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Contextual Clustering for Image Labeling: An
Application to Degraded Forest Assessment in
Landsat TM Images of the Brazilian Amazon

Matteo Sgrenzaroli, Andrea Baraldi, Hugh Eva, Gianfranco De Gr&etlow, IEEE and Frédéric Achard

Abstract—The Modified Adaptive Pappas Clustering (MPAC) * Preserving fine structures, especially man-made objects,
algorithm, recently published in the image processing literature, would increase the impact of labeling methods in cartog-
is proposed as a valuable tool in the analysis of remotely sensed raphy, urban planning, and analysis of agricultural sites
images where texture information is negligible. Owing to its con- ' ’
textual, adaptive, and multiresolutional labeling approach, MPAC [4]. o . ) -
preserves genuine but small regions, is easy to use (i.e., it requires  * Improved adaptability and data-driven learning capabili-
minor user interaction to run), and is robust to changes in input pa- ties would make image-labeling algorithms easier to use
rameters. As an application example, an MPAC-based three-stage and more effective when little prior ground truth knowl-
classifier is applied to degraded forest detection in Landsat The- edge is available [5]-[7]
matic Mapper (TM) scenes of the Brazilian Amazon, where inter- . LT . .
mediate states of forest alterations caused by anthropogenic activ- * CompUtatl'ona",y eﬁ'c'e_nt alg(.)rlthm.s and arCh't?CtureS
ities can be characterized by image structures 1-3 pixels wide. In (e.g., noniterative multiresolutional image analysis tech-
three TM images of the Para test site, where classification results nigues) should be made available when training and
are validated by means of qualitative and quantitative comparisons processing time may still be considered a burden [8], e.g.,
with aerial photos, degraded forest areas cover 13% to 45% of the in classification tasks at continental or global scale [9].

image ground coverage. In the Mato Grosso test site, the degraded The aim in thi i t th tential ful
forest class overlaps with 1) 10% of the closed-canopy forest de- € aim In this paper IS {0 assess the potenual useluiness

tected by the deforestation mapping program of the Food and Agri- i RS applications of a contextual clustering algorithm, called
culture Organization (FAO, 1992), and 2) 19% of the closed-canopy Modified Pappas Adaptive Clustering (MPAC), recently pub-

forest detected by the Tropical Rain Forest Information Center |ished in the image analysis literature [10], [11]. Owing to its
(TRFIC, 1996). These figures are in line with the conclusions of contextual, adaptive, and multiresolution labeling approach,

a recent study where present estimates of annual deforestation for . . A
the Brazilian Amazon are speculated to capture less than half of MPAC seems suitable for a wide range of RS applications such

the forest area that is actually impoverished each year. as (unsupervised) clustering, (supervised) classification, seg-
. . mentation, and quantization of remotely sensed images wher
Index Terms—Contextual image clustering, degraded forest, ° dg ° € y d 9e ere

Markov random field, multiresolution, neural network, nonpara- ~ teXturé information is negligible (in the case of RS optical
metric classifier, parametric classifier, segmentation. images, this hypothesis becomes increasingly acceptable as the
data dimensionality increases [12], [13]).
In this paper, MPAC and other image-labeling techniques
|. INTRODUCTION capable of exploiting spatial (contextual) information are sur-
N THE IMAGE analysis and pattern recognition literatureyeyed in Section Il. In Section Ill, MPAC is discussed in detail.
there has been a great development of new methods forimagdnaSection 1V, as an RS application example, an MPAC-based
beling in recent years (image segmentation, clustering, and cligee-stage classifier is applied to degraded forest detection
sification methods are identified as image-labeling algorithmdi. Landsat Thematic Mapper (TM) scenes of the Brazilian
Unfortunately, owing to their functional, operational, and comAmazon, where intermediate states of forest alterations caused
putational limitations, many labeling techniques, both supddy anthropic activities can be characterized by image structures
vised and unsupervised, have had a minor impact on their potéa3 pixels wide. In Section V, TM data thematic maps are a)
tial field of application [1]-[3]. For example, in remote sensingalidated by means of qualitative and quantitative comparisons
(RS) applications, we note the following. with aerial photos and b) compared with maps delivered by the
Tropical Rain Forest Information Center (TRFIC) and the Food

. . . and Agriculture Organization (FAO). Conclusions are reported
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Il. PREVIOUS WORKS the sense of the regularization theory [32]. To avoid the com-

Many image-labeling techniques capable of exploiting spBytational cost of a simulated annealing technique capable of

tial (contextual) information belong to one of several ca’tegorié’éovld'ng,Opt'mal minimization [25], mulyresolu.non contex—_
discussed next. tual labeling approaches are often combined with the tterative

conditional mode (ICM) suboptimal minimization at all resolu-
tion levels [8], [10], [11], [26]. In [8], different texture regions
) ] . are modeled by Gauss—MRFs (GMRFs) whose parameters
First are the per-pixel (noncontextual) parametric (€.Gyre approximated at various resolutions, although the Markov
Gaussian maximum likelihood) or nonparametric classifiefsonerty is lost under such resolution transformation. Smits
(e.g., thek-nearest neighbor classification rule [5]-{7]), fol-5n4 pellepiane [2] enhance the fine-detail detection capability
lowed by a postprocessing low-pass filtering stage, capallfihe abeling approach proposed in [27] by adapting the MRF
of regularizing the classification solution (i.e., capable qeighborhood system, based on evidence provided by other
reducing salt-and-pepper classification noise effects), basgdices of knowledge, such as a digitized road map. In [12], the
on some heuristics or empirical criteria [16], [17]. Althoughyass_conditional model employs robust estimates of the mean
inadequate to detect fine image details when spectral clasggsior and covariance matrix to reduce sensitivity to outliers.
overlap in feature space, this approach is widely adopted Ry[og) starting from some initial points placed on or near a
the RS community (e.g., in commercial image processingay a geometric model for interactive road tracking is applied
s_oftwgr_e toolboxes) owing to its conceptual and computationgl spoT images. In [29], [30], soft estimates of distribution
simplicity. parameters are computed via the Expectation-Maximization
(EM) algorithm [5]. In [31], a causal Gaussian autoregres-
B. Neural Networks sive model is employed to describe the mean, variance, and
A second is neural networks that employ, in the imagspatial correlation of class-conditional image textures, while
domain, sliding windows or banks of filters (e.g., refer t& coarse-to-fine multiresolution segmentation approach is
[18]-[22]). On the one hand, neural networks are nonpargroposed such that no neighborhood adaptivity is pursued,
metric classifiers featuring important functional propertiegxcept that clique potentials are determined as a function of
They are 1) distribution-free (i.e., they do not require the daggale. In [10], after speculating that an MRF model of the
to conform to a statistical distribution knowen priori) and labeling process is not very useful unless it is combined with
2) importance-free (i.e., they do not need information on thegood model for class-conditional densities, Pappas presents
confidence level of each data source, which is reflected én contextual clustering technique, hereafter referred to as
the weights of the network after training [23]). On the othethe Pappas Adaptive Clustering (PAC) algorithm, where a
hand, the dependence of results on the shape and size ofrigel context-sensitive (i.e., locally adaptive) spectral model
processing window (which are usually fixed by the user on dor class-conditional densities is proposed. Starting from the
a priori basis, i.e., these parameters are neither data-driven PAIC architecture, the Modified Pappas Adaptive Clustering
adaptive) is a well-known problem [19]. To avoid this deperniMPAC) algorithm employs both local and global (image-wide)
dence, a multichannel filtering approach, which is inherentlpectral statistics in the class-conditional model plus contextual
multiresolution, is adopted before classification to provide iaformation in the MRF-based regularization term to smooth
(nearly) orthogonal decomposition/reconstruction of the rage solution while preserving genuine but small regions [11].
image [20]-[22]. In the case of multichannel filtering, uncon-
ventional ground truth training area selection criteria should 1. MPAC A LGORITHM

be adopted. For example, during training, receptive fields of i )
filters centered on “pure” pixels belonging to the cover type Let us focus our attention on the Bayesian, MAP, ICM-based,

of interest, e.g., theoad class, may overlap with neighboringhierarchical’ contextual, -spectral, Modified Pappas Ada-ptive
pixels belonging to other classes, at different scales. Furtffgkistering (MPAC) algorithm [10], [11]. At each resolution

A. Per-Pixel Parametric and Nonparametric

investigation is needed in this context [24]. level of a Laplacian Pyramid (LP) image decomposition
[33], MPAC attempts to maximize posterior probability
C. Bayesian Contextual Image-Labeling Systems (x| Y)m x py|2)mp(z)m, Wherez = (z1,...,2n,)

Finally, there are Bayesian contextual image-labeling syS. N arbitrary labeling (partition) of multispectral image
tems where maximura posteriori(MAP) global optimization ¥ = (41:---,yx,,), where feature vectay; belongs to al-di-
is pursued by means of local computations [12]. Because BEnsional data space and per-pixel label (statusy {1, C}
the local statistical dependence (autocorrelation) of imagddl Pixel¢ = 1,..., Ny, whereC is the total number of pixel
there has been an increasing emphasis on using statisti(8es (i.e., states, categories, classes, or labelsNands the
techniques based on Markov random fields (MRFs) to modéttal number of pixels at scate, withm = 1,..., M, where
image features such as textures, edges, and region labels J4]is the number of Laplacian layers. The result of optimization
[8], [10]-[12], [25]-[31]. In MRFs, each point is statisticallyat each scale: is used to initialize, at the subsequent finer scale
dependent only on its neighbors. Thus, an MRF model ig — 1, prior probability termp(x)...—1 plus the free parameters
often imposed on the prior probability term to enforce spatiéivolved with class-conditional probabilitg(y | ©)m—1. To
continuity in label assignment (interpixel class dependency). tmaximizep(z | y),, at every scalen = 1,...,M (such that
other words, an MRF model can be adopted as a “stabilizer”iimdex m is omitted hereafter), MPAC assumes that observed
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pixel gray values are conditionally independent and identically
distributed given their (unknown) class labels, i.e.,

N
p(y|z) = [[ pwi | 20)- 1)

=1
Equation (1) says that no spatial texture (correlation), but only
multispectral characteristics of classes, are to be employed as
discriminating features in the MPAC labeling process. A tradi-
tional class-conditional spectral mod€ly; | z;) is based on a
multivariate normal assumption, under the hypothesis that each
class has uniform intensity and such that the image is corrupted
by a white Gaussian noise field independent of the scene, such
that

L i — ) @

p(yi | 7:) = exp T 952

whereo is the white noise standard deviation expressed in gray
level units andu(z;) is the uniform intensity of class,; <
{1, C}. Equation (2) says that MPAC should be exclusively ap-
plied to piecewise constant or slowly varying intensity images
that may be affected by an additive white Gaussian noise field
independent of the scene.

Let us identify withz; the label estimate at pixeland with
x; the status of pixel at the current MPAC iterationw ()
is the global estimate of the average gray value of pixels that,
at the current MPAC iteration, belong to region typgand
fall inside a nonadaptive (e.g., image-wide) wind@w (i.e.,
window W may overlap with the entire imag®; fiwi(x;) is
the slowly varying intensity function estimated as the average
of the gray levels of pixels that, at the current MPAC iteration,
belong to region type:; and fall inside an adaptive window
W, < W, centered on pixél whose width isV; .,,; 0;(x;) isthe
“cross-aura measure” [34], equivalent to the number of eight-ad-
jacency (second-order MRF) neighbors of pixethose label
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is different from pixel status;; 2 is a user-defined (free) pa-Fig. 1. MPAC algorithm for contextual image labeling. At each hierarchical
rameter enforcing spatial Continuity in pixel Iabeling, such théqvel of a Laplacian Pyramid (LP) decomposition, MPAC alternates between

B x o2 [10], [11]. The MPAC cost function to be minimized is

min  {A(z;) + 5 - 0:(x:) },

i=1,...,N, (3
e e{1,C} 4 ) IR ()

T; = arg
where (4) and (5), shown at the bottom of the page, give the
necessary conditions. Equations (3)—(5) indicate the following.

« MPAC alternates between pixel labeling and global
(image-wide) and local intensity parameter estimation as
shown in Fig. 1. .

» According to (5), when a local intensity averagg; (z;),
estimated in neighborhood’; < W centered on pixel
i, does not exist or is considered unreliable, then the esti-
mate of the global intensity average ,;(z;) is employed,
instead, for comparison with the pixel data as shown in

image labeling, global, and local statistics estimation.

Fig. 2. Local estimatgiy;(x;) is not considered reliable
by (3) when the number of pixels of typg within window

W, is less than the adaptive window widt;; ... Exploita-
tion of (5) is (often) sufficient to prevent MPAC from re-
moving isolated but genuine regions whose area is smaller
than; ,,.

When local intensityjiyy;(2;) exists and is considered
reliable by (3), both local and global intensity estimates
(fowi(zs) and G (x;), respectively) are employed for
comparison with the pixel data according to (4). It is
worth mentioning, that while testing MPAC, we found
images to which the proposed version of (4) applies

{ Az;) = min{[y; — fowi(@:))?, [y — fow (z:)]?},
Azi) = [us — o (x0)]?,

if fiwi(x;) exists and is considered reliable
if iw:(2;) does not exist or is considered unreliable

(4)
®)



1836 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 40, NO. 8, AUGUST 2002

labed j«{1,C) i
| F h
" A]S pleal S
. — i {1 8
W, —
h J
h |
label h-{1,C} !

Fig. 2. The PAC and MPAC intensity average adaptive learning mechanism.

successfully, while a simpler version of (4) exploiting

local estimategiv; (x; ), exclusively, does not.
Simultaneous exploitation of local and global class-con

truth training areas to account for within-class intensity
variance).

According to [11], theoretical weaknesses and limitations of
the MPAC algorithm are as follows.

1) MPAC applies only to slowly varying or piecewise-con-

stantintensity images, i.e., to images with little useful tex-
ture information and additive Gaussian noise independent
of the scene.

It is unable to detect outliers, which may affect the esti-
mate of spectral parameters.

Althoughitis less sensitive to changes in the user-defined
number of input clusters than traditional (nhoncontextual)
clustering algorithms, MPAC is still a suboptimal labeling
procedure that is sensitive to initial conditions. Therefore,
one main issue in the user interaction with MPAC remains
the choice of the number of clusters to be detected.

In[11], MPAC is applied to a variety of testimages, including
a multispectral SPOT satellite image. Based on the analysis of
dg_l) and (2), the RS field of application of MPAC can be reason-

tional spectral statistics in (4) and (5) indicates that MPA(”}bly assessed as follows.
employs, at each resolution level of the LP decomposition, a * Due to (1), MPAC applies exclusively to images featuring

multiresolution and adaptive criterion for spectral parameter

estimation.

To point out the difference between MPAC and PAC, con-
sider that the original PAC algorithm replaces (4) and (5) with

A(z;) = [y — fowi (2)]?, if local averaggiv; (r;) exists and is
considered reliable; otherwise, lahglcannot be considered el-

igible for theith pixel labeling. This implies that PAC removes
every genuine but small (isolated) region whose size is below

window width W ,.

According to [11], advantages of MPAC with respect to other

labeling algorithms found in the literature are as follows.

1) When compared with noncontextual clustering algo-
In synthesis, based on (1) and (2), MPAC seems applicable to

rithms like the well-known HardC-Means (HCM)

little useful texture information. Since within-class spa-
tial correlation (interpixel feature correlation, texture [4])
has been found to decrease exponentially with the dimen-
sionality of optical images [12], [13], (1) becomes increas-
ingly acceptable as the data dimensionality increases in re-
motely sensed optical imagery applications.

Due to (2), MPAC applies to piecewise-constant or slowly
varying intensity images affected by a white Gaussian
noise field independent of the scene. As a consequence,
MPAC is not suitable for dealing with synthetic aperture
radar (SAR) images affected by multiplicative speckle
noise.

clustering technique [35] (which is a hard-competitivglunsupervised) clustering, (supervised) classification, segmen-
Bayesian, noncontextual, maximum likelihood labelingation, and quantization of remotely sensed optical images fea-
procedure), MPAC is less sensitive to changes in thering little useful texture information. This potential range of
user-defined number of input clusters, as it allows thHeS applications is the same as that of the well-known HCM
same region (label) type to feature different intensitglustering algorithm, which justifies the dissemination of MPAC
averages in different parts of the image, as long as thagnong the RS readership.

are separated in space (in line with PAC [10]).

To further investigate the trade-off between labeling perfor-

2) Although it employs no MRF model that supports spanance and ease of use of MPAC against common classifiers
cial image features (e.qg., thin lines; see [28]), MPAC presuch as the minimum-distance-to-means and the Gaussian
serves genuine but small regions significantly better thamaximum likelihood, a real and standard RS image is selected
HCM, stochastic expectation maximization (SEM, whiclior comparison [36]. For consistency with the satellite data
is a soft-competitive, Bayesian, contextual labeling preamployed in the application example proposed further in this

cedure [30]), and PAC [10].

paper, the Landsat TM image (1024750 pixels in size) in-

3) Owing to its spectral parameter adaptation strategy aoldided in the grssifc_002 data set provided by the Geoscience
consequent robustness to changes in initial conditioreyd Remote Sensing Society (GRSS) Data Fusion Committee
MPAC is easy to use, i.e., it requires minor user supenfhttp://www.dfc-grss.org) is chosen for classification compar-
sion. For example, parametgr(related to the additive ison. In this test image, eight thin, elongated, and spectrally
Gaussian noise standard deviatiohmay be estimated homogeneous regions of interest (ROIs) are selected by a
from supervised training data. Moreover, to initializghotointerpreter. Next, an HCM clustering algorithm is run on
MPAC successfully, isolated ground truth pixels may bthe entire image, with an arbitrary number of clusters- 11,
sufficient (whereas traditional classifiers require groundhich is considered sufficient to obtain a satisfactory image
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TABLE |
MPAC CLASSIFIER. CONFUSION MATRIX AND ENERGY VALUES IN THE LABELING TASK OF THE GRSSDFC_002 LANDSAT TM |MAGE.
THE Size of ROIs IS REPORTED IN PIXEL UNITS, ON THE RIGHT COLUMN

_ Classes (MPAC)

Ene=0.0% =T Te3 4 105 cs(M c7 |c8 [c9 Jcio [cCit

B ROI1 | © 0 0 0 0 0 2 24 0 0 0 26
gz [ROI2 | 0 | © 0 0 0 0 6 | 42 | 18] 0 0 | 66
=2 [ROI3 [ © 0 0 22 0 0 0 0 0 0 0 22
5% [ROI4 | © 0 0 1 3 0 22 6 0 0 0 32
H £ [ROI5S | O 0 0 0 0 0 0 14 0 0 0 14
== [ROI6 | O 0 0 0 0 0 0 0 4 18 0 22
c° [ROI7 | © 0 0 0 0 0 0 0 ] 9 14 | 24
= ROIS | © 0 3 0 0 0 34 0 0 0 0 37

TABLE I

MINIMUM -DISTANCE-TO-MEANS CLASSIFIER. CONFUSION MATRIX AND ENERGY VALUES IN THE LABELING TASK OF THE GRSSDFC_002
LANDSAT TM IMAGE. THE SIZE OF ROIS IS REPORTED IN PIXEL UNITS, ON THE RIGHT COLUMN

Ene = 0.072 Classes (Minimum-distance-to-means)
Cl C2 C3 C4 C5 C6 C7 C8 C9 | Cl10 | Ci1
5 ROI'1 0 0 0 0 0 0 17 9 0 0 0 26
5’ = | ROI2 0 0 0 0 0 0 3 33 30 0 0 66
=2 [ROI3 0 0 12 10 0 0 0 0 0 0 0 22
é g ROI 4 0 0 0 2 2 0 10 0 18 0 0 32
£ s | ROIS 0 0 0 0 0 0 9 5 0 0 0 14
25 |ROI6 0 0 0 0 0 0 0 0 11 11 0 22
£° [ROI7 | © 0 0 0 0 0 0 0 11 9 4 24
= ROI 8 0 0 18 0 0 0 19 0 0 0 0 37
TABLE Il

GAUSSIAN MAXIMUM LIKELIHOOD CLASSIFIER. CONFUSION MATRIX AND ENERGY VALUES IN THE LABELING TASK OF THE GRSSDFC_002
LANDSAT TM IMAGE. THE SIZE OF ROIs Is REPORTED IN PIXEL UNITS, ON THE RIGHT COLUMN

Ene = 0.070 Classes (Gaussian maximum likelihood)
Cl C2 C3 C4 Cs C6 Cc7 C8 C9 | Clo | Cll

£ ROI'1 0 0 0 0 0 21 1 4 0 0 0 26
é" = | ROI2 0 0 0 0 0 9 20 37 0 0 0 66
=2 [ROI3 0 16 6 0 0 0 0 0 0 0 0 22
‘é‘,g ROI 4 0 2 2 0 0 10 7 11 0 0 0 32
£ s | ROIS 0 0 0 0 0 14 0 0 0 0 0 14
=< [ROI6 0 0 0 0 0 0 6 5 11 0 0 22
£ [ROI7 [ 0 0 0 0 0 0 5 2 11 6 0 24
= ROI 8 0 14 0 0 0 23 0 0 0 0 0 37

partition. These data clusters are employed to initialize thelV. REMOTE SENSING APPLICATION PROJECT DEGRADED

free parameters of a minimum-distance-to-means, a Gaussian FORESTASSESSMENT INBRAZILIAN AMAZON

maximum likelihood, and an MPAC cla_ssmer. Classificationy proplem Description and Objectives

accuracies are presented in (unconventional) nonsquare confu- S )

sion matrices in Tables I-Ill. To assess accuracy in nonsquard N€ estimation of sources and sinks of greenhouse gasses
confusion matrices, parameter Energ@né is computed as resulting “from direct human-induced land use change and
Ene = % ¢ p2. € [0,1], wherep; ; € [0,1] is the forestry activities, limited to afforestation, reforestation, and
probabilityzaf a ;J)&el ZE)JeIonging to theth class andth ROI.  deforestation since 1990 is an information requirement of the
such thaEneincreases when a ROI belongs to just one clagd§y0to protocol compiled during the Third Conference of the
Among the three classifiers considered, MPAC features tRérties in the framework of the United Nations Convention
largest value ofne In line with [11], this experiment points N Climate Change [37]. In this scenario, which has relevant
out that, when compared to two well-known noncontextudplitical, economic, and scientific implications, earth observa-

classifiers, MPAC tions from satellites provide a valuable source of qualitative
and quantitative information to investigate changes in tropical

1) reduces salt-and-pepper classification noise; forest ecosystems caused by anthropic activities. In monitoring
2) recovers fine image details; forestry activities from space, the Landsat Thematic Mapper

3) requires a degree of user supervision equivalent to ti{@) is one of the most widely employed sources of remotely
of HCM. sensed data [38]-[42].
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In terms of information representation, a crisp and binan a 'ﬁ__ J= ]
(vegetation/bare soil) classification approach is widely adopte - ':-‘:-;___','« e H‘"‘r._.i.:,ﬁ
to investigate deforestation phenomena. For example, several - = [T 731 Boae
cent studies focused on areas where forest is converted into a¢ _-,_;; A Y | -J I 1
cultural fields €lear-cutareas) in the Amazon basin [39]—[41]. *._-_!h __J"E*R mpq".' 1] | t1=tes]
Such a crisp and binary information representation is unable ! e y _?1_ = [ 4 ’1;‘“‘"2
describe a great variety of forest alterations that reduce the tn 7 ¥E I Y ppe ,u;,;';;h
cover but do not eliminate it, such as those due to surface firez, Fw, ; 45._,'_h """"""" -
or selective logging in standing forest. In [14], forest areas af 4, - ; [E) -
fected by selective logging are detected on TM images of th b Jlr
Brazilian Amazon by means of human interpretation and digiti 1"1 L m 0w
zation. Partially regrowth deforested areas are detected on T 1&_ i r

images using a shade fraction image segmentation system A ] : §
[41]. Nepstackt al. speculate that intermediate forest alteration: | ' e aeaer - e
are actually ignored by official deforestation mapping program i 7 TR —
[15]. { il # Park BRAEE PAAT

In this paper, the term “forest degradation” is based on . | e e S
functional definition. It identifies any intermediate forest alterl—:. Three Landeat TM he Pard and M _
ation that decreases the forest blomass .O.r biodiversity. In |a|ﬂ%12 Amazrgr? b;sqn.s%ree 'Is'ﬁllegﬁzir%%eerst (i?jenii?eznas teastt?L,(t:ggtszs,oa;%S:eSs:g)s
cover terms, thelegraded forestlass identifies any forest CON-re extracted from the Paré test site along the flight path of the aerial photo
dition intermediate between those of classes forest and defeiimpaign depicted as a black line.
estation. This definition is in line with that adopted by the FAO
according to which “(forest) degradation is not reflected in the . o
estimates of deforestation” [43]. To summarize, although it [gultittmporal but coincident Landsat TM scenes (path-row
ignored by the Kyoto Protocol and several deforestation mag2®-69, 763% 7307 pixels in size, identified by code 1 in
ping programs, theegraded forestlass may have a significant™19- 3) qf the Mato Grosso test site, acquired in 1992 and 1996,
impact on the estimation of forest areas impoverished each yEggPectively, are selected. The same two TM scenes of Mato
by anthropogenic activities [15]. To assess whether defores@{0Ss0 were employed, respectively, by TRFIC and FAQO, to
tion mapping programs underestimate the forest that is actugl§velop deforestation maps. With regard to the selected TM
impoverished (i.e., degraded) each year, as recently speculfegnes of the Para test site, three TM subimagesx4ED
in [15], our application project aims at detecting forest degradgixels in size (identified as testl, test2, and test3 in Fig. 3), are
tion phenomena in the Brazilian Amazon from remotely sensédtracted to overlap with some aerial images acquired along the
data. depicted flight path by the Brazilian Space Research Agency
Instituto National de Pesquisas Espaci@iBIPE) in 1999, as
shown in the upper right corner of Fig. 3.

Two study areas are located, respectively, in the Brazilian" the selectgd four Landsat TM scenes of the Brazilian
states of Para and Mato Grosso, which belong to the belt’af'@Z0n (see Fig. 3), expert photointerpreters were asked to
major anthropogenic pressure within the Amazon basin. #iStinguish the cover types of interest based on spectral and
the Para test site, the predominant vegetation is evergréé’ifi‘t'al chz_;tract_e_nstlcs. As_arersu_lt, two forest degradation cover
terre firmeforest with above-ground biomass of 250-300 t/h&/Pes are identified. The first distinguishable forest degradation
(tons/hectars). Timber extraction has become a major indusjenomenon, termed class Vegetation-Bare soil (VB), consists
over the last 15 years, centered on Paragominas, leading?tdull-canopy forest with clearings due to selective logging. In
landscape of logged and “superlogged” forests, along witi@ndsat TM images, VB areas are visually perceived as small
pasture [44]. The cycle of exploitation begins with selectivel—3 pixels wide), isolated, or regularly distributed bare-soil
logging for the most valuable species. These regions are lategions surrounded by forest, as shown in Fig. 4.
revisited for less lucrative timber and becomes a fragmentedThe second type of distinguishable forest disturbance is 100%
open canopy quperbgged foregt increasingly prone to fire vegetate cover of pioneer species with a canopy high from 2 to
[45]. In the final phase, the residual forest is cleared for pastud® m, known as “capoeira.” It is visually detected as clear-cut

The Mato Grosso test site is characterized by the presemegions, which are abandoned and/or partially regrown. These
of semi-evergreen forest and landscape transitions between eg¢-wide areas with a regular shape whose spectral behavior is
rado and forest vegetation. Ranching and selective logging @giite similar to the forest spectral signature (see Figs. 5 and 6).
termine the deforestation pattern [46]. This second type of forest degradation phenomena is identified

as class Vegetation-Forest (VF) to indicate its spectral similarity
C. Feasibility Study to class ForestF).

To make a decision as to whether or not quantitative remoteT0 Provide a complete partition of the selected TM scenes,
sensing is a reasonable approach to use [47], two contigud® following land cover classes are considered:
Landsat TM scenes acquired in 1999 during the same satellitel) Water (W);
pass (path-row 222-62 and 222-63, 7381243 pixels in size, 2) closed-canopy Forest (F);
identified by code 2 and 3 in Fig. 3) on the Paré test site and two3) Bare soil+ Agricultural areas (BA);

B. Study Areas
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Fig. 5. The second type of forest disturbance is visible in the Landsat TM
2226299 image {2: band5,G: band3,B: band3). White contours indicate

two large regions of forest degradation featuring a regular shape and a spectral
signature quite similar to that of the forest class. This second forest degradation
phenomenon is identified as class Vegetation-Forest.

Fig. 4. White arrows indicate the first type of forest disturbance. Isolated .
bare-soil targets surrounded by the forest area are visually distinguishable in Comparison: F — VF

the Landsat TM 22659.92 image R: band5,G: band4,B: band3). This forest sof Fores;:{F) ]
degradation phenomenon is identified as class Vegetation-Bare Soil. E . /1 B
[ — _ _Vegetotion— ™~ 1

70F Forest{VF)

4) Degraded Forest (DR Vegetation-Bare soil (VB}
Vegetation-Forest (VF).
1) Reference Data for the Mato Grosso Test Site: The TRFIC

Digital Number
1
Pec}

and FAO Maps: Two deforestation maps of the Mato Grosso h
test site are available from TRFIC and FAO. TRFIC, which 30F ]
is a project of NASA's Earth Science Information Partnership 20k g

program, delivers a deforestation map, extracted from the 1992 % % i
Landsat TM scene (path-row 226-69), with a pixel size equal Band2 Band3 Band4 Bandb
to 30 m and a geographic localization error of 500 m [39]. Tr]g . .

) ! . 6. Spectral t f cl Fote3} and Vegetation Forest
classification method employed by TRFIC is based on mag@te simngf ctral signatures of classes Fotés} and Vegetation Forest are
thresholding and iterative self-organizing methods. Accuracy is

validated by means of field observations. Land cover types in 3) short/long fallow (forest affected by shifting cultivation):

the TRFIC map are 4) mosaic forest shrubs;
1) forest; 5) shrubs;
2) deforested,; 6) other land cover;
3) regrowing forest; 7) water;
4) water; 8) plantations (forest and agricultural).
5) cloud; 2) Reference Data for the Para Test Site: Aerial Photd$ie
6) cloud shadow; Para area was one of the targets of an aerial photo campaign
7) cerrada conducted during 1999 by INPE. Images were collected using

The FAO map, extracted from the 1996 Landsat TM sceRgyital video along a set of flight transects across the Brazilian
(path-row 226-69), consists of ten cover classes detected byAinazon basin. The video data were geolocated using an
sual interpretation conducted at a scale of 1:200 000 [39]. Negh-board global positioning system, but no geometric correc-
data were digitized and geometrically corrected using referenggh was provided to recover from systematic and accidental
topographic maps. The minimum mapping unit (spatial resoldistortions of the acquisition process. In other words, these
tion) is 100 ha. FAO classes are aerial images (488 630 pixels in size with a spatial resolution

1) closed-canopy forest; of approximately 1.2 m) feature no photogrammetric quality,

2) open-canopy forest; i.e., although they can be geolocated, their coregistration with
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Fig. 7. Comparison of class distributions in scatterogrdfisG) and (R, B) with those in scatterogram&, I) and (H, S) confirms that IHS color
transformation enhances spectral separability of classes VF and VB from class(Forest

satellite data is extremely difficult (requiring many targetf an intensity-hue-saturation (IHS) color transformation
points). Small, cleared patches surrounded by forest, coro@pable of emphasizing quantitative (spectral) and qualitative
sponding to degraded forest type VB, are clearly visible ifvisual) separability of the VB and VF forest degradation
aerial photos. The indicative aerial flight path over TM subimphenomena. The second stage consists of the detail-preserving
ages test1 to test3 is depicted in Fig. 3. Along this aerial flighentextual clustering MPAC algorithm. The third stage is the
path, aerial images showing forest degradation phenoméhgput module providing a many-to-one relationship between
without being affected by cloud cover are selected. The numts&cond-stage output categories (clusters) and desired output
of selected aerial images that overlap with TM subimages te§{gsses (‘multiple-prototype classifier” [23]).

to test3 is, respectively, 6, 4, and 6. This means that, in thel) Preprocessing Stage: RGB to IHS Color Transforma-
Para test site, the ground (reference) data are rather limitd@n: While the use of all TM spectral bands may at first seem
As a consequence, the quantitative accuracy assessment ofqngffer @ higher potential of class discrimination, our test is

TM data classificati f Para is rath K (ie., lIJgnted to TM bands 5 (1.55-1.7Am), 4 (0.76-0.9Qum), and
ata classification map of Para is rather weak (i.e., vag §t(0-63—0-69um) selected as channels red-green-blue (RGB),

and subjective). In this context, exploitation of the Para te . . .
site in combination with the Mato Grosso test site becomE%SpeCt'Vely' Bands 1 and 2 are frequently contaminated with
{noke and haze in Amazonia, while Band 6 is at a different

. . . S
strat_eglc in order to 1) collect a wide set of evidence th%ga{ial resolution (120 m). The exclusion of Band 7 can be
provides, as a whole, a reasonable (although weak) assessmen : o . .

ued for; however, much of its information content is found

.Of the proposed clas§ification scheme.with respect to Chan%%and 5 when forest is depicted [38]. Furthermore, by using
n raw _data properties (nonqverlapplng VErsus overlapp!ﬂgese three bands, the information content is the same employed
and unitemporal versus multltgmporal raw data) anq .pn% the major Amazon monitoring program [38], allowing for
knowledge representations (aerial images versus Class'f'ca%parison with operational technique.
maps) and 2) maintain consistency with the work in [15]. The RGB-to-IHS color space transformation (e.g., refer to
, L [48]) is effective in enhancing the spectral separability of super-
D. Implementation of the Classification System vised data belonging to classes VF and VB from cl&sT his

To detect classes VB and VF in Landsat TM images @ shown in scatterogram$, G) and (R, B) to be compared
the Brazilian Amazon, a three-stage classification methodwsth (H, ) and (H,S) (see Fig. 7). Pairwise spectral diver-
adopted. The first stage is a preprocessing module consistgence Div) values, computed under the hypothesis of class-con-
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TABLE IV
PAIRWISE CLASS DIVERGENCE RESULTS CONFIRM THAT THE RBG-~TO-HIS
COLOR TRANSFORMATION ENHANCES THE SPECTRAL SEPARABILITY

OF CLASSESVF AND VB FROM CLASS F'

1841

level output map where each pixel is replaced with its rela-
tive membership value, i.e., with a normalized degree of sim-
ilarity between the pixel data vector and its closest template
vector. Pixels featuring low membership values are outliers, i.e.,

_ RGB - ms‘ they are not represented with high confidence by the current
Div, ; Div, . (%) Div, Div; ;. (%)
-/ I norm J I norm codebook.

F, BA 204.729 100 279.840 100 — : . -
F,VB 36,783 B 333150 79 To check whether significant image details are maintained
F, VF 25217 11 27.280 10 through the MPAC processing, a piecewise-constant intensity
output image is generated by substituting all pixels belonging

TABLE V to a segment (defined as a connected area featuring the same

class type in the labeled image) with their segment-based av-
erage spectral value. A contour image depicting segment bound-
aries is generated too.

For the Paré test site (see Fig. 3), 11 codewords (supervised
pixels), each one associated with one out of five labels (see
Section IV-C), are sequentially selected in the TM testl
ditional normal distribution [49] and normalized with respecsubimage by a photointerpreter (see Fig. 3). After the MPAC
to the maximum spectral divergence found between class pleirning phase, final codewords are applied to TM subimages
(F,BA), are reported in Table IV. In line with the qualitative intest2 and test3 to verify the algorithm generalization capability.
terpretation of Fig. 7, these results confirm that the RGB-to-IHSther 11 supervised pixels are considered sufficient to initiate
col_ortransformation enhances the_ spectral separability of clags MPAC detail-preserving clusterization of the TM scene
pair (£, VB) by a large degree, while class péif, V) seems ot \ato Grosso. In these two applications, MPAC is run for
to improve slightly. To further investigate effects of the IHS 5 jterations within a two-step hierarchical procedure: first,

color transform on spectral separability of class gdirVF), arameted is set to 0 (i.e., MPAC follows the data); next
this pairwise spectral separability is quantitatively assessed i%yset to a value> 0 for i>,<els belonaing to class @ VF’
the Fisher linear discriminant P ging fo cla o

and VB, to reduce salt-and-pepper classification noise (e.g.,
e (F) — e (VE)? due to the presence of smoke and thin clouds during TM
T 82(F) +sE(VEF) data acquisition), while the remaining classes are masked out
. . 3 _ from further refinements. For the Para and Mato Grosso data
where indexb identifies the spectral band, while symbals sets, a smoothing parametgris set equal to 0.01 and 0.04,
ands, identify sample mean and standard deviation of a Cmﬁ%spectively, by a trial-and-error procedure.
conditional distribution [5]. These separability values, shown 3) output Classification StageOutput maps are obtained
in Table V, confirm that the IHS color transformation is alsgg 5 supervised and crisp many-to-one combination of the
capable of enhancing the spectral separability between class Rain pac output categories with output classés F, BA

(£, V). _ . VF, and VB. Let us show an example of the three-stage
2) MPAC: Details on Input Parameters and Output Prodg|agsification process. Fig. 8(a)—(f) show, respectively:
ucts: User interaction with the MPAC algorithm is restricted

to selecting smoothing paramefeand initial template vectors. @) testl raw input data, 450450 pixels in size;
Parametef, proportional to additive white Gaussian noise vari- b) IHS color transformation (in false colors);

ances?, is either user-defined (to be set with a trial-and-error ¢) MPAC-labeled image wit{# = 0 (in pseudocolors);
procedure) or estimated from supervised training data. When né!) MPAC piecewise-constant intensity image witk= 0 (in
supervised ground truth data are available, initial template vec- ~ false colors);

tors may be detected by an (unsupervised) clustering algorithnf) MPAC-labeled image wit¥ > 0 (in pseudocolors);
(see Fig. 1). In this work, no clustering algorithm is used for ) MPAC piecewise-constant intensity image whier- 0 (in

MPAC initialization. Rather, some supervised (labeled) pixels  false colors).

are sequentially selected by an expert photointerpreter as iBjg. g(c) and (e) are partitioned into 19 000 and 6700 segments,
tial template vectors (also called codewords). Of course, opg&pectively. Comparisons of Fig. 8(b), (d), and (f) allow a
or more codewords may belong to the same output class. Ng{&al and intuitive inspection of the classification quality. In
that, in terms of ease of use, this type of user supervisionfgy. 9 two corresponding profiles (transects) extracted from
more convenient than selecting ground truth areas, as requipqag_ 8(b) and (d) are depicted. In line with theoretical expec-
by common classification approaches (both parametric and nesxions, Fig. 9 shows that, in this application, MPAC provides
parametric), i.e., prior knowledge required by this system to righ information quantization (compression) equivalent to an
may be inferior to that required by traditional classifiers. Inteedge-preserving smoothing capable of preserving structures
active training pixel selection is made easier by the IHS colar-3 pixels wide. Image-wide histograms of Fig. 8(b) and (d)
transformation, which increases the spectral difference betwesge shown in Fig. 10: whereas Fig. 8(d) looks as an accurate
classest’, VB, and VF. To assist the user in selecting signifiedge-preserving smoothed version of Fig. 8(b), the histograms
cantinitial templates, MPAC generates a normalized confidenakthese two images look different indeed.

FISHER' S SEPARABILITY VALUES OF CLASS PAIR (F, VF)
IN BANDS I, R, G, AND B

Jr
49.23

Jg
50.52

Jg Js
25.03 92.67

Ju(F,VF)

b=IRGB (6)
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(c) (d)

(f)

Fig. 8. Three-stage classification. Input and output products on the Para test site (subimage testl). (a) Input: Landsat TM BufiBaned)&),G (Band 4),

B (Band 3). (b) Output of the HIS color transformation (in false colors). (c) MPAC-labeled imagedwith) (in pseudocolors). (d) MPAC piecewise-constant
intensity image with3 = 0 (in false colors). () MPAC-labeled image with> 0 (in pseudocolors). (f) MPAC piecewise-constant intensity image Witk 0

(in false colors).

E-p-nl.‘ia:ll F"rnﬁlp . . F " b
g
& ssof £t
450 D 128 255
] DN
W 5 20 30
Location (Pixel wnits)
Fig. 9. Profiles extracted from Fig. 8(b) (thin line) and (d) (thick line). E |
F
V. EXPERIMENTAL RESULTS -
A. Para Test Site: Qualitative and Quantitative Result
Assessment
S . 128
The result validation procedure focused on the analysis of DN 235

those parts of the three TM submaps (corresponding to raw

subimages testl to test3; see Fig. 3) that overlap with aefi 10- Histograms of Fig. 8(b) (top) and (d) (bottom).

photos and are characterized by different distributions of the VB

forest degradation type as shown in Fig. 11(a)—(c). Accordisglts seem to indicate that the proposed classifier is also capable
to an expert photointerpreter, the degree of match between af-generalizing.

sually detected VB phenomena in aerial photos and automatiAs to the quantitative assessment of classification, due to dif-
cally detected VB pixels in TM images is satisfactory [see Fidjculties in coregistration of aerial photos with TM images, we
11(a)—(c)]. The same subjective conclusion is reached when ®fe unable to generate a confusion matrix (see Section IV-C). As
degradation phenomena are examined (see Fig. 12). Sinceahalternative, a degraded forest fragmentation measure, such as
training phase of the three-stage classifier has involved data e Perimeter-over-Area ratio (PA) [50], is adopted. In a labeled
lected from one TM subimage exclusively, these qualitative renage, segments (or patches) are defined as connected image
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VEGETATION-BARE SOIL VEGETATION-BARE SOIL
High Degradation Medium Degradation

Mam-f A =1,
Mom-forest class PA=3.7 B Mo e

VI class= PA=0.4

() (b)
VEGETATION-BARE SOIL
Low Degradation

Mon-foresd class: PA=2.0}

©

Fig. 11. (a) Comparison between aerial photos and a TM thematic submap (see the white outline at the bottom right) in which the density of the \éB degradat
class is considered “high.” (b) Comparison between aerial photos and a TM thematic submap (see the white outline at the bottom right) in whighahtaeensi

VB degradation class is considered “medium.” N.B.: To make visual interpretation easier, these pictures are rotati fedfpect to those depicted in Fig. 11(a)

and (c). (c) Comparison between aerial photos and a TM thematic submap (see the white outline at the bottom right) where the density of the VB dagsadatio

is considered “low.”

areas featuring the same label type. Intuitively, a labeled typé is sensitive to the shape and size of segments (for the anal-
(e.g., class forest) in a labeled image is 1) compact whereydis of the distribution of patches by size, shape, or distance be-
features low PA values and 2) fragmented (“patchier”) wheteveen patches refer to [51]). To provide (vegetation/bare soil)

PA values tend to increase (see Fig. 13). It is easy to prove thatary maps of aerial images, a histogram thresholding tech-
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YVEGETATION - FOREST note that clas$V is not considered in this analysis), in window
wy,,h = 1,...,30. Probabilityp,,(¢) is defined as the number
of pixels belonging to class detected in windoww;, divided

by the total (image-wide) number of pixels belonging to class
t. Probability valuesp (i), = 1,...,30,é = 1,...,4, are
used to generate theh class-conditional histogram(j), 7 =
1,...,1000, where the bin size of the probability-axis is set to
0.001. Entropy of classis computed as

1000

Ent(i) = - Z hi(4) - logy(Ri(4)) (7)

=1

whereEnt(s) € [0,9.96] (sinceEnt(¢) is maximum when all
histogram values are equal, i.e., in case of uniform distribution,
thenEnt(¢)max = — log,(1/1000) = 9.96). Table VI reports
entropy values for classds, VF, VB, and BA in each of the
three TM submaps of the Para test site. In line with theoretical
expectations, classes VB and VF feature higher entropy values
when compared with classésand BA.

A third piece of evidence for the consistency of detected de-
graded forest type VB expected to be involved with high-change
Fig. 12.  Comparison between aerial photos and a TM thematic submap whigieest dynamics is shown in Fig. 14, where TM image areas with
Vegetation-Forest degradation phenomena are detected. label VB (likely to be related to selective logging) become new
clear cuts in aerial photos acquired about two months later.

In terms of overall statistics, the three TM thematic submaps,
450x 450 pixels in size, cover a surface area of approximately
18225 ha each. In these submaps, class VF varies from a min-
imum of approximately 1224 ha (6.8% of the ground coverage)
, ' to amaximum of 4730 ha (25.9%), and class VB ranges from ap-
A=l proximately 1297 ha (7.0%) to a maximum of 5143 ha (28.0%).
In the three TM thematic submaps, class DF covers a minimum

: 2 of 13% up to a maximum of 45% of the image ground coverage.
Aot TR ! (6 3 4) s PA - - om This result is in line with the work in [14], which estimated a

6 forest alteration of 12% due to selective logging (related to class
VB) in the Brazilian State of Para from the years 1988-1991.

Fig. 13. Examples of PA value extraction.
B. Mato Grosso Test Site: Result Assessment

nigue is adopted. Next, PAs are computed for 1) the (vegetain the Mato Grosso test site, the two selected multitemporal
tion/bare soil) binary aerial maps, where PA equals 3.7, 2.8, ahill scenes, 124% 1245 pixels in size, cover an area of approx-
2.0, respectively, and 2) the VB class detected in the three TiMately 139502 ha (for geographical location see Fig. 3). In
submaps, where PA equals 0.7, 0.4, and 0.2, respectively (cldmstwo TM data maps, the VF class extension is approximately
VF, characterized by large homogeneous areas with a regi#anl ha (6.5%) in 1992 and 13 175 ha (9.4%) in 1996. Exten-
shape, has no significant fragmentation). The correlation coeffion of class VB is approximately 17 612 ha (12.6%) in 1992
cient between the two PA sequences is 0.99. Unfortunately, thisd 8922 ha (6.4%) in 1996.
evidence is weak because only three data points per sequence afe compare the 1992 TM data map with the TRFIC de-
used, due to the limited availability of meaningful aerial photoforestation map, first, the TRFIC classes are reduced to label
Thus, to further assess the consistency of the degraded fotgpes water, forest, and nonforest, where metaclass nonforest
information provided by the three TM submaps of the Para testthe combination of TRFICs classes deforested, regrowing
site, the spatial distribution of classes VB and VF is examinefirest, and cerrado (the TRFIC classes cloud and cloud shadow
This distribution is relevant because the homogeneity in distdére absent from the area of interest). Second, cover types of
bution of VB patches within forest areas is expected to increabe TM classification map are reduced to classes water, forest,
with the anthropogenic pressure on forest ecosystems. To eatid nonforest, by aggregating classes VF, VB, and BA into
mate the spatial distribution of classes, a spatial entropy meastie nonforest metaclass. Finally, from these two reaggregated
(Ent) is adopted as follows. First, each TM thematic submapaps, classification statistics of classes water, forest, and
(450x 450 pixels in size) is partitioned into 30 nonoverlappingonforest are computed as shown in Table VII. This table
windowswy, h = 1,...,30, 15x 15 pixels in size. Second, points out that, overall, the three-stage classifier assigns to
probability p;,(z) € [0, 1] is computed for class = 1,...,4 the forest class 13.0% fewer pixels than the TRFIC map.
(corresponding to classes, VF, VB, and BA, respectively; Conversely, the three-stage classification system assigns to the
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TABLE VI
ENTROPY VALUES FOR THE SPATIAL DISTRIBUTION OF CLASSES F', VF, VB, AND BA (CLAss W Is NOT CONSIDERED
IN EACH OF THE THREE TM THEMATIC SUBMAPS OF THEPARA TEST SITE

Testl Test2 Test3
n. pixel % pixel Ent n. pixel % pixel Ent n. pixel % pixel Ent
F 91612 45.2 1.47 67321 90 1.60 82427 40.7 1.4
VE 22959 11.3 1.64 52550 259 1.64 18823 6.8 151
VB 57146 282 1.57 38200 18.8 161 14412 71 1.68
BA 30783 14.8 1.50 44429 8.4 1.66 63027 31.1 1.40
Mew clear-cal in o degraded area With regard to the 1996 FAO classifications map of the Mato
) Grosso test site, a direct comparison with the 1996 TM data map
Aariul liston Landsat TM™ is difficult because 1) the FAO land-use/land-cover legend is
September 1999 3953 N
£l quite different from land cover classes detected by the three-
Mew defloresintion 14 July 1959

stage classifier and 2) the two output maps employ different
minimum mapping units, equal to 100 ha (resampled to a pixel
size equal to 100 m) for the FAO map and one pixel size equal to
30 m for the TM thematic map, respectively. To provide a com-
parison, the following strategy is adopted. First, the TM clas-
sification map is subsampled at pixel size of 100 m. Next, the
subsampled TM data map, the FAO map, and the corresponding
Landsat TM 226-69 (1996) image are visually compared by an
expert photointerpreter, as shown in Fig. 15. This qualitative in-
spection confirms that the FAO closed-canopy forest class over-
laps with forest degradation phenomena detected in TM data
(no FAO open-canopy forest is present in this area of interest).
B recently cut crunks lassllieatien  QuUantitatively, the FAO closed-canopy forest class exceeds by
B Iying &n ike ground approximately 10% the class forest detected by the three-stage
classifier. In particular, class VF appears to be the first cause of
discrepancies between the two maps. Sometimes, the VF class
overlaps with the FAO mosaic forest shrubs class, although it is
Fig. 14. High-change dynamics of areas affected by forest degradati@gnerally included in the FAO closed-canopy forest class. With
phenomena. Class Vegetation-Bare soil (VB) detected in the Landsat dgard to the VB forest degradation class, it overlaps with the

image becomes new clear cuts in aerial photos taken about two months IQE%\ B
where recently cut trunks are still on the ground (localize the river to link the O classes short/long fallow, closed canopy forest, other land

aerial photo sequence with the TM image and corresponding thematic map)cOvers, and shrubs in decreasing order.

river

three-singe

COMPARISONBETWEEN THETR-II:—'lo\CBIC_]I_EAS\é:II:ICATION AND THE MPAC-BASED VI. SUMMARY AND CONCLUSIONS
THREE-STAGE CLASSIFIER. CLASSESWATER, FOREST, AND NONFOREST The MPAC algorithm, recently published in the image pro-
ARE CONSIDERED FORCOMPARISON . . . . .
cessing literature, is proposed as a valuable tool in clustering,
TRFIC Three-stage classification, segmentation, and quantization of remotely
e assification (%) classifier (%) sensed images where texture information is negligible. Owing
Forest 72.85 3088 to its contextual, adaptive, and multiresolution labeling ap-
Nonforest 27.12 39.97 proach, MPAC is capable of preserving genuine but small
Total 100.00 100.00 regions, is easy to use (e.g., supervised selection of one pixel

per spectral category suffices to obtain image partitions where
nonforest metaclass 12.8% more pixels than the TRFIC mamage details are likely to be preserved), and is robust to
To understand the cause of such discrepancies, a confustbanges in input parameters. By requiring minor supervision,
matrix is reported in Table VIII, where the percentage of noMPAC seems particularly useful for monitoring areas where
forest pixels detected by the three-stage classifier is presengedund truth data are difficult to collect. Proper selection of
according to its class components BA, VB, and VF. This tabke smoothing parameter may help reducing salt-and-pepper
shows that, respectively, 18.2%=12.0% + 6.2%) of the classification effects.
TRFIC forest metaclass and 21.6%14.2% + 7.4%) of the As a remote sensing application example, an MPAC-based
TRFIC nonforest metaclass overlap with TM forest degradatidhree-stage classifier is applied to degraded forest detection in
areas. These percentages are equivalent to a ground covetagelsat TM scenes of the Brazilian Amazon, where interme-
of 26 723 ha £18 525 ha+ 8197 ha), corresponding to 19.1%diate states of forest alterations caused by anthropogenic ac-
(=100 x 26723 ha/139 502 ha) of the total surface coveragetivities can be characterized by image structures one to three
Note that 55% of the TRFIC water class (equivalent to 30 hpjxels wide. Two tropical forest degradation phenomena (VF
overlaps with forest degradation types VB and VF. and VB) and five classes of interest'( VF, VB, BA, and
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TABLE VIl
CONFUSION MATRIX BETWEEN THE TRFIC QLASSIFICATION AND THE MPAC-BASED THREE-STAGE CLASSIFIER. PIXELS BELONGING
TO THE NONFORESTMETACLASS DETECTED BY THE MPAC-BASED CLASSIFIER ARE DIVIDED INTO ELEMENTARY CLASSESBA, VB, AND VF

TRFIC classification

Overall Water Forest Nonforest Total
accuracy = 85 % %  (no. pixel) %  (no.pixel) % __(no.pixel) %  (no.pixel)
Water 25.82 (157) 0.17 (1870) 0.06 (247) 0.15 (2274)
Forest 2.47 (15) 80.99 (914641) 321 (13501) 59.88 (928157)
gﬂ ) Nonforest 71.71 (436) 18.84 (212763) 96.73 (406395) 39.97 (619594)
2 lg Total 100.00 (608) 100.00 (1129274) 100.00 (420143) 100.00 (1550025)
§ § BA 16.28 (99) 0.61 (6926) 75.04 (315307) 20.79 (322332)
ﬁ @ VB 54.93 (334) 11.99 (135486) 14.25 (59873) 12.62 (195693)
VF 0.50 (3) 6.24 (70351) 7.43 (31215) 6.55 (101569)
Total 71.71 (608) 18.84 (212763) 96.73 (13501) 39.97 (619594)

Conlexinal Clustering Ladnzatl TH FALN Claszifica tion
(Hm pluelp Banal: 5.4,3 {18 pinel)
(30w sl

Fig. 15. Comparison between a Landsat TM 226-69 (1996) subimage, the corresponding TM thematic submap (subsampled at 100 m), and the FAO submap.

W) are identified by expert photointerpreters. In the Para tek%92 and 1996, respectively. This result is in line with the
site, VF and VB patches detected by the three-stage clasgérk in [15], which speculates that present estimates of an-
fier are validated as anthropic disturbances against the bankal deforestation for the Brazilian Amazon capture less than
ground of forest cover by qualitative and (rather weak bimalf of the forest area that is impoverished each year.
numerous) quantitative comparisons with aerial photos. ThisIn synthesis, the novelty of the degraded forest classification
investigation shows that, in three 1999 TM data submapsgthod is relevant if we consider the following.

forest degradation phenomena account for 13% up to 45%. ) The proposed classification scheme guarantees a good
This result is in line with [14], which estimated a forest compromise between accuracy and ease of use, whereas
alteration of 12% due to selective logging in the Brazilian detection of (crisp, binary) deforestation phenomena at
state of Para from the years 1988-1991. In the Mato Grosso regional scales and high spatial resolutions still depends,
test site, two maps generated from a 1992 and a 1996 TM to a large extent, on human photointerpretation.

data scene reveal that forest degradation areas 1) accourni) Although intermediate forest alterations have a sig-
for, respectively, 19% and 16% of the ground coverage and nificant impact on the assessment of forest areas
2) overlap with 10% and 18% of the forest class detected impoverished each year by anthropogenic activities,
by the FAO and TRFIC deforestation mapping programs in  no degraded forest estimation is required by the Kyoto
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Protocol and provided by official deforestation mapping[22]
programs (such as those by FAO and TRFIC).
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