studies by
Giglio et al. [2008] and Schroeder et al. [2008], respec-
tively. We did not derive fire temperature from ASTER and
ETM+ data primarily due to (1) frequent saturation of active
fire pixels mapped and (2) lack of a 4 mm fire sensitive band
that greatly limits the calculation of that parameter.
[13] Contiguous 30 m active fire pixels were clustered

together to produce individual fire area estimates. Fire‐pixel
cluster area estimates derived from ASTER and ETM+

assumed that the entire footprint of a 30 m fire pixel was
burning. This assumption likely result in overestimation of
the fire areas produced because most of the pixels may not
actually be completely on fire. Consequently, fire area
estimates derived in this study using ASTER and ETM+ data
should be interpreted as an upper limit for the individual fires
sampled. Nevertheless, the fire area estimates produced
represent the most reliable set of data currently available that
can cover large geographic areas providing valuable infor-
mation for numerous fire episodes.
[14] The data above were used to assess the fire area

estimates produced by WF_ABBA. We restricted the time
difference separating the GOES images and the ASTER and
ETM+ data used to a maximum of 15 min to reduce the
effects of short term variations in fire conditions [see Csiszar
and Schroeder, 2008].

2.4. Field Data

[15] Ground measurements of fire temperature were
obtained from prescribed burns implemented during three
field campaigns in Brazilian Amazonia. We used a thermo-
couple linked to a data logger (Campbell Scientific Inc.
CR21X) recording instantaneous temperatures at 0.2 Hz
beginning at the approach of the fire lines and their passage,
extending up to approximately 30 min to 1 h into the
smoldering phase. Table 1 shows the average conditions
describing four primary fires of interest that burned incre-
mentally larger amounts of biomass, ranging from low to
high percentage tree cover vegetation areas (see Hansen
et al. [2002, 2003] for more information about the per-
centage tree cover data used). Additional details including
the temporal progression of the different fires sampled are
given by Schroeder et al. [2008].

2.5. Simulation of Satellite Point Spread Function
(PSF) Effect on FRP Retrieval

[16] As described by the point spread function (PSF) for
an optical sensor, the radiance corresponding to each pixel
will be influenced by the spatial arrangement of the subpixel
fire features and also radiance emanating from surface ele-
ments located just outside the pixel’s nominal area [Cahoon
et al., 2000; Calle et al., 2009; Zhang et al., 2006; Zhukov
et al., 2006]. Previous studies provided little information on
the effects of PSF on calculation of fire characteristics, in
particular FRP, making this a priority area for investigation.
For its size and temperature estimates calculated using
Dozier’s bispectral method, the WF_ABBA product contains
a correction factor to address the loss of signal in the nominal
pixel footprint due to the PSF but that does not address the
issue of the relative position of the fire cluster for an indi-
vidual fire. The WF_ABBA correction factor comes from
analysis of the GOES PSF, which indicates that in the 4 mm
band 85% of the radiance comes from within the nominal
pixel footprint [Williams et al., 1996]. The radiance is cor-
rected by subtracting 15% of the estimated background
radiance from the pixel radiance to account for leakage in
from the surrounding background, and then divided by 0.85
to account for the assumed lost radiance. A similar calcula-
tion is made for the 11 mm band, wherein 70% of the radi-
ance is assumed to come from within the nominal pixel
footprint.

Table 1. Temperature and Duration of Flaming Stage Describing
Distinct Fire Conditions

Percentage Tree
Cover Temperature Duration

Fire 1 (grassland) Very low (<20%) 688 K 3 min
Fire 2 (secondary forest) Moderate‐low

(≥20%, <40%)
863 K 6 min

Fire 3 (forest conversion) Moderate‐high
(≥40%, <60%)

1133 K 15 min

Fire 4 (piled debris) High (≥60%) 1153 K >30 min
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[17] Using simulation data, we assessed how the relative
position of a fire contained in a moderate to coarse spatial
resolution pixel affects the FRP retrieved from MODIS and
GOES using equation (4). A simplified model was built
assuming target pixels of nominal spatial resolution (1 × 1 km
for MODIS and 4 × 4 km for GOES) containing a high tem-
perature source at 1000 K with a fixed area of approximately
0.1 ha (15 × 75 m). The FRP of the fire is 63.8 MW. A uni-
form temperature homogeneous background composed of
unburned vegetation was used in the calculations; we applied
a 300 K background temperature after inspection of several
different areas adjacent to active fire pixels found in the study
region. The location of the fire relative to the pixel center
varied in our simulations to cover half the distance separating
two adjacent pixels, i.e., 0.5 km along scan and 0.5 km along
track for MODIS and 1.25 km along scan and 2 km across
scan for GOES. The reduced along‐scan spatial tolerance in
GOES reproduces the oversampling characteristic of its
Imager. The shapes of the PSF used for MODIS and GOES
are shown in Figures 1a and 1b, respectively. The PSF data
used in this study was provided by the MODIS Character-
ization Support Team, whereas the GOES PSF data were
provided by the Lincoln Laboratory at the Massachusetts
Institute of Technology.

3. Results and Discussion

3.1. MODIS and GOES FRP

[18] FRP estimates were produced for 12 pairs of near‐
coincident MODIS Terra and GOES imagery and for
11 pairs of near‐coincident MODIS Aqua and GOES
imagery, each containing several fire‐pixel clusters. The
GOES images were registered to MODIS to minimize nav-
igation errors, and FRP values were derived for each fire‐
pixel cluster. Clusters with one or more saturated pixels in
the middle infrared channel (approximately 3.5% of the
GOES data) were not used. To ensure that individual pairs of
MODIS and GOES fire‐pixel clusters were representative of
the same surface fire, we discarded all cases having more

than one fire cluster from each instrument within a 10 km
radius.
[19] The spatially and temporally coincident FRP esti-

mates for MODIS Terra and GOES and MODIS Aqua and
GOES are shown in Figures 2a and 2b, respectively. The
correlation between MODIS and GOES remained low
despite all measures adopted to reduce artifact contamina-
tion of the pairs of FRP values produced; the majority of the
data points in Figures 2a and 2b (77% and 75%, respec-
tively) show a difference greater than 20% between MODIS
and GOES FRP retrievals. The FRP retrievals using GOES
Imager data were larger than those derived using MODIS/
Terra and MODIS/Aqua data for 69% and 66% of the data
points displayed in Figures 2a and 2b, respectively.
Inspection of a subset of 77 pairs of MODIS Terra and
GOES fire‐pixel clusters using coincident ASTER data
helped us identify the major factors influencing our results.
[20] First, differences in FRP were found to prevail over

areas of high landscape heterogeneity. Fire pixels located in
areas of marked variation in vegetation cover occurring at
the same spatial scale of the MODIS or GOES pixels (e.g.,
deforestation sites in high percentage tree cover regions)
showed systematically larger differences in FRP‐based fire
intensity compared to areas of homogeneous background
(e.g., grasslands in low percentage tree cover regions)
(Figure 3). Differences between the vegetation cover of the
target pixels and their surrounding areas are expected to
influence the background characterization affecting the
derivation of FRP through (1) and (4) [Wooster et al.,
2005]. Detection clusters covering areas of deforestation
where the surrounding pixels were partially or entirely cov-
ered by evergreen tropical forests were particularly prone to
produce large differences between MODIS and GOES FRP
values. In these cases, the brightness temperature of the
closed canopy forested pixels can be as much as 15 K cooler
than the true fire‐pixel background, resulting in potentially
large FRP overestimation especially when relatively small
fires are processed. It is plausible that the resolution differ-
ences between the two sensors enhance the effect of back-

Figure 1. Three‐dimensional representation of the point spread function of (a) MODIS and (b) GOES
4 mm channels.
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ground characterization in the calculation of FRP since each
sensor see the scene differently. Also, the search for valid
background values in GOES Imager data using ∼4 km
incremental radii from the target fire pixel, compared to
∼1 km from MODIS, does in many cases, particularly near
boundaries between distinct land cover types, more rapidly
result in pixels of significantly different characteristics being
selected to estimate the background, thereby introducing
potentially larger errors in the FRP estimates.
[21] Despite the differences found between GOES and

MODIS FRP estimates, results from both sensors show that
FRP is sensitive to variations in biomass density as revealed
by the increase in mean fire intensity with percentage tree
cover (Figure 3). Short duration and low temperature fires
associated with land maintenance tend to dominate in low

percentage tree cover, whereas longer duration high tem-
perature fires typical of land conversion prevail in high
percentage tree cover areas [Schroeder et al., 2008]. Con-
sequently, higher combustion rates should then be expected
in densely vegetated areas resulting in larger FRP values
compared to more sparsely vegetated areas. The trends in
MODIS and GOES FRP values seen in Figure 3 therefore
are consistent with typical vegetation fires that occur in the
region analyzed.
[22] Figure 4 shows an example of a conversion fire

composed of two adjacent 500 and 350 m long active lines
for which one WF_ABBA and two MOD14 fire pixels were
produced. The resulting FRP estimates derived using the
MODIS and GOES data showed good agreement and were
equivalent to 95 and 92 MW, respectively. To illustrate the
effect of background characterization in the calculation of
FRP, we replaced the GOES mid‐infrared pixels used to
estimate the background radiance (pixels marked “X” in
Figure 4; radiance values ranging from 0.71 to 0.97 Wm−2

sr−1 mm−1) with nearby closed canopy forest equivalent
radiance values (∼0.57 Wm−2 sr−1 mm−1; approximately
10 K cooler background) while preserving the target fire
pixel radiance (1.07 Wm−2sr−1mm−1) unchanged. In this
case, the MODIS pixels used for background characteriza-
tion were assumed invariant. The MODIS background pixels
were derived from a 5 × 5 window centered on the fire pixel;
the fire pixel itself and the two adjacent pixels along the same
scan line were not considered for background characteriza-
tion resulting in 22 valid background pixels in each case. The
MODIS channel 22 background radiance ranged from 0.68
to 1.28 Wm−2 sr−1 mm−1, where the channel 21 radiances for
the two fire pixels (channel 22 was saturated) were equal to
3.0 and 3.24 Wm−2 sr−1 mm−1. The modified GOES FRP
value calculated using equation (4) increased by 82%,
whereas the MODIS estimate remained constant, a signifi-

Figure 3. Fire intensity (Wm−2) estimates for four percent-
age tree cover intervals (VCF data [Hansen et al., 2002,
2003]) calculated as per pixel FRP estimates for GOES and
MODIS divided by the approximate active fire area deter-
mined using coincident 30 m resolution ASTER and ETM+
active fire masks (the total area of each 30 m active fire pixel
is assumed to be actively burning in this case). Values
plotted represent the median, the first and the third quartiles
of the fire intensity data available for each VCF interval
(data points are slightly offset in the x axis to avoid overlap).

Figure 2. Scatterplots of FRP estimates produced for spa-
tially and temporally coincident (a) MOD14‐WF_ABBA
(R2 = 0.43) and (b) MYD14‐WF_ABBA (R2 = 0.17) fire‐
pixel clusters. The symbols illustrate the mean percentage
tree cover (TC) based on vegetation continuous fields (VCF)
data [Hansen et al., 2002, 2003] for the area where the fire
was located.
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cant change that highlights the importance of landscape
characteristics in the calculation of MODIS and GOES FRP
through the methods described above.
[23] Differences between FRP estimates from MODIS

Terra and GOES were also associated with omission of
secondary fire lines contained in adjacent pixels. The
landscape heterogeneity was equally important in this case
as it influenced the propagation of fire lines, resulting in
fragmented fires composed of several small flaming areas.
Omission pixels constitute a relatively small percentage of
the total energy of a fire‐pixel cluster; however, their
occurrence can also influence the characterization of the
background pixels thereby amplifying their net effect on the
FRP calculation. From the data points in Figures 2a and 2b,
a detection limit of approximately 11 and 9 MW is found for
the fires detected by MOD14 and MYD14, respectively,
whereas WF_ABBA detection limit corresponds to fires of
approximately 27 and 19 MW for the morning (Figure 2a)
and afternoon (Figure 2b) data samples, respectively.
[24] Finally, large differences between MODIS and

GOES FRP values were introduced due to the effects of the
PSF of each instrument. The same fires occupying the center
of a pixel from one sensor and the edge of a pixel from the
other sensor resulted in significantly different FRP esti-
mates. Using the simulation data described in section 3.5,
we evaluated how FRP values vary as a function of the
distance of the subpixel active fire to the pixel center using
the PSF information for MODIS and GOES (Figures 5a
and 5b). The reduction in FRP observed when a fire is
located away from the more responsive area near the pixel’s

center represented the single most important factor contrib-
uting to the differences in FRP estimates produced by
MODIS and GOES. MODIS and GOES FRP estimates
produced when the fire was located along the area separating
two adjacent pixels represented on average 1/3 and 1/2 of
their maximum value near the pixel’s center, respectively.
The value used to describe the pixel area (S) in (4) can be
adjusted to best approximate the true FRP under ideal
imaging condition (i.e., when the surface fire is located near
the center of the pixel). In the simulations depicted in
Figures 5a and 5b, we used 1 and 0.9 km2 and 16 and
17.7 km2 to represent the nominal and best fit pixel area
values for MODIS and GOES, respectively.
[25] The predominance of relatively narrow fire lines in

most biomes and the ability of MODIS Thermal Anomalies
and WF_ABBA algorithms to detect those subpixel fires
can create major difficulties for the retrieval of accurate
instantaneous FRP values from moderate to coarse resolu-
tion instruments. An empirical example of the sensitivity of
the retrieved FRP value to the location of the fire within the
pixel footprint is illustrated below. In Figure 6a, contours of
four adjacent MODIS fire pixels are shown, in yellow and
blue for high and nominal detection confidence, respec-
tively, over an ASTER channels 8‐3‐1 (red‐green‐blue)
image and the corresponding ASTER fire mask. Retrieved
MODIS FRP values for the top two pixels are also shown.
Note that the pixels on the left do not include active fires
according to the ASTER fire mask. The fact that those
pixels are still flagged as fire is due to the 2 km effective
width of the MODIS pixel [Kaufman et al., 1998; Wolfe et
al., 2002]; the effective pixel boundaries are shown in
Figure 6b by dotted (fire pixels on the left) and dashed (fire
pixels in the right) lines. Note also that in this case the fires
are located in the overlap area between the two adjacent
pixels, and thus, the FRP values for the two pixels represent
independent retrievals for the same fires.
[26] The difference in the FRP values is caused by the

different weights by which the fires are sampled in the two
pixels, depending on their position within the MODIS pixel
and the value of the PSF corresponding to that position. The
higher FRP value corresponds to the pixel on the right
where the fires are closer to the center line of the pixel.
[27] Following the formulation by Wooster et al. [2003],

the FRP recorded by the MODIS sensor is a weighted sum
of the instantaneous radiant energy according to the con-
tribution by n thermal components within the pixel to the
total radiative signal:

FRP ¼ S"�
Xn

i¼1

fi ki T
4
i ; ð6Þ

where " is emissivity, fi is the fractional area of the ith
thermal component (here the ASTER pixel), and ki is a
coefficient dependent on the location of the ith thermal
component (here defined by the triangular MODIS PSF).
Assuming constant fi and uniformity of Ti, one can derive
normalized FRPa values corresponding to a hypothetical
rectangular‐shaped PSF by

FRPa ¼ FRP� n=
Xn

i¼1

ki ð7Þ

Figure 4. Grid depicting the pixel footprint of MODIS and
GOES (shown with 50% along‐scan overlap) overlaid on a
near coincident ASTER scene (RGB bands 8‐3‐1) acquired
on 27 June 2003 at 1402 UTC. Fire location: 12°16′02″S
55°42′30″W. Pixel outlines marked in red indicate MOD14
and WF_ABBA fire pixels whereas GOES pixels marked
“X” were used in the characterization of fire background.
Fire lines appear as bright red and forest areas appear as
vivid green; other areas are composed of deforestation and
agricultural plots.
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In our example the adjusted FRPa values for the two pixels
examined are in close agreement (69.81 and 63.03 MW for
the left and right pixels, respectively). The values are much
closer than the original FRP values, demonstrating the
impact of the uneven spatial sampling within the pixel,
described by the PSF. The differences between the two
FRPa values are primarily due to imperfect ASTER fire
masks and errors caused by the assumptions of constant
fractional areas and fire temperatures.

3.2. GOES Fire Area and Temperature Estimates

[28] Our ASTER and ETM+ reference data yielded N =
113 WF_ABBA fire pixels of nominal confidence re-
presenting an unsaturated, cloud free pixel, allowing the
application of the bispectral method to retrieve fire area and

temperature estimates from the GOES data. Figure 7 shows
the scatter plot depicting the pairs of fire area estimates
produced by WF_ABBA and the reference ASTER and
ETM+ data. When all matchups are used, the simple anal-
ysis of correlation using the data points in Figure 7 showed a
lack of correspondence between WF_ABBA and the refer-
ence fire area estimates (coefficient of correlation r =
−0.22). As the area estimates from ASTER and ETM+
represent an upper envelope of the true actively burning
areas, having data points only on and below the 1:1 line in
Figure 7 (i.e., GOES area retrievals smaller than or equal to
the ASTER and ETM+‐based estimates) would be accept-
able. However, there is a spread of the GOES fire area es-
timates on both sides of the 1:1 line. When the matchups are
limited to those with Dozier‐derived fire temperatures

Figure 5. Simulated FRP for (a) MODIS and (b) GOES as a function of distance to the pixel’s center.
FRP estimates were calculated for a high temperature source at 1000 K covering an area of approximately
0.1 ha (15 × 75 m2). Simulated FRP (1) and (2) were calculated using 1 and 0.9 km2 for the MODIS pixel
area and 16 and 17.7 km2 for the GOES pixel area. Dashed line represents the true FRP value (63.7 MW).
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greater than 500 K, the occurrence of data points above the
1:1 line is significantly reduced although the sample size
represented in this case is relatively small (N = 41).
[29] Fire area and temperature are known to be influenced

by the regional variations in vegetation conditions and land
use. Schroeder et al. [2008] showed that WF_ABBA fire
detection performance is sensitive to those variations
resulting in lower omission errors across higher percentage
tree cover areas where fires burn at higher temperatures
thereby requiring less active flaming area to trigger the
detection algorithm as compared to lower percentage tree
cover areas. Using 4 years (2002–2005) of WF_ABBA fire
detection data from Amazonia, we assessed the consistency
of the mean fire area and temperature estimates as a function
of percentage tree cover data using 10% stepwise increments
(Figure 8). For comparison purposes, Figure 8 also shows the
mean fire area estimates derived from ASTER and ETM+
data. Those estimates were produced for the projected area
coincident with approximately 460 WF_ABBA fire pixels of
various confidence levels occurring in the same period
indicated above.
[30] The data points in Figure 8 suggest that (1) with the

exception of those cases occurring in low percentage tree
cover areas (i.e., <10%), the potential overestimation of fire
areas derived from ASTER and ETM+ data showed no
apparent effect on the large differences separating those
estimates from the ones derived using the bispectral method
applied to GOES data; (2) the smaller WF_ABBA mean fire
area values derived for percentage tree cover <40% indicate
potential errors in those estimates as the lower probability of
detection of WF_ABBA associated with such vegetation
requires larger fire areas compared to higher percentage tree
cover pixels (where higher fire temperatures predominate
hence demanding less active fire area to trigger the detec-
tion) [Schroeder et al., 2008]; (3) higher temperature esti-
mates occurring under low percentage tree cover vegetation
conflicts with the fundamental assumption of higher tem-
perature values found in more densely vegetated areas
(Table 1); and (4) fire temperature estimates are predomi-

Figure 6. Contours of 1 km MODIS pixels over an ASTER
channels (left) 8‐3‐1 red‐green‐blue image and (right) a fire
mask (fires in white). The ASTER scene is from 19 August
2003 1419 UTC and is centered at 10°04′S 59°92′W. The
numbers on the top are retrieved MODIS FRP values
(MW). Yellow and blue MODIS contours indicate high and
nominal detection confidence, respectively. The dotted and
dashed lines are the true pixel boundaries.

Figure 7. Scatterplot of fire area estimates derived inde-
pendently by the WF_ABBA algorithm (vertical axis) and
from active fire masks using 30 m spatial resolution
ASTER and ETM+ imagery (horizontal axis). Dots repre-
sent WF_ABBA fire pixels with estimated fire temperature
(Dozier’s method) >500 K, whereas squares represent fire
pixels with estimated fire temperatures <500 K.

Figure 8. Fire area and temperature estimates derived from
the WF_ABBA product and depicted as a function of per-
centage tree cover. Fire area estimates derived from 30 m
spatial resolution data (ASTER and ETM+) for the projected
area of WF_ABBA fire pixels are also presented.
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nantly low and consequently are not representative of actual
flaming temperatures described in Table 1.

4. Conclusions

[31] In this study we assessed the characterization of
vegetation fire properties retrieved from moderate to coarse
spatial resolution MODIS and GOES active fire products.
Active fires of relatively small area predominated in the
ASTER and ETM+ data used in our analyses. The chal-
lenges for active fire detection products based on moderate
to coarse resolution data are many in this case, regardless of
the algorithm used. For instance, fire characterization via
FRP could show large errors depending in particular on the
spatial configuration of individual active fires contained
within the pixel footprint and on how the energy released by
the fire is represented by the instrument’s PSF. Additionally,
in areas where the landscape heterogeneity is high such as
some of the deforestation hot spots sampled in our study,
derivation of reliable FRP values can be made difficult as a
result of poor fire background characterization.
[32] In terms of fire area and temperature quantification,

our results suggest that the limitations in the application of
Dozier’s bispectral method to GOES data prevent the con-
sistent mapping of fire characteristics across a wide range of
fire conditions. This study corroborates the results of Giglio
and Kendall [2001] who also found large potential errors
affecting fire area and temperature estimates derived using
the bispectral method applied to moderate to coarse spatial
resolution pixels. Fire data users must understand these
limitations when applying those estimates to characterize
fire conditions.
[33] The results above summarize some of the major

limitations of current moderate to coarse spatial resolution
satellite active fire detection products. We also found good
agreement with those of Zhukov et al. [2006], who looked at
fire characterization data using higher spatial resolution (370
m) data from the Bispectral Infrared Detection experimental
satellite. Despite the limitations in fire characterization
described above, increased demand for fire information is
gradually leading to the sophistication of the available sat-
ellite fire detection products. Recent developments include a
version of the GOES WF_ABBA product that incorporates
additional data layers as well as per pixel FRP estimates to
complement the existing set of parameters describing fire
area and temperature. The higher temporal resolution of that
instrument provides greater capabilities for the integration of
FRP over the lifetime of detected fires compared to single
daytime observations typical of polar orbiting instruments.
Using Spinning Enhanced Visible and Infrared Imager data
over Africa, Roberts et al. [2005] successfully demonstrated
the potential of geostationary data for FRP‐based biomass
burning monitoring.
[34] This study serves to illustrate the difficulty of gen-

erating an integrated fire product based on physical quan-
tities derived from different moderate to coarse spatial
resolution sensors, as estimates of quantitative fire char-
acteristics such as FRP can be largely incompatible. The
next‐generation suite of sensors to become operational on
board the National Polar‐orbiting Operational Environ-
mental Satellite System and the GOES‐R will show im-
provements in spatial resolution (and temporal resolution in

the case of GOES‐R) that could result in greater fire
detection and characterization capabilities compared to
existing products. Likewise, the Hyperspectral Infrared
Imager (HyspIRI) mission that is planned to launch during
the second half of this decade will provide higher spatial
resolution (60 m) data including a 4 mm band to support fire
applications which, in combination with visible‐near‐infra-
red and thermal infrared bands should enable improved
estimation of active fire properties and foster related pre and
post fire analyses. The potential for future integration of
satellite fire products should be considered in light of those
new data sets. Improved data quality should create new
opportunities to develop better and more detailed informa-
tion about fire activity with important consequences for the
understanding of regional and global climate system pro-
cesses and their implications to society.
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