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Abstract—The Modified Adaptive Pappas Clustering (MPAC)
algorithm, recently published in the image processing literature,
is proposed as a valuable tool in the analysis of remotely sensed
images where texture information is negligible. Owing to its con-
textual, adaptive, and multiresolutional labeling approach, MPAC
preserves genuine but small regions, is easy to use (i.e., it requires
minor user interaction to run), and is robust to changes in input pa-
rameters. As an application example, an MPAC-based three-stage
classifier is applied to degraded forest detection in Landsat The-
matic Mapper (TM) scenes of the Brazilian Amazon, where inter-
mediate states of forest alterations caused by anthropogenic activ-
ities can be characterized by image structures 1–3 pixels wide. In
three TM images of the Pará test site, where classification results
are validated by means of qualitative and quantitative comparisons
with aerial photos, degraded forest areas cover 13% to 45% of the
image ground coverage. In the Mato Grosso test site, the degraded
forest class overlaps with 1) 10% of the closed-canopy forest de-
tected by the deforestation mapping program of the Food and Agri-
culture Organization (FAO, 1992), and 2) 19% of the closed-canopy
forest detected by the Tropical Rain Forest Information Center
(TRFIC, 1996). These figures are in line with the conclusions of
a recent study where present estimates of annual deforestation for
the Brazilian Amazon are speculated to capture less than half of
the forest area that is actually impoverished each year.

Index Terms—Contextual image clustering, degraded forest,
Markov random field, multiresolution, neural network, nonpara-
metric classifier, parametric classifier, segmentation.

I. INTRODUCTION

N THE IMAGE analysis and pattern recognition literature,
there has been a great development of new methods for image la-
beling in recent years (image segmentation, clustering, and clas-
sification methods are identified as image-labeling algorithms).
Unfortunately, owing to their functional, operational, and com-
putational limitations, many labeling techniques, both super-
vised and unsupervised, have had a minor impact on their poten-
tial field of application [1]–[3]. For example, in remote sensing
(RS) applications, we note the following.
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• Preserving fine structures, especially man-made objects,
would increase the impact of labeling methods in cartog-
raphy, urban planning, and analysis of agricultural sites
[4].

• Improved adaptability and data-driven learning capabili-
ties would make image-labeling algorithms easier to use
and more effective when little prior ground truth knowl-
edge is available [5]–[7].

• Computationally efficient algorithms and architectures
(e.g., noniterative multiresolutional image analysis tech-
niques) should be made available when training and
processing time may still be considered a burden [8], e.g.,
in classification tasks at continental or global scale [9].

The aim in this paper is to assess the potential usefulness
in RS applications of a contextual clustering algorithm, called
Modified Pappas Adaptive Clustering (MPAC), recently pub-
lished in the image analysis literature [10], [11]. Owing to its
contextual, adaptive, and multiresolution labeling approach,
MPAC seems suitable for a wide range of RS applications such
as (unsupervised) clustering, (supervised) classification, seg-
mentation, and quantization of remotely sensed images where
texture information is negligible (in the case of RS optical
images, this hypothesis becomes increasingly acceptable as the
data dimensionality increases [12], [13]).

In this paper, MPAC and other image-labeling techniques
capable of exploiting spatial (contextual) information are sur-
veyed in Section II. In Section III, MPAC is discussed in detail.
In Section IV, as an RS application example, an MPAC-based
three-stage classifier is applied to degraded forest detection
in Landsat Thematic Mapper (TM) scenes of the Brazilian
Amazon, where intermediate states of forest alterations caused
by anthropic activities can be characterized by image structures
1–3 pixels wide. In Section V, TM data thematic maps are a)
validated by means of qualitative and quantitative comparisons
with aerial photos and b) compared with maps delivered by the
Tropical Rain Forest Information Center (TRFIC) and the Food
and Agriculture Organization (FAO). Conclusions are reported
in Section VI.

The degree of novelty of the proposed semiautomatic MPAC-
based classification method becomes relevant if we consider
that, up to now, detection of deforestation phenomena at re-
gional scales and high spatial resolutions 1) still depends to a
large extent on human photointerpretation [14] and 2) tends to
underestimate the forest that is actually impoverished (i.e., de-
graded) each year, as recently speculated in [15].
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II. PREVIOUS WORKS

Many image-labeling techniques capable of exploiting spa-
tial (contextual) information belong to one of several categories
discussed next.

A. Per-Pixel Parametric and Nonparametric

First are the per-pixel (noncontextual) parametric (e.g.,
Gaussian maximum likelihood) or nonparametric classifiers
(e.g., the -nearest neighbor classification rule [5]–[7]), fol-
lowed by a postprocessing low-pass filtering stage, capable
of regularizing the classification solution (i.e., capable of
reducing salt-and-pepper classification noise effects), based
on some heuristics or empirical criteria [16], [17]. Although
inadequate to detect fine image details when spectral classes
overlap in feature space, this approach is widely adopted by
the RS community (e.g., in commercial image processing
software toolboxes) owing to its conceptual and computational
simplicity.

B. Neural Networks

A second is neural networks that employ, in the image
domain, sliding windows or banks of filters (e.g., refer to
[18]–[22]). On the one hand, neural networks are nonpara-
metric classifiers featuring important functional properties.
They are 1) distribution-free (i.e., they do not require the data
to conform to a statistical distribution knowna priori) and
2) importance-free (i.e., they do not need information on the
confidence level of each data source, which is reflected in
the weights of the network after training [23]). On the other
hand, the dependence of results on the shape and size of the
processing window (which are usually fixed by the user on an
a priori basis, i.e., these parameters are neither data-driven nor
adaptive) is a well-known problem [19]. To avoid this depen-
dence, a multichannel filtering approach, which is inherently
multiresolution, is adopted before classification to provide a
(nearly) orthogonal decomposition/reconstruction of the raw
image [20]–[22]. In the case of multichannel filtering, uncon-
ventional ground truth training area selection criteria should
be adopted. For example, during training, receptive fields of
filters centered on “pure” pixels belonging to the cover type
of interest, e.g., theroad class, may overlap with neighboring
pixels belonging to other classes, at different scales. Further
investigation is needed in this context [24].

C. Bayesian Contextual Image-Labeling Systems

Finally, there are Bayesian contextual image-labeling sys-
tems where maximuma posteriori(MAP) global optimization
is pursued by means of local computations [12]. Because of
the local statistical dependence (autocorrelation) of images,
there has been an increasing emphasis on using statistical
techniques based on Markov random fields (MRFs) to model
image features such as textures, edges, and region labels [4],
[8], [10]–[12], [25]–[31]. In MRFs, each point is statistically
dependent only on its neighbors. Thus, an MRF model is
often imposed on the prior probability term to enforce spatial
continuity in label assignment (interpixel class dependency). In
other words, an MRF model can be adopted as a “stabilizer” in

the sense of the regularization theory [32]. To avoid the com-
putational cost of a simulated annealing technique capable of
providing optimal minimization [25], multiresolution contex-
tual labeling approaches are often combined with the tterative
conditional mode (ICM) suboptimal minimization at all resolu-
tion levels [8], [10], [11], [26]. In [8], different texture regions
are modeled by Gauss–MRFs (GMRFs) whose parameters
are approximated at various resolutions, although the Markov
property is lost under such resolution transformation. Smits
and Dellepiane [2] enhance the fine-detail detection capability
of the labeling approach proposed in [27] by adapting the MRF
neighborhood system, based on evidence provided by other
sources of knowledge, such as a digitized road map. In [12], the
class-conditional model employs robust estimates of the mean
vector and covariance matrix to reduce sensitivity to outliers.
In [28], starting from some initial points placed on or near a
road, a geometric model for interactive road tracking is applied
to SPOT images. In [29], [30], soft estimates of distribution
parameters are computed via the Expectation-Maximization
(EM) algorithm [5]. In [31], a causal Gaussian autoregres-
sive model is employed to describe the mean, variance, and
spatial correlation of class-conditional image textures, while
a coarse-to-fine multiresolution segmentation approach is
proposed such that no neighborhood adaptivity is pursued,
except that clique potentials are determined as a function of
scale. In [10], after speculating that an MRF model of the
labeling process is not very useful unless it is combined with
a good model for class-conditional densities, Pappas presents
a contextual clustering technique, hereafter referred to as
the Pappas Adaptive Clustering (PAC) algorithm, where a
novel context-sensitive (i.e., locally adaptive) spectral model
for class-conditional densities is proposed. Starting from the
PAC architecture, the Modified Pappas Adaptive Clustering
(MPAC) algorithm employs both local and global (image-wide)
spectral statistics in the class-conditional model plus contextual
information in the MRF-based regularization term to smooth
the solution while preserving genuine but small regions [11].

III. MPAC A LGORITHM

Let us focus our attention on the Bayesian, MAP, ICM-based,
hierarchical, contextual, spectral, Modified Pappas Adaptive
Clustering (MPAC) algorithm [10], [11]. At each resolution
level of a Laplacian Pyramid (LP) image decomposition
[33], MPAC attempts to maximize posterior probability

, where
is an arbitrary labeling (partition) of multispectral image

, where feature vector belongs to a -di-
mensional data space and per-pixel label (status)
for pixel , where is the total number of pixel
types (i.e., states, categories, classes, or labels) andis the
total number of pixels at scale , with , where

is the number of Laplacian layers. The result of optimization
at each scale is used to initialize, at the subsequent finer scale

, prior probability term plus the free parameters
involved with class-conditional probability . To
maximize at every scale (such that
index is omitted hereafter), MPAC assumes that observed
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pixel gray values are conditionally independent and identically
distributed given their (unknown) class labels, i.e.,

(1)

Equation (1) says that no spatial texture (correlation), but only
multispectral characteristics of classes, are to be employed as
discriminating features in the MPAC labeling process. A tradi-
tional class-conditional spectral model is based on a
multivariate normal assumption, under the hypothesis that each
class has uniform intensity and such that the image is corrupted
by a white Gaussian noise field independent of the scene, such
that

(2)

where is the white noise standard deviation expressed in gray
level units and is the uniform intensity of class

. Equation (2) says that MPAC should be exclusively ap-
plied to piecewise constant or slowly varying intensity images
that may be affected by an additive white Gaussian noise field
independent of the scene.

Let us identify with the label estimate at pixeland with
the status of pixel at the current MPAC iteration;

is the global estimate of the average gray value of pixels that,
at the current MPAC iteration, belong to region typeand
fall inside a nonadaptive (e.g., image-wide) window (i.e.,
window may overlap with the entire image); is
the slowly varying intensity function estimated as the average
of the gray levels of pixels that, at the current MPAC iteration,
belong to region type and fall inside an adaptive window

, centered on pixel, whose width is ; is the
“cross-aura measure” [34], equivalent to the number of eight-ad-
jacency (second-order MRF) neighbors of pixelwhose label
is different from pixel status ; is a user-defined (free) pa-
rameter enforcing spatial continuity in pixel labeling, such that

[10], [11]. The MPAC cost function to be minimized is

(3)

where (4) and (5), shown at the bottom of the page, give the
necessary conditions. Equations (3)–(5) indicate the following.

• MPAC alternates between pixel labeling and global
(image-wide) and local intensity parameter estimation as
shown in Fig. 1.

• According to (5), when a local intensity average ,
estimated in neighborhood centered on pixel
, does not exist or is considered unreliable, then the esti-

mate of the global intensity average is employed,
instead, for comparison with the pixel data as shown in

Fig. 1. MPAC algorithm for contextual image labeling. At each hierarchical
level of a Laplacian Pyramid (LP) decomposition, MPAC alternates between
image labeling, global, and local statistics estimation.

Fig. 2. Local estimate is not considered reliable
by (3) when the number of pixels of typewithin window

is less than the adaptive window width . Exploita-
tion of (5) is (often) sufficient to prevent MPAC from re-
moving isolated but genuine regions whose area is smaller
than .

• When local intensity exists and is considered
reliable by (3), both local and global intensity estimates
( and , respectively) are employed for
comparison with the pixel data according to (4). It is
worth mentioning, that while testing MPAC, we found
images to which the proposed version of (4) applies

if exists and is considered reliable (4)
if does not exist or is considered unreliable (5)
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Fig. 2. The PAC and MPAC intensity average adaptive learning mechanism.

successfully, while a simpler version of (4) exploiting
local estimates , exclusively, does not.

Simultaneous exploitation of local and global class-condi-
tional spectral statistics in (4) and (5) indicates that MPAC
employs, at each resolution level of the LP decomposition, a
multiresolution and adaptive criterion for spectral parameter
estimation.

To point out the difference between MPAC and PAC, con-
sider that the original PAC algorithm replaces (4) and (5) with

, if local average exists and is
considered reliable; otherwise, labelcannot be considered el-
igible for the th pixel labeling. This implies that PAC removes
every genuine but small (isolated) region whose size is below
window width .

According to [11], advantages of MPAC with respect to other
labeling algorithms found in the literature are as follows.

1) When compared with noncontextual clustering algo-
rithms like the well-known Hard -Means (HCM)
clustering technique [35] (which is a hard-competitive,
Bayesian, noncontextual, maximum likelihood labeling
procedure), MPAC is less sensitive to changes in the
user-defined number of input clusters, as it allows the
same region (label) type to feature different intensity
averages in different parts of the image, as long as they
are separated in space (in line with PAC [10]).

2) Although it employs no MRF model that supports spe-
cial image features (e.g., thin lines; see [28]), MPAC pre-
serves genuine but small regions significantly better than
HCM, stochastic expectation maximization (SEM, which
is a soft-competitive, Bayesian, contextual labeling pro-
cedure [30]), and PAC [10].

3) Owing to its spectral parameter adaptation strategy and
consequent robustness to changes in initial conditions,
MPAC is easy to use, i.e., it requires minor user supervi-
sion. For example, parameter(related to the additive
Gaussian noise standard deviation) may be estimated
from supervised training data. Moreover, to initialize
MPAC successfully, isolated ground truth pixels may be
sufficient (whereas traditional classifiers require ground

truth training areas to account for within-class intensity
variance).

According to [11], theoretical weaknesses and limitations of
the MPAC algorithm are as follows.

1) MPAC applies only to slowly varying or piecewise-con-
stant intensity images, i.e., to images with little useful tex-
ture information and additive Gaussian noise independent
of the scene.

2) It is unable to detect outliers, which may affect the esti-
mate of spectral parameters.

3) Although it is less sensitive to changes in the user-defined
number of input clusters than traditional (noncontextual)
clustering algorithms, MPAC is still a suboptimal labeling
procedure that is sensitive to initial conditions. Therefore,
one main issue in the user interaction with MPAC remains
the choice of the number of clusters to be detected.

In [11], MPAC is applied to a variety of test images, including
a multispectral SPOT satellite image. Based on the analysis of
(1) and (2), the RS field of application of MPAC can be reason-
ably assessed as follows.

• Due to (1), MPAC applies exclusively to images featuring
little useful texture information. Since within-class spa-
tial correlation (interpixel feature correlation, texture [4])
has been found to decrease exponentially with the dimen-
sionality of optical images [12], [13], (1) becomes increas-
ingly acceptable as the data dimensionality increases in re-
motely sensed optical imagery applications.

• Due to (2), MPAC applies to piecewise-constant or slowly
varying intensity images affected by a white Gaussian
noise field independent of the scene. As a consequence,
MPAC is not suitable for dealing with synthetic aperture
radar (SAR) images affected by multiplicative speckle
noise.

In synthesis, based on (1) and (2), MPAC seems applicable to
(unsupervised) clustering, (supervised) classification, segmen-
tation, and quantization of remotely sensed optical images fea-
turing little useful texture information. This potential range of
RS applications is the same as that of the well-known HCM
clustering algorithm, which justifies the dissemination of MPAC
among the RS readership.

To further investigate the trade-off between labeling perfor-
mance and ease of use of MPAC against common classifiers
such as the minimum-distance-to-means and the Gaussian
maximum likelihood, a real and standard RS image is selected
for comparison [36]. For consistency with the satellite data
employed in the application example proposed further in this
paper, the Landsat TM image (1024750 pixels in size) in-
cluded in the grssdfc 002 data set provided by the Geoscience
and Remote Sensing Society (GRSS) Data Fusion Committee
(http://www.dfc-grss.org) is chosen for classification compar-
ison. In this test image, eight thin, elongated, and spectrally
homogeneous regions of interest (ROIs) are selected by a
photointerpreter. Next, an HCM clustering algorithm is run on
the entire image, with an arbitrary number of clusters ,
which is considered sufficient to obtain a satisfactory image
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TABLE I
MPAC CLASSIFIER. CONFUSION MATRIX AND ENERGY VALUES IN THE LABELING TASK OF THE GRSSDFC 002 LANDSAT TM IMAGE.

THE SIZE of ROIS IS REPORTED, IN PIXEL UNITS, ON THE RIGHT COLUMN

TABLE II
MINIMUM -DISTANCE-TO-MEANS CLASSIFIER. CONFUSION MATRIX AND ENERGY VALUES IN THE LABELING TASK OF THE GRSSDFC 002

LANDSAT TM IMAGE. THE SIZE OF ROIS IS REPORTED, IN PIXEL UNITS, ON THE RIGHT COLUMN

TABLE III
GAUSSIAN MAXIMUM LIKELIHOOD CLASSIFIER. CONFUSION MATRIX AND ENERGY VALUES IN THE LABELING TASK OF THE GRSSDFC 002

LANDSAT TM IMAGE. THE SIZE OF ROIS IS REPORTED, IN PIXEL UNITS, ON THE RIGHT COLUMN

partition. These data clusters are employed to initialize the
free parameters of a minimum-distance-to-means, a Gaussian
maximum likelihood, and an MPAC classifier. Classification
accuracies are presented in (unconventional) nonsquare confu-
sion matrices in Tables I–III. To assess accuracy in nonsquare
confusion matrices, parameter Energy (Ene) is computed as

, where is the
probability of a pixel belonging to theth class andth ROI,
such thatEne increases when a ROI belongs to just one class.
Among the three classifiers considered, MPAC features the
largest value ofEne. In line with [11], this experiment points
out that, when compared to two well-known noncontextual
classifiers, MPAC

1) reduces salt-and-pepper classification noise;
2) recovers fine image details;
3) requires a degree of user supervision equivalent to that

of HCM.

IV. REMOTE SENSING APPLICATION PROJECT: DEGRADED

FORESTASSESSMENT INBRAZILIAN AMAZON

A. Problem Description and Objectives

The estimation of sources and sinks of greenhouse gasses
resulting “from direct human-induced land use change and
forestry activities, limited to afforestation, reforestation, and
deforestation since 1990” is an information requirement of the
Kyoto protocol compiled during the Third Conference of the
Parties in the framework of the United Nations Convention
on Climate Change [37]. In this scenario, which has relevant
political, economic, and scientific implications, earth observa-
tions from satellites provide a valuable source of qualitative
and quantitative information to investigate changes in tropical
forest ecosystems caused by anthropic activities. In monitoring
forestry activities from space, the Landsat Thematic Mapper
(TM) is one of the most widely employed sources of remotely
sensed data [38]–[42].
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In terms of information representation, a crisp and binary
(vegetation/bare soil) classification approach is widely adopted
to investigate deforestation phenomena. For example, several re-
cent studies focused on areas where forest is converted into agri-
cultural fields (clear-cutareas) in the Amazon basin [39]–[41].
Such a crisp and binary information representation is unable to
describe a great variety of forest alterations that reduce the tree
cover but do not eliminate it, such as those due to surface fires
or selective logging in standing forest. In [14], forest areas af-
fected by selective logging are detected on TM images of the
Brazilian Amazon by means of human interpretation and digiti-
zation. Partially regrowth deforested areas are detected on TM
images using a shade fraction image segmentation system in
[41]. Nepstadet al.speculate that intermediate forest alterations
are actually ignored by official deforestation mapping programs
[15].

In this paper, the term “forest degradation” is based on a
functional definition. It identifies any intermediate forest alter-
ation that decreases the forest biomass or biodiversity. In land
cover terms, thedegraded forestclass identifies any forest con-
dition intermediate between those of classes forest and defor-
estation. This definition is in line with that adopted by the FAO
according to which “(forest) degradation is not reflected in the
estimates of deforestation” [43]. To summarize, although it is
ignored by the Kyoto Protocol and several deforestation map-
ping programs, thedegraded forestclass may have a significant
impact on the estimation of forest areas impoverished each year
by anthropogenic activities [15]. To assess whether deforesta-
tion mapping programs underestimate the forest that is actually
impoverished (i.e., degraded) each year, as recently speculated
in [15], our application project aims at detecting forest degrada-
tion phenomena in the Brazilian Amazon from remotely sensed
data.

B. Study Areas

Two study areas are located, respectively, in the Brazilian
states of Pará and Mato Grosso, which belong to the belt of
major anthropogenic pressure within the Amazon basin. In
the Pará test site, the predominant vegetation is evergreen
terre firme forest with above-ground biomass of 250–300 t/ha
(tons/hectars). Timber extraction has become a major industry
over the last 15 years, centered on Paragominas, leading to
landscape of logged and “superlogged” forests, along with
pasture [44]. The cycle of exploitation begins with selective
logging for the most valuable species. These regions are later
revisited for less lucrative timber and becomes a fragmented
open canopy (superlogged forest) increasingly prone to fire
[45]. In the final phase, the residual forest is cleared for pasture.

The Mato Grosso test site is characterized by the presence
of semi-evergreen forest and landscape transitions between cer-
rado and forest vegetation. Ranching and selective logging de-
termine the deforestation pattern [46].

C. Feasibility Study

To make a decision as to whether or not quantitative remote
sensing is a reasonable approach to use [47], two contiguous
Landsat TM scenes acquired in 1999 during the same satellite
pass (path-row 222-62 and 222-63, 77817243 pixels in size,
identified by code 2 and 3 in Fig. 3) on the Pará test site and two

Fig. 3. Three Landsat TM scenes cover the Pará and Mato Grosso test sites
in the Amazon basin. Three TM subimages (identified as test1, test2, and test3)
are extracted from the Pará test site along the flight path of the aerial photo
campaign depicted as a black line.

multitemporal but coincident Landsat TM scenes (path-row
226-69, 7639 7307 pixels in size, identified by code 1 in
Fig. 3) of the Mato Grosso test site, acquired in 1992 and 1996,
respectively, are selected. The same two TM scenes of Mato
Grosso were employed, respectively, by TRFIC and FAO, to
develop deforestation maps. With regard to the selected TM
scenes of the Pará test site, three TM subimages, 450450
pixels in size (identified as test1, test2, and test3 in Fig. 3), are
extracted to overlap with some aerial images acquired along the
depicted flight path by the Brazilian Space Research Agency
Instituto National de Pesquisas Espaciais(INPE) in 1999, as
shown in the upper right corner of Fig. 3.

In the selected four Landsat TM scenes of the Brazilian
Amazon (see Fig. 3), expert photointerpreters were asked to
distinguish the cover types of interest based on spectral and
spatial characteristics. As a result, two forest degradation cover
types are identified. The first distinguishable forest degradation
phenomenon, termed class Vegetation-Bare soil (VB), consists
of full-canopy forest with clearings due to selective logging. In
Landsat TM images, VB areas are visually perceived as small
(1–3 pixels wide), isolated, or regularly distributed bare-soil
regions surrounded by forest, as shown in Fig. 4.

The second type of distinguishable forest disturbance is 100%
vegetate cover of pioneer species with a canopy high from 2 to
10 m, known as “capoeira.” It is visually detected as clear-cut
regions, which are abandoned and/or partially regrown. These
are wide areas with a regular shape whose spectral behavior is
quite similar to the forest spectral signature (see Figs. 5 and 6).
This second type of forest degradation phenomena is identified
as class Vegetation-Forest (VF) to indicate its spectral similarity
to class Forest .

To provide a complete partition of the selected TM scenes,
the following land cover classes are considered:

1) Water (W);
2) closed-canopy Forest (F);
3) Bare soil Agricultural areas (BA);
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Fig. 4. White arrows indicate the first type of forest disturbance. Isolated
bare-soil targets surrounded by the forest area are visually distinguishable in
the Landsat TM 22669 92 image (R: band5,G: band4,B: band3). This forest
degradation phenomenon is identified as class Vegetation-Bare Soil.

4) Degraded Forest (DF) Vegetation-Bare soil (VB)
Vegetation-Forest (VF).

1) Reference Data for the Mato Grosso Test Site: The TRFIC
and FAO Maps: Two deforestation maps of the Mato Grosso
test site are available from TRFIC and FAO. TRFIC, which
is a project of NASA’s Earth Science Information Partnership
program, delivers a deforestation map, extracted from the 1992
Landsat TM scene (path-row 226-69), with a pixel size equal
to 30 m and a geographic localization error of 500 m [39]. The
classification method employed by TRFIC is based on image
thresholding and iterative self-organizing methods. Accuracy is
validated by means of field observations. Land cover types in
the TRFIC map are

1) forest;
2) deforested;
3) regrowing forest;
4) water;
5) cloud;
6) cloud shadow;
7) cerrado.
The FAO map, extracted from the 1996 Landsat TM scene

(path-row 226-69), consists of ten cover classes detected by vi-
sual interpretation conducted at a scale of 1:200 000 [39]. Next,
data were digitized and geometrically corrected using reference
topographic maps. The minimum mapping unit (spatial resolu-
tion) is 100 ha. FAO classes are

1) closed-canopy forest;
2) open-canopy forest;

Fig. 5. The second type of forest disturbance is visible in the Landsat TM
222 62 99 image (R: band5,G: band3,B: band3). White contours indicate
two large regions of forest degradation featuring a regular shape and a spectral
signature quite similar to that of the forest class. This second forest degradation
phenomenon is identified as class Vegetation-Forest.

Fig. 6. Spectral signatures of classes Forest(F ) and Vegetation Forest are
quite similar.

3) short/long fallow (forest affected by shifting cultivation);
4) mosaic forest shrubs;
5) shrubs;
6) other land cover;
7) water;
8) plantations (forest and agricultural).
2) Reference Data for the Pará Test Site: Aerial Photos:The

Parà area was one of the targets of an aerial photo campaign
conducted during 1999 by INPE. Images were collected using
digital video along a set of flight transects across the Brazilian
Amazon basin. The video data were geolocated using an
on-board global positioning system, but no geometric correc-
tion was provided to recover from systematic and accidental
distortions of the acquisition process. In other words, these
aerial images (480 630 pixels in size with a spatial resolution
of approximately 1.2 m) feature no photogrammetric quality,
i.e., although they can be geolocated, their coregistration with
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Fig. 7. Comparison of class distributions in scatterograms(R;G) and (R;B) with those in scatterograms(H; I) and (H;S) confirms that IHS color
transformation enhances spectral separability of classes VF and VB from class Forest(F ).

satellite data is extremely difficult (requiring many target
points). Small, cleared patches surrounded by forest, corre-
sponding to degraded forest type VB, are clearly visible in
aerial photos. The indicative aerial flight path over TM subim-
ages test1 to test3 is depicted in Fig. 3. Along this aerial flight
path, aerial images showing forest degradation phenomena
without being affected by cloud cover are selected. The number
of selected aerial images that overlap with TM subimages test1
to test3 is, respectively, 6, 4, and 6. This means that, in the
Pará test site, the ground (reference) data are rather limited.
As a consequence, the quantitative accuracy assessment of the
TM data classification map of Pará is rather weak (i.e., vague
and subjective). In this context, exploitation of the Parà test
site in combination with the Mato Grosso test site becomes
strategic in order to 1) collect a wide set of evidence that
provides, as a whole, a reasonable (although weak) assessment
of the proposed classification scheme with respect to changes
in raw data properties (nonoverlapping versus overlapping
and unitemporal versus multitemporal raw data) and prior
knowledge representations (aerial images versus classification
maps) and 2) maintain consistency with the work in [15].

D. Implementation of the Classification System

To detect classes VB and VF in Landsat TM images of
the Brazilian Amazon, a three-stage classification method is
adopted. The first stage is a preprocessing module consisting

of an intensity-hue-saturation (IHS) color transformation
capable of emphasizing quantitative (spectral) and qualitative
(visual) separability of the VB and VF forest degradation
phenomena. The second stage consists of the detail-preserving
contextual clustering MPAC algorithm. The third stage is the
output module providing a many-to-one relationship between
second-stage output categories (clusters) and desired output
classes (“multiple-prototype classifier” [23]).

1) Preprocessing Stage: RGB to IHS Color Transforma-
tion: While the use of all TM spectral bands may at first seem
to offer a higher potential of class discrimination, our test is
limited to TM bands 5 (1.55–1.75m), 4 (0.76–0.90 m), and
3 (0.63–0.69 m) selected as channels red-green-blue (RGB),
respectively. Bands 1 and 2 are frequently contaminated with
smoke and haze in Amazonia, while Band 6 is at a different
spatial resolution (120 m). The exclusion of Band 7 can be
argued for; however, much of its information content is found
in Band 5 when forest is depicted [38]. Furthermore, by using
these three bands, the information content is the same employed
by the major Amazon monitoring program [38], allowing for
comparison with operational technique.

The RGB-to-IHS color space transformation (e.g., refer to
[48]) is effective in enhancing the spectral separability of super-
vised data belonging to classes VF and VB from class. This
is shown in scatterograms and to be compared
with and (see Fig. 7). Pairwise spectral diver-
gence (Div) values, computed under the hypothesis of class-con-
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TABLE IV
PAIRWISE CLASS DIVERGENCERESULTSCONFIRM THAT THE RBG--TO-HIS

COLOR TRANSFORMATION ENHANCES THE SPECTRAL SEPARABILITY

OF CLASSESVF AND VB FROM CLASSF

TABLE V
FISHER’S SEPARABILITY VALUES OF CLASS PAIR (F;VF)

IN BANDS I , R, G, AND B

ditional normal distribution [49] and normalized with respect
to the maximum spectral divergence found between class pair

, are reported in Table IV. In line with the qualitative in-
terpretation of Fig. 7, these results confirm that the RGB-to-IHS
color transformation enhances the spectral separability of class
pair by a large degree, while class pair seems
to improve slightly. To further investigate effects of the IHS
color transform on spectral separability of class pair ,
this pairwise spectral separability is quantitatively assessed by
the Fisher linear discriminant

(6)

where index identifies the spectral band, while symbols
and identify sample mean and standard deviation of a class-
conditional distribution [5]. These separability values, shown
in Table V, confirm that the IHS color transformation is also
capable of enhancing the spectral separability between class pair

.
2) MPAC: Details on Input Parameters and Output Prod-

ucts: User interaction with the MPAC algorithm is restricted
to selecting smoothing parameterand initial template vectors.
Parameter , proportional to additive white Gaussian noise vari-
ance , is either user-defined (to be set with a trial-and-error
procedure) or estimated from supervised training data. When no
supervised ground truth data are available, initial template vec-
tors may be detected by an (unsupervised) clustering algorithm
(see Fig. 1). In this work, no clustering algorithm is used for
MPAC initialization. Rather, some supervised (labeled) pixels
are sequentially selected by an expert photointerpreter as ini-
tial template vectors (also called codewords). Of course, one
or more codewords may belong to the same output class. Note
that, in terms of ease of use, this type of user supervision is
more convenient than selecting ground truth areas, as required
by common classification approaches (both parametric and non-
parametric), i.e., prior knowledge required by this system to run
may be inferior to that required by traditional classifiers. Inter-
active training pixel selection is made easier by the IHS color
transformation, which increases the spectral difference between
classes , VB, and VF. To assist the user in selecting signifi-
cant initial templates, MPAC generates a normalized confidence

level output map where each pixel is replaced with its rela-
tive membership value, i.e., with a normalized degree of sim-
ilarity between the pixel data vector and its closest template
vector. Pixels featuring low membership values are outliers, i.e.,
they are not represented with high confidence by the current
codebook.

To check whether significant image details are maintained
through the MPAC processing, a piecewise-constant intensity
output image is generated by substituting all pixels belonging
to a segment (defined as a connected area featuring the same
class type in the labeled image) with their segment-based av-
erage spectral value. A contour image depicting segment bound-
aries is generated too.

For the Pará test site (see Fig. 3), 11 codewords (supervised
pixels), each one associated with one out of five labels (see
Section IV-C), are sequentially selected in the TM test1
subimage by a photointerpreter (see Fig. 3). After the MPAC
learning phase, final codewords are applied to TM subimages
test2 and test3 to verify the algorithm generalization capability.
Other 11 supervised pixels are considered sufficient to initiate
an MPAC detail-preserving clusterization of the TM scene
of Mato Grosso. In these two applications, MPAC is run for
15 iterations within a two-step hierarchical procedure: first,
parameter is set to 0 (i.e., MPAC follows the data); next,
is set to a value for pixels belonging to classes, VF,
and VB, to reduce salt-and-pepper classification noise (e.g.,
due to the presence of smoke and thin clouds during TM
data acquisition), while the remaining classes are masked out
from further refinements. For the Pará and Mato Grosso data
sets, a smoothing parameteris set equal to 0.01 and 0.04,
respectively, by a trial-and-error procedure.

3) Output Classification Stage:Output maps are obtained
as a supervised and crisp many-to-one combination of the
11 MPAC output categories with output classes, , BA,
VF, and VB. Let us show an example of the three-stage
classification process. Fig. 8(a)–(f) show, respectively:

a) test1 raw input data, 450450 pixels in size;
b) IHS color transformation (in false colors);
c) MPAC-labeled image with (in pseudocolors);
d) MPAC piecewise-constant intensity image with (in

false colors);
e) MPAC-labeled image with (in pseudocolors);
f) MPAC piecewise-constant intensity image when (in

false colors).

Fig. 8(c) and (e) are partitioned into 19 000 and 6700 segments,
respectively. Comparisons of Fig. 8(b), (d), and (f) allow a
visual and intuitive inspection of the classification quality. In
Fig. 9 two corresponding profiles (transects) extracted from
Fig. 8(b) and (d) are depicted. In line with theoretical expec-
tations, Fig. 9 shows that, in this application, MPAC provides
an information quantization (compression) equivalent to an
edge-preserving smoothing capable of preserving structures
1–3 pixels wide. Image-wide histograms of Fig. 8(b) and (d)
are shown in Fig. 10: whereas Fig. 8(d) looks as an accurate
edge-preserving smoothed version of Fig. 8(b), the histograms
of these two images look different indeed.
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Fig. 8. Three-stage classification. Input and output products on the Pará test site (subimage test1). (a) Input: Landsat TM subimage:R (Band 5),G (Band 4),
B (Band 3). (b) Output of the HIS color transformation (in false colors). (c) MPAC-labeled image with� = 0 (in pseudocolors). (d) MPAC piecewise-constant
intensity image with� = 0 (in false colors). (e) MPAC-labeled image with� > 0 (in pseudocolors). (f) MPAC piecewise-constant intensity image with� > 0

(in false colors).

Fig. 9. Profiles extracted from Fig. 8(b) (thin line) and (d) (thick line).

V. EXPERIMENTAL RESULTS

A. Pará Test Site: Qualitative and Quantitative Result
Assessment

The result validation procedure focused on the analysis of
those parts of the three TM submaps (corresponding to raw
subimages test1 to test3; see Fig. 3) that overlap with aerial
photos and are characterized by different distributions of the VB
forest degradation type as shown in Fig. 11(a)–(c). According
to an expert photointerpreter, the degree of match between vi-
sually detected VB phenomena in aerial photos and automati-
cally detected VB pixels in TM images is satisfactory [see Fig.
11(a)–(c)]. The same subjective conclusion is reached when VF
degradation phenomena are examined (see Fig. 12). Since the
training phase of the three-stage classifier has involved data se-
lected from one TM subimage exclusively, these qualitative re-

Fig. 10. Histograms of Fig. 8(b) (top) and (d) (bottom).

sults seem to indicate that the proposed classifier is also capable
of generalizing.

As to the quantitative assessment of classification, due to dif-
ficulties in coregistration of aerial photos with TM images, we
are unable to generate a confusion matrix (see Section IV-C). As
an alternative, a degraded forest fragmentation measure, such as
the Perimeter-over-Area ratio (PA) [50], is adopted. In a labeled
image, segments (or patches) are defined as connected image
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(a) (b)

(c)

Fig. 11. (a) Comparison between aerial photos and a TM thematic submap (see the white outline at the bottom right) in which the density of the VB degradation
class is considered “high.” (b) Comparison between aerial photos and a TM thematic submap (see the white outline at the bottom right) in which the density of the
VB degradation class is considered “medium.” N.B.: To make visual interpretation easier, these pictures are rotated 180with respect to those depicted in Fig. 11(a)
and (c). (c) Comparison between aerial photos and a TM thematic submap (see the white outline at the bottom right) where the density of the VB degradation class
is considered “low.”

areas featuring the same label type. Intuitively, a labeled type
(e.g., class forest) in a labeled image is 1) compact where it
features low PA values and 2) fragmented (“patchier”) where
PA values tend to increase (see Fig. 13). It is easy to prove that

PA is sensitive to the shape and size of segments (for the anal-
ysis of the distribution of patches by size, shape, or distance be-
tween patches refer to [51]). To provide (vegetation/bare soil)
binary maps of aerial images, a histogram thresholding tech-
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Fig. 12. Comparison between aerial photos and a TM thematic submap where
Vegetation-Forest degradation phenomena are detected.

Fig. 13. Examples of PA value extraction.

nique is adopted. Next, PAs are computed for 1) the (vegeta-
tion/bare soil) binary aerial maps, where PA equals 3.7, 2.8, and
2.0, respectively, and 2) the VB class detected in the three TM
submaps, where PA equals 0.7, 0.4, and 0.2, respectively (class
VF, characterized by large homogeneous areas with a regular
shape, has no significant fragmentation). The correlation coeffi-
cient between the two PA sequences is 0.99. Unfortunately, this
evidence is weak because only three data points per sequence are
used, due to the limited availability of meaningful aerial photos.

Thus, to further assess the consistency of the degraded forest
information provided by the three TM submaps of the Parà test
site, the spatial distribution of classes VB and VF is examined.
This distribution is relevant because the homogeneity in distri-
bution of VB patches within forest areas is expected to increase
with the anthropogenic pressure on forest ecosystems. To esti-
mate the spatial distribution of classes, a spatial entropy measure
(Ent) is adopted as follows. First, each TM thematic submap
(450 450 pixels in size) is partitioned into 30 nonoverlapping
windows , 15 15 pixels in size. Second,
probability is computed for class
(corresponding to classes, VF, VB, and BA, respectively;

note that class is not considered in this analysis), in window
. Probability is defined as the number

of pixels belonging to classdetected in window divided
by the total (image-wide) number of pixels belonging to class
. Probability values , are

used to generate theth class-conditional histogram
, where the bin size of the probability-axis is set to

0.001. Entropy of classis computed as

(7)

where (since is maximum when all
histogram values are equal, i.e., in case of uniform distribution,
then ). Table VI reports
entropy values for classes, VF, VB, and BA in each of the
three TM submaps of the Pará test site. In line with theoretical
expectations, classes VB and VF feature higher entropy values
when compared with classesand .

A third piece of evidence for the consistency of detected de-
graded forest type VB expected to be involved with high-change
forest dynamics is shown in Fig. 14, where TM image areas with
label VB (likely to be related to selective logging) become new
clear cuts in aerial photos acquired about two months later.

In terms of overall statistics, the three TM thematic submaps,
450 450 pixels in size, cover a surface area of approximately
18 225 ha each. In these submaps, class VF varies from a min-
imum of approximately 1224 ha (6.8% of the ground coverage)
to a maximum of 4730 ha (25.9%), and class VB ranges from ap-
proximately 1297 ha (7.0%) to a maximum of 5143 ha (28.0%).
In the three TM thematic submaps, class DF covers a minimum
of 13% up to a maximum of 45% of the image ground coverage.
This result is in line with the work in [14], which estimated a
forest alteration of 12% due to selective logging (related to class
VB) in the Brazilian State of Pará from the years 1988–1991.

B. Mato Grosso Test Site: Result Assessment

In the Mato Grosso test site, the two selected multitemporal
TM scenes, 1245 1245 pixels in size, cover an area of approx-
imately 139 502 ha (for geographical location see Fig. 3). In
the two TM data maps, the VF class extension is approximately
9141 ha (6.5%) in 1992 and 13 175 ha (9.4%) in 1996. Exten-
sion of class VB is approximately 17 612 ha (12.6%) in 1992
and 8922 ha (6.4%) in 1996.

To compare the 1992 TM data map with the TRFIC de-
forestation map, first, the TRFIC classes are reduced to label
types water, forest, and nonforest, where metaclass nonforest
is the combination of TRFICs classes deforested, regrowing
forest, and cerrado (the TRFIC classes cloud and cloud shadow
are absent from the area of interest). Second, cover types of
the TM classification map are reduced to classes water, forest,
and nonforest, by aggregating classes VF, VB, and BA into
the nonforest metaclass. Finally, from these two reaggregated
maps, classification statistics of classes water, forest, and
nonforest are computed as shown in Table VII. This table
points out that, overall, the three-stage classifier assigns to
the forest class 13.0% fewer pixels than the TRFIC map.
Conversely, the three-stage classification system assigns to the
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TABLE VI
ENTROPY VALUES FOR THE SPATIAL DISTRIBUTION OF CLASSESF , VF, VB, AND BA (CLASS W IS NOT CONSIDERED)

IN EACH OF THE THREE TM THEMATIC SUBMAPS OF THEPARÀ TEST SITE

Fig. 14. High-change dynamics of areas affected by forest degradation
phenomena. Class Vegetation-Bare soil (VB) detected in the Landsat TM
image becomes new clear cuts in aerial photos taken about two months later,
where recently cut trunks are still on the ground (localize the river to link the
aerial photo sequence with the TM image and corresponding thematic map).

TABLE VII
COMPARISONBETWEEN THETRFIC CLASSIFICATION AND THE MPAC-BASED

THREE-STAGE CLASSIFIER. CLASSESWATER, FOREST, AND NONFOREST

ARE CONSIDERED FORCOMPARISON

nonforest metaclass 12.8% more pixels than the TRFIC map.
To understand the cause of such discrepancies, a confusion
matrix is reported in Table VIII, where the percentage of non-
forest pixels detected by the three-stage classifier is presented
according to its class components BA, VB, and VF. This table
shows that, respectively, 18.2% % % of the
TRFIC forest metaclass and 21.6% % % of the
TRFIC nonforest metaclass overlap with TM forest degradation
areas. These percentages are equivalent to a ground coverage
of 26 723 ha ( ha ha), corresponding to 19.1%
( ha ha) of the total surface coverage.
Note that 55% of the TRFIC water class (equivalent to 30 ha)
overlaps with forest degradation types VB and VF.

With regard to the 1996 FAO classifications map of the Mato
Grosso test site, a direct comparison with the 1996 TM data map
is difficult because 1) the FAO land-use/land-cover legend is
quite different from land cover classes detected by the three-
stage classifier and 2) the two output maps employ different
minimum mapping units, equal to 100 ha (resampled to a pixel
size equal to 100 m) for the FAO map and one pixel size equal to
30 m for the TM thematic map, respectively. To provide a com-
parison, the following strategy is adopted. First, the TM clas-
sification map is subsampled at pixel size of 100 m. Next, the
subsampled TM data map, the FAO map, and the corresponding
Landsat TM 226-69 (1996) image are visually compared by an
expert photointerpreter, as shown in Fig. 15. This qualitative in-
spection confirms that the FAO closed-canopy forest class over-
laps with forest degradation phenomena detected in TM data
(no FAO open-canopy forest is present in this area of interest).
Quantitatively, the FAO closed-canopy forest class exceeds by
approximately 10% the class forest detected by the three-stage
classifier. In particular, class VF appears to be the first cause of
discrepancies between the two maps. Sometimes, the VF class
overlaps with the FAO mosaic forest shrubs class, although it is
generally included in the FAO closed-canopy forest class. With
regard to the VB forest degradation class, it overlaps with the
FAO classes short/long fallow, closed-canopy forest, other land
covers, and shrubs in decreasing order.

VI. SUMMARY AND CONCLUSIONS

The MPAC algorithm, recently published in the image pro-
cessing literature, is proposed as a valuable tool in clustering,
classification, segmentation, and quantization of remotely
sensed images where texture information is negligible. Owing
to its contextual, adaptive, and multiresolution labeling ap-
proach, MPAC is capable of preserving genuine but small
regions, is easy to use (e.g., supervised selection of one pixel
per spectral category suffices to obtain image partitions where
image details are likely to be preserved), and is robust to
changes in input parameters. By requiring minor supervision,
MPAC seems particularly useful for monitoring areas where
ground truth data are difficult to collect. Proper selection of
a smoothing parameter may help reducing salt-and-pepper
classification effects.

As a remote sensing application example, an MPAC-based
three-stage classifier is applied to degraded forest detection in
Landsat TM scenes of the Brazilian Amazon, where interme-
diate states of forest alterations caused by anthropogenic ac-
tivities can be characterized by image structures one to three
pixels wide. Two tropical forest degradation phenomena (VF
and VB) and five classes of interest (, VF, VB, BA, and
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TABLE VIII
CONFUSION MATRIX BETWEEN THE TRFIC CLASSIFICATION AND THE MPAC-BASED THREE-STAGE CLASSIFIER. PIXELS BELONGING

TO THE NONFORESTMETACLASSDETECTED BY THEMPAC-BASED CLASSIFIERARE DIVIDED INTO ELEMENTARY CLASSESBA, VB, AND VF

Fig. 15. Comparison between a Landsat TM 226-69 (1996) subimage, the corresponding TM thematic submap (subsampled at 100 m), and the FAO submap.

) are identified by expert photointerpreters. In the Pará test
site, VF and VB patches detected by the three-stage classi-
fier are validated as anthropic disturbances against the back-
ground of forest cover by qualitative and (rather weak but
numerous) quantitative comparisons with aerial photos. This
investigation shows that, in three 1999 TM data submaps,
forest degradation phenomena account for 13% up to 45%.
This result is in line with [14], which estimated a forest
alteration of 12% due to selective logging in the Brazilian
state of Pará from the years 1988–1991. In the Mato Grosso
test site, two maps generated from a 1992 and a 1996 TM
data scene reveal that forest degradation areas 1) account
for, respectively, 19% and 16% of the ground coverage and
2) overlap with 10% and 18% of the forest class detected
by the FAO and TRFIC deforestation mapping programs in

1992 and 1996, respectively. This result is in line with the
work in [15], which speculates that present estimates of an-
nual deforestation for the Brazilian Amazon capture less than
half of the forest area that is impoverished each year.

In synthesis, the novelty of the degraded forest classification
method is relevant if we consider the following.

i) The proposed classification scheme guarantees a good
compromise between accuracy and ease of use, whereas
detection of (crisp, binary) deforestation phenomena at
regional scales and high spatial resolutions still depends,
to a large extent, on human photointerpretation.

ii) Although intermediate forest alterations have a sig-
nificant impact on the assessment of forest areas
impoverished each year by anthropogenic activities,
no degraded forest estimation is required by the Kyoto
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Protocol and provided by official deforestation mapping
programs (such as those by FAO and TRFIC).
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