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Abstract—The Global Rain Forest Mapping (GRFM) radar mo-
saics, generated from L-band Japanese Earth Resources Satellite
1 imagery downsampled to 100-m pixel size, provide a two-season
spatially continuous coverage of the humid tropical ecosystems
of the world. This paper presents a novel classification approach
suitable for regional-scale vegetation mapping using the GRFM
datasets. The mapping system consists of: 1) an application-depen-
dent wavelet-based edge-preserving smoothing algorithm and 2)
a two-stage per-pixel hybrid learning nearest multiple-prototype
(NMP) classifier, whose unsupervised first stage is a per-pixel
near-optimal vector quantizer, called enhanced Linde-Buzo-Gray
(ELBG), recently proposed in pattern recognition literature.
Identified as ENMP (NMP with ELBG), this novel classification
approach is compared against two alternative systems in the
classification of forest cover disturbances located across an area in
the Amazon Basin. Surface classes of interest are primary forest,
degraded forest, nonforest, and water bodies. Reference maps,
derived from 30-m resolution Landsat Thematic Mapper imagery,
are provided by the National Aeronautics and Space Adminis-
tration and the Food and Agriculture Organization of the United
Nations. Abundant quantitative and qualitative evidence shows
that: 1) in a forest/nonforest data-mapping task, ENMP provides
a testing accuracy of 87%, in line with training accuracies, i.e.,
the proposed method seems capable of generalizing well over the
GRFM South America dataset and 2) among three competing
approaches, ENMP provides the best compromise between ease
of use, mapping accuracy, and computational time. Starting from
these results, ENMP is employed to generate a swamp forest map
of the whole Amazon Basin from the two-season GRFM radar
mosaic of South America, in the context of the Global Land Cover
project (GLC 2000).

Index Terms—Classification, clustering, radar mosaic, vegeta-
tion mapping, wavelet representation.

I. INTRODUCTION

HE GLOBAL Rain Forest Mapping (GRFM) project was
initiated by the National Space Development Agency of
Japan (NASDA, now JAXA) and conducted by some of the
leading Remote Sensing institutions around the world, with the
goal of obtaining a two-season spatially continuous radar data
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coverage of the humid tropical ecosystems of the world [1]-[4].
The entire Amazon Basin, from the Atlantic to the Pacific, was
imaged by the Japanese Earth Resources Satellite 1 (JERS-1)
L-band synthetic aperture radar (SAR) in September—December
1995, a time corresponding on average to low flooding extent of
the Amazon River Basin. The same area, including the north-
ernmost part of South America and Central America, was cov-
ered again in May—August 1996, during a high flood period of
the Amazon River. The high-resolution (18 m with 12.5-m pixel
size) ground range images were processed to compile geocoded
and calibrated mosaics at 100-m spatial resolution [2]. The two-
season GRFM South America mosaics are referred to as the
low-water mosaic and the high-water mosaic, respectively.

Preliminary studies prove that the medium-resolution GRFM
radar images are suitable for replacing high-resolution optical
images for tropical rain forest extent estimation [5]. In partic-
ular, forest maps made from JERS-1 radar images downsampled
at 100 m can replace forest maps made from 30-m resolution
Landsat TM optical images if: 1) locations where topography
dominates the landscape are masked out and 2) radar and op-
tical images are acquired less than one year apart.

Starting from recent developments in the GRFM radar data-
mapping systems [6]—[11], this paper presents a novel two-stage
data classification scheme (originally proposed in a related con-
ference paper [12]) composed of the following:

* an application-dependent wavelet-based edge preserving
smoothing algorithm (a refinement of the method pre-
sented in [10]);

* a per-pixel two-stage hybrid learning nearest mul-
tiple-prototype (NMP) classifier, whose unsupervised
learning first stage consists of the near-optimal enhanced
Linde-Buzo-Gray (ELBG) vector quantizer recently
proposed in the pattern recognition literature [13]-[15].

This novel classification scheme is hereafter referred to as
ENMP (i.e., NMP with ELBG).

In general, it is well known that “if the goal is to obtain good
generalization performance in predictive learning, there are no
context-independent or usage-independent reasons to favor one
learning or classification method over another” [16, p. 454]. In
the specific context of the GRFM radar image mapping at conti-
nental scale, due to the lack of reference maps with known accu-
racy and confidence interval, the subjective nature of the GRFM
radar data-mapping problem precludes an absolute judgment of
competing classifiers. As a consequence, the goal of this paper
is to provide enough quantitative and qualitative evidence on
the relative efficacy (in terms of mapping accuracy, computa-
tion time, and ease of use) of ENMP compared against alter-
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RADAR MAPPING APPLICATIONS AT LOCAL AND REGIONAL LEVEL FOR THE LATIN AMERICAN SITE OF THE TREES ERS-1 StuDY 1994
AND THE JERS-1 SCIENCE PROGRAM 1999

Author Study Area SAR data set Set of classes Classification method Validation method
Keil M. etal.  [Sena Madureira, Acre |[ERS-1 SAR C-band, [Forest / non-forest * Supervised thresholding for image [Comparison with two Landsat
[27] (Brazil). 25 m lsegmentation. [TM scenes, field survey along

(2 ERS scene)

* Segment-based maximum
likelihood
EBIS classifier.

the road, hand-held air photos

Conway J. [28]

|Acre (Brazil)
(4 ERS scene)

ERS-1 SAR C-band,
100 m

Forest / non -forest

* K-nearest neighbour classifier

IComparison with one Landsat
[TM scene, NOAA, 1 AVHRR
land ATSR-1 scenes.

Corves C. et al.
[29]

lanaus region (Brazil)

[ERS-1 SAR C-band,
30 m

[Forest / non -forest

* Minimum Euclidean distance
iclassifier

IComparison with one Landsat
[TM scene

Wooding M.G [Rondonia (Brazil) ERS-1 SAR C-band, [Forest, scrub/grass, * Visual interpretation of multi- IComparison with one Landsat

and Batts A. J. 25 m, multi-temporal [cultivated temporal colour composites [TM scene

[30] dataset

Grover K. et [Tapajos National Park |[ERS-1 SAR C-band, [Forest (different types), [* Speckle noise filtering. IComparison with one Landsat

al.[31] (Brazil) 25 m, multi-temporal [secondary forest, pasture, [¥ Interactive thresholding for image [I'M scene and SAREX C-band
dataset bare soil classification. |Airborne data

Hoekman D.  [Aracuara (Colombia) [ERS-1 SAR C-band, [Forest/ non-forest, * Texture analysis. IComparison with NASA/JPL

[32] 25 m, multi-temporal [shifting cultivation * Speckle noise filtering. JAirborne SAR (AIRSAR)

dataset

* Wave scattering model.

P-, L- and C-bands

Van der Sanden [Mabura Hill (Guyana) [ERS-1 SAR C-band  [Forest (different types), [|* Visual interpretation (PRI) Field survey
[33] PRI and SLC multi- [logged forest, non-forest, [* Textural analysis (.SLC).
temporal imagery) secondary forest
Bijker W. and [San Jose’ del Guaviare |[ERS-1 SAR C-band, [Forest, non-forest, * Speckle noise filtering. Field survey
Hoekman D.  [(Colombia) 25 m, multi-temporal [savannah, pasture * Image segmentation.
[34] dataset
Dobson etal.  [Cabaliana (Brazil) ERS-1 SAR L-band [Forest (different types), [* Edge-preserving speckle noise Field survey
[35] land ERS-1 SAR C-  [non forest (different ffiltering.
lband combination classes) * Unsupervised clustering.
* Supervised ML cluster aggregation
into classes.
DutraL. V. et |Acre, Rondonia, Para’, JERS-1 SAR L-band, [Deforestation, * Texture analysis. IComparison with Landsat TM
al. IMonte Alegre Lake 125 m flooded areas extension  [* Minimum Mahalanobis distance  [scenes, field survey and air
[36] area (Brazil) classifier. Iphotos

native classifiers in a regional-scale mapping pursuit using the
GRFM radar dataset.

The rest of the paper is structured as follows. Section II
discusses the GRFM dataset classification problem and some
related works in tropical forest mapping using synthetic aper-
ture radar (SAR) data. In Section III, study areas, surface classes
of interest, and reference data are presented. In Section IV, the
wavelet-based edge-preserving smoothing algorithm adopted
by ENMP is briefly summarized. In Section V, ENMP is
discussed as a classifier potentially suitable for dealing with
smoothed GRFM images. Section VI deals with the design of
the experimental session. In Section VII, results are compared
against those of alternative approaches. In Section VIII, an ap-
plication of ENMP to regional-scale mapping of tropical forests
from the GRFM radar data mosaics is reported. Conclusions
are given in Section IX.

II. TROPICAL FOREST MAPPING USING SAR DATA: A REVIEW

Much research work has been recently devoted to the extrac-
tion of tropical forest information from radar imagery at either

local or global scale. Recently published in remote sensing
literature, several Amazon forest-mapping experiments actu-
ally deal with single SAR [JERS or European Remote Sensing
(ERS)] satellite images, i.e., focus on local-scale mapping. In
this category, approaches based on visual inspection [20], [21]
or automatic classification [22]-[24] were investigated.

The ERS-1 1994 study [25], within the Tropical Ecosystem
Environment observations by Satellites (TREES) project was
the first international initiative specifically developed to inves-
tigate the relevance and usefulness of spaceborne SAR data for
tropical forest mapping at a global scale. In this study, a set of
representative forest sites were selected around the tropical belt
(eight of them located in South America [26]).

More recently, the GRFM dataset was distributed to the scien-
tific community [1]. To investigate the potential suitability of the
TREES and GRFM datasets in tropical forest-mapping tasks,
several preliminary studies were conducted on wide-area radar
mosaics of ERS-1 and JERS-1 data [27]-[36]. These works are
summarized in Table I in terms of study area, type of sensor,
spatial resolution, classification scheme (set of classes and clas-
sification method), validation method, and reference dataset.



2656

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 42, NO. 11, NOVEMBER 2004

7R

Fig. 1.

General issues to be considered when dealing with the GRFM
radar datasets are: 1) the size of the datasets that calls for com-
putationally efficient image analysis tools; 2) the presence of
multiplicative speckle noise, which suggests the exploitation of
a despeckling stage; and 3) the spatial and scaling properties of
the surface classes of interest (e.g., forests and urban areas are
highly textured), which suggests the use of multiscale data anal-
ysis techniques for texture detection.

The last two points indicate that conventional approaches to
pattern classification will not work for this kind of dataset. In-
deed, clustering techniques that work exclusively in a measure-
ment space while ignoring spatial information (e.g., ISODATA
[17]), as well as contextual clustering algorithms (which employ
a piecewise constant or slowly varying image model eventu-
ally affected by an additive white Gaussian noise field indepen-
dent of the scene, like the modified Pappas adaptive clustering
(MPAC) [18], [19]), are expected to be incapable of dealing with
texture (correlation) and/or multiplicative noise, i.e., they are
likely to produce oversegmentation.

Instances of bespoke approaches to the classifications of
GRFM datasets can be found in [10], [11], and [37].

In [10], two classification strategies, noncontextual
(per-pixel) and contextual, respectively, are compared in a

Synoptic visual description and radiometric characterization of classes Forest (F), Degraded Forest (DF), Nonforest (NF), and Water (W).

one-band GRFM data-mapping problem where three study
areas, featuring different patterns of forest cover disturbances,
are selected across the Amazon Basin for both training and
testing. Classes of interest are forest, nonforest, water, and
degraded forest. The noncontextual classification approach,
hereafter referred to as NMP with ISODATA (INMP), consists
of a per-pixel two-stage hybrid learning NMP classifier [38],
whose unsupervised learning first stage adopts an ISODATA
clustering algorithm. In the supervised learning second stage of
INMP, clusters are gathered into classes of interest according
to expert photointerpreters. The second classification approach,
hereafter referred to as segment-based NMP (SNMP), is an
application-dependent strategy tailored to SAR data. It consists
of three modules.

1) An application-dependent wavelet-based edge-preserving
smoothing algorithm whose output is a slowly varying ap-
proximation of the radar backscatter image plus an edge
map where edges are detected as local maxima of the gra-
dient modulus.

2) An application-dependent region growing algorithm,
where criteria for detecting initial homogeneous re-
gions and for assigning neighboring pixels in the growth
process are based on one-point speckle statistics;
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TABLE 11
SET OF SURFACE CLASSES (MUTUALLY EXCLUSIVE AND TOTALLY EXHAUSTIVE) AND A SET OF BACKSCATTER PROPERTIES FOR ASSIGNING CLASS LABELS
Surface class Notes Surface class components Average Backscatter
digital coefficient,
number o° (dB)
Forest (F) Dense canopy forest 110 771
Open canopy 106 -8.03
Lowland floodplain forest 130 -6.26
Mangroves forest 105 -8.11
Flooded forest 255 -0.41
Degraded We use the term “degraded forest” to describe any 105130 -6.26+8.11
Forest (DF) intermediate state from forest to deforestation [10].
Includes disturbed forest areas, partial re-growth, isolated
forest patches within non-forest areas, and fragmented
forest areas.

Non-forest (NF) | Includes the agricultural land and natural non-forest areas New clear-cuts 235 -1.11
(e.g., cerrado). It cannot be discriminated from partial re- Other 100 -8.50
growth (e.g. abandoned pastures).

Water (W) Includes lakes and rivers. Sometimes comparable with 30 -18.90
bare-soil backscatter.

3) A segment-based two-stage hybrid learning classifier. In
the first stage, the segment mean and standard deviation
are computed in the feature extraction step, and a user-de-
fined number of segment categories is reached by clus-
tering segment feature vectors according to a Jeffries—Ma-
tusita pairwise minimum-distance criterion. In the super-
vised learning second stage, unsupervised segment cate-
gories are gathered into supervised classes of interest ac-
cording to expert photointerpreters.

The experimental comparison of INMP and SNMP reveals
that, in line with theoretical expectations: 1) noncontextual
INMP is faster and easier to use (i.e., it requires fewer user-de-
fined parameters to run) than contextual SNMP and 2) INMP is
affected by salt-and-pepper classification noise effects, whereas
SNMP pursues a regularization of the mapping solution at
the cost of a greater computational load. In synthesis, to im-
prove the tradeoff between ease of use, mapping accuracy, and
computational time, conclusions reported in [10] suggest to
combine the preprocessing stage of SNMP, providing smooth
radar images, with the pixel-based clustering stage of INMP.

III. CLASSES OF INTEREST, STUDY AREAS,
AND REFERENCE DATA

The following considerations underpin the design of our clas-
sification pursuit.

According to [39], a (crisp) classification scheme is defined
by: 1) a set of surface classes that are mutually exclusive and
totally exhaustive and 2) a set of rules, or definitions, or prop-
erties for assigning class labels. Next, an adequate number of
reference samples per class must be gathered, both for training
and for the quantitative assessment of mapping results. Indeed,
inductive learning problems require a minimum number m,; of
independent representative samples per class. Typical rules of
thumb require the following.

* m; = 5 D (minimum) and m; = 100 D (highly desirable
if attainable), where D is the data dimensionality [39],
[40]. This criterion ensures an adequate estimation of non-
singular/invertible class-specific covariance matrices [40].

* m; > 30 + 50, so that, according to a special case of
the central limit theorem, the distribution of many sample

statistics becomes approximately normal, which is a basic
assumption in several traditional classifiers [41].

» To avoid a poor generalization capability of an induced
classifier related to model complexity, the minimum
number of per-class representative samples should be
Mmin ~ W/e, where W is the total number of free
parameters, and ¢ is the classification error. If e = 0.1, we
need around ten times as many training patterns as there
are free parameters in the inductive learning system [42].

A. Surface Classes of Interest

In our classification experiment, the definition of the map
legend is driven by the need of supporting as a thematic goal
the monitoring of two important processes related to land cover
change in the tropics: deforestation and forest degradation [45],
[46]. Accordingly, surface classes of interest in our classification
exercise are: Forest (F), Degraded Forest (DF), Nonforest (NF),
and Water (W). For more details on the rules underpinning these
definitions in the forestry domain, the reader is referred to [44]
and [45]. A synoptic view of the radiometric characterization of
the selected land cover classes is given in Fig. 1 and Table II.

B. Sample Study Areas

In line with the general criteria summarized in the introduc-
tion of Section III, a set of four study areas is selected satisfying
the following requirements.

* Study sites fall within the so-called “hot spot” deforesta-
tion areas defined by the TREES project in the Amazon
Basin [43].

* They feature a wide range of biomass and include dif-
ferent land use patterns reflecting the major forms of an-
thropogenic activities, i.e., they characterize the different
patterns of forest cover disturbances occurring within the
Amazon Basin.

¢ In line with [5] (see Section I), for every study site there
must be a difference of less than one year between the
acquisition dates of the JERS-1 images and the Landsat
Thematic Mapper (TM) images used to generate reference
maps.
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To maintain consistency with experimental results related
to classifiers INMP and SNMP, the three study areas used
as training sites are the same as those adopted in [10]. Each
site of interest covers an area of 185 x 185 kmz, which is
approximately equivalent to the area covered by one Landsat
TM image. This corresponds to nine JERS-1 images covering
approximately 60 x 60 km? each. Two training areas, located
in the Mato Grosso and South Rondonia states of Brazil, are
identified as sites 226-69 and 230-69 according to the Landsat
TM path-row code. The third training area, located in the Flo-
rencia-Napo region in Colombia, is identified as site 8-59. The
testing accuracy (measured upon independent testing samples
not employed for learning the system’s free parameters) is an
estimate of the generalization capability of a mapping system.
Thus, a fourth study area, located in the North Rondonia state
of Brazil and identified with the Landsat TM path-row code
231-68, is adopted as an independent testing site (not included
in [10], refer to Section VI-A).

C. Reference Maps

In RS applications, representative samples are typically
derived from up-to-date reference data acquired from topo-
graphic maps, manually interpreted aerial photographs and/or
by ground observations [39]. In our GRFM data-mapping
context, thematic maps of the Amazon Basin, generated from
Landsat TM images, have been made available, in recent years,
by national and international institutions, like the National
Aeronautics and Space Administration (NASA) and the Food
and Agriculture Organization of the United Nations (FAO).
One thematic map, delivered by NASA Tropical Rain Forest
Information Center (TRFIC) [44] and derived from a Landsat
TM image acquired in 1996 is considered the reference map
for the North Rondonia testing site (231-68). In the TRFIC
maps, pixel size is 30 m, and the geographic localization error
is approximately 500 m.

For training areas 226-69 and 230-69, two TRFIC thematic
maps, made from Landsat TM images acquired in 1992 and
1996, respectively, are taken as reference material.

Unfortunately, no TRFIC map is available for the third
training site 8-59. In this case, two reference maps at 30-m
resolution are derived from Landsat TM data, acquired in 1991
and 1996, respectively, using the hierarchical NMP (HNMP)
classifier proposed in [47]. These two maps are validated by
means of FAO’s forest resource asessment maps. The FAO
maps, generated by visual interpretation of Landsat TM scenes
acquired in 1990 and 1996, respectively, feature a minimum
mapping unit of 100 ha.

Classes in the reference TRFIC maps are designated as:
1. Forest, 2. Deforested areas, 3. Forest regrowth, 4. Water,
5. Cloud, 6. Cloud Shadow, and 7. Cerrado. For comparison
with classes F, DF, F, and W extracted from the GRFM radar
dataset, the original TRFIC classes are combined into meta-
classes according to Table III.

Comparison of the high-resolution TRFIC and HNMP refer-
ence maps (derived from Landsat TM data) with medium-res-
olution maps, generated from the GRFM radar data, is made
possible by: 1) downsampling reference maps from 30 to 100
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TABLE III
RELATIONSHIP BETWEEN CLASSES DEFINED IN THE TRFIC THEMATIC
MAPS AND THE GRFM RADAR MAPS

TRFIC Thematic Classes Thematic Metaclasses

5. Cloud lassifi
6. Cloud Shadow 0. Unclassified

4. Water 1. Water (W)

1. Forest 2. Forest (F)

3. Re-growing Forest
2. Deforested
7. Cerrado

3. Degraded forest (DF)
4. Non-forest (NF)

m, to make the spatial resolution of reference and radar maps
the same and 2) coregistering reference maps with radar maps
by means of tie-points selected by visual inspection.

The complete set of reference maps employed for result as-
sessment and validation is summarized in Table IV. It has to be
noted that quantitative accuracy figures and confidence intervals
for the reference maps are not available. As a consequence, an
absolute judgment of competing systems is precluded, which is
tantamount to saying that, unfortunately, no target accuracy can
be specified for the mapping exercise described here. However,
at the time this work was performed, the adopted reference maps
were considered by the scientific community working on trop-
ical vegetation monitoring as the best spatially explicit reference
material available at regional scale. As such, they constitute the
only practical if not optimal choice for a map validation exer-
cise at the regional scale.

IV. WAVELET-BASED MULTISCALE
EDGE-PRESERVING SMOOTHING

Wavelets have been applied to radar image analysis and pro-
cessing in recent years [48]-[57]. De Grandi et al. [57] have pro-
posed a wavelet-based edge-preserving smoothing algorithm for
SAR images. The algorithm is based on a dyadic wavelet that
works as a differential operator [58] and a multiscale edge de-
tection approach proposed in [59] and [60]. An improved ver-
sion of this algorithm is at the core of the preprocessing step of
ENMP. Other applications of the same approach can be found
in [55] and [56]. Statistical characterization and performance
analysis of the algorithm with special emphasis on the case of
multiplicative speckle noise are being considered for publica-
tion in a specific paper. The main components of the smoothing
algorithm can be summarized as follows (see block diagram in
Fig. 2).

1) Image model. The radar image model takes into account
how the radar backscatter changes with scale for: 1) ho-
mogeneous areas featuring stationary texture and speckle
statistics and 2) nonstationary image structures like image
step edges, lines, and point targets.

2) Wavelet modulus maxima tracking. Tracking positions
and values of the wavelet modulus maxima through
spatial scales is the fundamental mechanism underpin-
ning the edge-preserving smoothing algorithm by image
synthesis (reconstruction).

3) Wavelet thresholding for denoising and texture
smoothing. An application-specific rule-based mech-
anism is applied to distinguish between gradient modulus
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SUMMARY OF THEMATIC MAPS DERIVED FROM LANDSAT TM AND JERS-1 IMAGERY, USED FOR RESULT ASSESSMENT AND V ALIDATION (*

TABLE 1V

ACQUISITION DATE NOT AVAILABLE)

RADAR MAPS
SITE INMP SNMP ENMP REFERENCE MAPS
(Landsat TM path-row)
NASDA JERS-1 NASDA JERS-1
Level 2.1 _ TRFIC
(100 m) T™ 19 May 92
Level 2.1 15 Nov. 92
226-69
(100 m)
Mato Grosso
(training) 15 Nov. 92
_ _ GRFM mosaic TRFIC
Sept.-Dec. 95 TM 31 July 96
NASDA JERS-1 NASDA JERS-1
_ TRFIC
T™M 15 May 92
Level 2.1 Level 2.1
230-69
South Rondonia (100 m) (100 m)
April April
(training) 5 April 93 5 April 93
_ _ GRFM mosaic TRFIC
Sept.-Dec. 95 T™M 13 July 96
NASDA JERS-1 NASDA JERS-1
_ HNMP
TM 2 March 91
Level 2.1 Level 2.1
8-59
Florencia Napo (100 m) (100 m)
.. 14 Nov. 92 14 Nov. 92
(training)
_ _ GRFM mosaic HNMP
Sept.-Dec. 95 TM 11 Aug. 96
231-68
. GRFM TRFIC
North Rondonia - - mosaic TM 1996*
(testing) Sept.-Dec. 95
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local maxima related to forest/nonforest interclass transi-
tions (to be preserved), from those related to forest within-
class texture variations (to be removed).

4) Reconstruction from regularized neighborhoods of se-
lected wavelet modulus maxima. Scope of this step is
to reconstruct an edge-preserving smoothed signal by
moving from coarser to finer resolution. The reconstruc-
tion is achieved by means of an inverse wavelet transform
while exploiting the evolution with scale of wavelet mod-
ulus local maxima detected by the tracking algorithm.

V. CLASSIFICATION METHOD

Section II pointed out that robust mapping using radar data
may realistically stem from systems exploiting multiscale

image analysis criteria. Hereafter, a novel GRFM data-mapping
scheme, ENMP, is proposed as a synthesis between the INMP
classifier, which is noncontextual (pixel-based) and computa-
tionally efficient, and the SNMP classifier, which is contextual
but computationally expensive (as pointed out in a related
paper [10]). In deeper detail, to combine high classification
accuracy with low processing time, a computationally efficient
per-pixel (i.e., noncontextual) clustering algorithm, similar to
that adopted in INMP, is fed with a smoothed approximation of
the radar data at full resolution similar to that computed by the
SNMP preprocessing block.

Main building blocks of ENMP are shown in Fig. 3. In line
with [11], it is the preprocessing stage of ENMP (block 1) that
takes multiscale contextual information into account by imple-
menting the wavelet decomposition and reconstruction algo-
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Fig. 2. Block diagram of the wavelet-based algorithm for the generation of edge-preserving piecewise smooth approximations of the radar imagery.
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Fig. 3. Building blocks of ENMP. Computational processes are in rectangles,
datasets in ovals.

rithm summarized in Section IV. Block 2 of ENMP consists
of a per-pixel two-stage hybrid learning classifier whose unsu-
pervised learning module is implemented by the ELBG vector
quantization algorithm. This algorithm was recently proposed
in pattern recognition literature as an improvement over the
well-known LBG (i.e., hard c-means) vector quantization algo-
rithm [13]-[15]. It is a batch learning nonconstructive vector
quantizer, i.e., it tries to minimize a distortion error, or mean
square error (MSE), with a fixed number of codewords that
must be user-defined. The original contribution of ELBG is to
employ local optimization criteria, which may require code-
words to move across noncontiguous Voronoi regions, to reduce
the global distortion (quantization) error. This makes ELBG
nearly optimal and stable, i.e., its output results are virtually
independent of the initial position of templates. At the second
stage of the hybrid learning classifier, template vectors are la-
beled. In general, many-to-one relationships between unsuper-

vised template vectors (codewords) and land cover classes of
interest can be defined by an expert photointerpreter or by super-
vised learning techniques [42]. In block 3, each pixel is labeled
according to the minimum-distance-to-prototype criterion.

It is noteworthy that, to improve the noncontextual ELBG
clustering step without requiring additional supervision, ELBG
may be followed in cascade by the context-sensitive multiscale
modified Pappas adaptive clustering (MPAC) algorithm [18].
MPAC is capable of detecting genuine, but small, image details
at the cost of an additional computational overhead. Since the
suboptimal MPAC block is in cascade with ELBG, the perfor-
mance of the former largely depends on the quality of the ini-
tialization provided by the latter. In any event, exploitation of
MPAC was not pursued further in the present work for compu-
tational reasons.

VI. EXPERIMENTAL SESSION DESIGN

The proposed ENMP classification approach is compared
against the INMP and SNMP classifiers using the low-water
backscatter GRFM South America radar mosaic, where four in-
dependent study areas are located. These sites feature different
forest cover disturbances and are documented by reference
maps (refer to Section III). This choice allows for compatibility
with the experiments comparing SNMP with INMP reported in
[10].

A. Reference Data Resampling Strategy

In practice, any representative data resampling method for

mapping accuracy assessment does the following.

1) Resamples reference data into training and testing
datasets. On the one hand, if the training set is small, then
the induced classifier will not be robust (to changes in the
training set) and will have a low generalization capability.
On the other hand, when the test set is small, then the
confidence in the estimated error rate will be low [17].
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Fig. 4. Examples of perimeter-over-area ratio (PA) computations.

2) Takes the empirical testing error as an estimate of the true
error rate [4], [5], [7]. Typical error estimation methods
for induced classifiers are the holdout, leave-one-out,
n-fold cross validation, and the bootstrap method (for a
detailed discussion, refer to [7], [16], and [18]).

In our case, to maintain consistency with results in [10], ref-
erence data, provided by four study areas, are resampled into
training and testing datasets according to an holdout valida-
tion method (where a typical reference data partition is 2/3 for
training and 1/3 for testing [62]). In particular, in line with [10],
three study areas (226-69, 230-69, and 8-59) are adopted as
training sites (i.e., to generate induced classifiers), and one study
area (231-68) as testing site to assess the generalization ca-
pability of competing classifiers (not considered in [10]). It is
noteworthy that training samples collected from training sites
(226-69, 230-69, and 8-59) account for only 1% of the whole
dataset, i.e., the classification problem at hand is likely to be
poorly to ill-posed [61].

B. Implementation Parameters

The ELBG clustering stage of ENMP is run on the training
dataset (consisting of training sites 226-69, 230-69, and 8-59)
with a number of prototypes (also called clusters or template
vectors) equal to 16. The user-defined number of cluster proto-
types is set arbitrarily larger than four, which is the number of
surface classes (as required by NMP classifiers [38]), but suffi-
ciently small to be feasible for expert photointerpreters to detect
many-clusters to one-class relationships at the second stage of
ENMP. The number of maximum iterations is set to 10, which
is sufficient for ELBG to reach convergence.

To be consistent with ELBG, the ISODATA clustering stage
of INMP, implemented by the ENVI image processing software
toolbox (ENVI is a product of RSI, Inc. [63]), employs 16 clus-
ters, and a per-class label change default value of 2% to reach
termination.

In SNMP, the number M.« of pixels required to gather ro-
bust segment-based statistics is set to 49, and the theoretical
variance of a homogeneous region is computed according to the
procedure outlined in [3]. In the region-merging step, the final
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number of segment-based categories is set equal to 16, to be
consistent with the final number of clusters detected by ENMP
and INMP. Owing to their preprocessing filtering stage, SNMP
and ENMP are more difficult to use (i.e., have more free param-
eters, which are less intuitive to set) than INMP, while ENMP
is easier to use than SNMP.

C. Map Quality Measures

Quantitative assessment of the fidelity of the map to reference
data implies evaluating: 1) the labeling (i.e., thematic) fidelity of
the map to reference data [64] and 2) the spatial distribution of
classification errors [65].

1) Labeling Fidelity of the Map to Reference Data: The la-
beling fidelity of the map to reference data, also known as the-
matic accuracy [39], is typically investigated by a confusion ma-
trix (error matrix) [66]. The confusion matrix is currently at the
core of land cover classification accuracy assessment literature
because it provides an excellent summary of the two types of
thematic errors that may occur, namely, omission and commis-
sion errors [65].

In line with [67], confusion matrices between radar and refer-
ence maps are computed in this paper. In order to shrink the con-
fidence interval (i.e., variance) of a classification accuracy esti-
mate, the number of testing samples must be sufficiently large
(see Section VI-A). Therefore, each confusion matrix is gen-
erated from 300 class-specific samples randomly selected from
the study site at hand (consistently with the criteria listed in Sec-
tion III).

There are many well-known measures of accuracy that can be
derived from a confusion matrix, e.g., overall accuracy (OA),
normalized accuracy, producer’s accuracy, user’s accuracy,
Kappa coefficient (K € [—1,1]), variance of K, Z coefficient,
etc. [39]. In general, OA (defined as the sum of the confusion
matrix diagonal elements), normalized accuracy, and coeffi-
cient K (which exploits all matrix elements) tend to disagree
[39], thus reflecting different information contained in the
error matrix. In line with the comparison between SNMP and
INMP proposed in [10], coefficient K , which is the standard
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TABLE V
COMPARISON OF CLASSIFIERS INMP, SNMP, AND ENMP FOR TRAINING SITES 226-69, 230-69, AND 8-59. REFERENCE MATERIAL CONSISTS OF TRFIC MAPS
(SITES 226-69 AND 230-69) AND MAPS DERIVED FROM LANDSAT TM IMAGES USING THE HNMP CLASSIFIER (SITE 8-59)

Site Classification = = ~
method K var(K) K zZ
INMP 0.603 0.000482 27.47
226-69 SNMP 0.605 0.000457 28.30 0.06/SNMP -INMP|
ENMP 0.758 0.000230 49.98 5.83 ENMP —SNMP)|
INMP 0.265 0.000681 10.18
230-69 SNMP 0.407 0.000557 17.24 4.03|SNMP -INMP|
ENMP 0.621 0.000342 33.57 7.13 ENMP -SNMP|
INMP 0.205 0.000967 6.61
8-59 SNMP 0.303 0.000780 10.86 2.34/SNMP -INMP|
ENMP 0.579 0.000543 24.84 7.58 ENMP —SNMP|
TABLE VI

OVERALL ACCURACY (OA) VALUES RELATED TO CLASSIFIERS INMP, SNMP, AND ENMP FOR TRAINING AREAS 226-69, 230-69, AND 8-59. THE
CLASSIFICATION DISCREPANCY BETWEEN REFERENCE MAPS AND MAPS DERIVED FORM RADAR DATA INCREASES WITH THE PA RATIO
OF DEFORESTATION PATTERNS CALCULATED FOR CLASS F IN REFERENCE MAPS

Training Site OA INMP OA SNMP OA ENMP rA
(class forest in reference map)
226-69 86% 91% 92% 0.057
230-69 66% 73% 84% 0.144
8-59 55% 57% 82% 1.037

component of most classification accuracy assessments [68],
is adopted in this paper. Concerns related to the definition and
different ways of computing chance agreement P(E), a funda-
mental component of the Kappa statistic, have been reported
in the literature [71]. The main condition underpinning the
validity of P(E) is the statistical independence of the raters.
This condition is satisfied in our case, where the raters are two
different classification procedures using different datasets.

The range of K is qualitatively ranked as strong agreement
K > 0.8, moderate agreement 0.4 < K < 0.8, and poor
agreement K < 0.4 [68]. Let var(K) be the estimates of the
variance of K [69]. The test statistic for testing the significance
of a single error matrix becomes

K=K (1)

~

var(K)

For example, if K > 1.96, then the classification is signifi-
cantly better than a random classification at the 95% confidence
level [39]. To test whether two independent error matrices are
significantly different in statistical terms, the following relation
is adopted [69]:

P _ K4 — Kp|
|A-B| = = =
\/vér(KA) + var(Kp)

2)

where 7| 4_p) is standardized and normally distributed. Thus,
if Z|4—p) < 1.96, then K, and K are significantly different
at the 95% confidence level [39].

2) Spatial Distribution of Classification Errors: The spatial
distribution of classification errors, also known as location ac-
curacy [39], is a major concern in most RS image-mapping

projects [65]. Nonetheless, because accuracy metrics derived
from the traditional confusion matrix provide no information
on the spatial distribution of classification errors, then the es-
timation of the spatial fidelity of maps to reference data is ig-
nored in practice in RS literature [39]. A possible solution is to
replace the difficult problem of locational accuracy assessment
with the more tractable problem of assessing the spatial fidelity
of maps to reference data, irrespective of their labeling [19].
This is equivalent to comparing maps with a reference partition
in terms of segmentation quality indexes, which is a well-known
problem in image processing [19], [66].

In the context of RS image-mapping problems, a segmenta-
tion quality index can be computed if: 1) the reference sample
data form a two-dimensional lattice (image), termed reference
map or ground truth image [70] and 2) a segmentation process
partitions the map (under investigation) as well as the ground
truth image into segmented images, where each segment (also
called region) is made of connected pixels belonging to the same
(supervised) class (in case of a classification map) or (unsuper-
vised) category type (in case of a cluster map) and is provided
with a unique (segment-based) identifier.

A variety of measurements can be performed to numerically
describe spatial patterns (landscape fragmentation). In our anal-
ysis, the average perimeter-over-area (PA) ratio is adopted as a
typical measure of shape complexity [39], [72], [73]

1 P
PA = —- —
w2
k=1
m = total numer of segments
Py, = perimeter of the kth segment

Ay, = area of the kth segment. 3)
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TABLE VII
TRAINING OVERALL ACCURACY (OA) USING ENMP FOR TRAINING SITES MATO-GROSSO (226-69), SOUTH RONDONIA (230-69), AND FLORENCIA-NAPO (8-59)
COMPARED WITH THE TESTING OA FOR THE NORTH RONDONIA (231-68) TEST SITE

Classes Training OA Testing OA
230-69 226-69 8-59 231-68

A 83% 72% 58% 77%

B 86% 75%

C 92% 84% 82% 87%

A: classes W, F, DF, NF
B: classes W, F, DF, NF excluding cerrado
C: classes F, NF

230-69 Mato Grosso

226-69 South Rondonia
8-59  Florencia-Napo
231-68 North Rondonia

Fig. 5. Visual comparison between the ENMP map and the TRFIC reference
map. Mato Grosso training site (226-69), where deforestation is mainly due to
ranching and selective logging.

In our experiments, perimeter values are computed as four-
adjacency neighbors where pixel locations outside of the image
boundary are ignored (see some PA ratio computation examples
in Fig. 4). In this case, 0 < PA < 4. In general, when class labels
tend to gather in compact large segments, PA values tend to stay
low (i.e., tend to 0), while fragmented maps feature larger PA
values (i.e., tend to 4). In other words, the PA measure increases
when the separability between label types (which can be related
to pure substances or fluids) decreases, i.e., when the common
boundary between different label types increases.

VII. RESULT ASSESSMENT

Discrepancies between radar and reference maps may be
caused by the following phenomena:

1) real vegetation changes between JERS-1 and Landsat TM
data acquisition dates (those changes could have a natural
(phenology) or an anthropic cause);

2) differences between imaging systems, wave scattering
mechanisms, and classification approaches;

3) coregistration problems.

Owing to these effects, large discrepancies between radar
maps and reference optical maps are expected to occur across
the boundary between cerrado (belonging to class NF, see Sec-
tion ITI-A) and the humid forest ecosystem because of the sen-
sitivity of radar signal to: 1) forest biomass in transition areas

ENMP maps

Fig. 6. Visual comparison between the ENMP map and the TRFIC reference
map. South Rondonia training site (230-69), characterized by massive
deforestation following linear patterns.

ENMP maps

Fig. 7. Visual comparison between the ENMP map and the HNMP reference
map. Florencia-Napo training site (8-59), featuring deforestation with linear and
diffuse patterns.

(whereas the optical signal is related to the canopy reflectance);
2) topographic effects; and 3) soil moisture conditions (relevant
when the radar signal propagates through a low density canopy).
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training area
B testing area

P Ly T Y S B

Fig. 8.

ENMP maps of the North Rondonia testing site (231-68) and the South Rondonia training site (230-69). The TRFIC map which overlaps the testing site

is shown on the left. The whole GRFM South America mosaic is shown in the inset at the upper right corner.

A. Quantitative Assessment of Results

In [10], a detailed analysis of the labeling performances of
INMP and SNMP over training sites 226-69, 230-69, and 8-59
can be found. As summarized in Table V (adapted from [10]),
confusion matrix quality measures of INMP, SNMP, and ENMP
collected over training areas 226-69, 230-69, and 8-59 indicate
that ENMP features superior accuracy (K ), greatest difference
from random classification (K > 1.96, at the 95% confidence
level) and strongest difference with respect to error matrices of
other classifiers (Z > 1.96, at the 95% confidence level).

Table VI highlights the relationship between OA values for
classes F and NF over the three training areas and the PA ratio
relative to spatial patterns of class F extracted from the refer-
ence map (refer to Table IV for details about reference data). In
line with Table V, these results confirm that in terms of training
OA values, ENMP outperforms SNMP, which is in turn supe-
rior to INMP. Moreover, Table VI shows that ENMP is more
robust (less sensitive) than SNMP and INMP to changes in the
fragmentation of class F. In other words, ENMP seems more
capable than SNMP and INMP of detecting genuine but small
image details. Finally, Table VI shows that in line with theoret-
ical expectations, the classification discrepancy between refer-
ence and radar maps increases with the PA ratio (i.e., with the

fragmentation) of class F in reference maps for all competing
classifiers. This may be due to the following:

1) differences in spatial sampling between the 100-m resolu-
tion GRFM dataset and the 30-m resolution Landsat TM
reference data;

2) coregistration errors that increase where the landscape
complexity is higher;

3) higher dynamics of surface changes in highly fragmented
zones between two acquisition dates (e.g., due to anthro-
pogenic activities);

4) inability of the radar classification algorithm to detect
genuine but small regions of interest.

The generalization capability of ENMP is investigated in
Table VII, comparing the OA values of ENMP over the training
sites of Mato-Grosso (226-69), South Rondonia (230-69), and
Florencia-Napo (8-59) against the OA value over the testing
site of North Rondonia (231-68). In Table VII and row B,
instances of training site 8-59 (Florencia-Napo) and the testing
site (North Rondonia) are empty because class cerrado is
not present in these sites. Table VII shows that when class
set A (consisting of classes W, F, DF, and NF) is involved,
the testing accuracy, equal to 77%, is in line with training
accuracies. The major source of misclassification is identified
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Fig. 9. ENMP map of the low-water season GRFM South America mosaic (a) downsampled from 100 m to 1.2 km. ERS ATSR-2 TREES vegetation map (b) at
1.2-km spatial resolution. To match the legends of the two maps, classes evergreen forest, dry forest, and mangroves in the TREES map are color-coded as class
forest (F) in the ENMP map, open/fragmented forest as class degraded forest (DF), plantation, nonforest, and semievergreen forest/shrubs as class nonforest (NF).

TABLE VIII
BENCHMARK OF INMP, SNMP AND ENMP CLASSIFIERS WITH
RESPECT TO PROCESSING TIME

INMP SNMP ENMP
Total time (min) 1 20 8
Wavelet reconstruction NA 5 5

in class DF. When this class is removed from classification, the
testing accuracy increases to 87%. This forest/nonforest testing
value is superior to the U.S. Geological Survey classification
accuracy requirement (equal to 85%). Above all, the testing
accuracy is comfortably close to training accuracies (which
are optimistically biased). In other words, this value seems
realistic and capable of accounting for the unknown quality of
reference maps (also affected by spatial downsampling; refer
to Section III-C).

The experimental results shown in Table VII are also consis-
tent with theoretical expectations. On the one hand, the discrep-
ancy between radar and reference optical maps increases when
considering the boundary regions between cerrado (belonging
to class NF; refer to rows A and B of Table VII) and the low
backscattering surface belonging to class DF (due to clearing
or regrowth). On the other hand, high backscattering values of
class DF (due to stems that were recently felled and lie on the
ground) may overlap with those of flooded forest (which belong
to class F).

The ENMP maps relative to training sites 226-69, 230-69, and
8-59 are visually compared with reference maps in Figs. 5-7,
respectively. In Fig. 8, the ENMP maps over the North and South
Rondonia sites (231-68 and 230-69) are combined to be visually
compared with the TRFIC map that partially overlaps with the
testing area.

B. Qualitative Assessment of Generalization Capabilities

To qualitatively (visually) assess the generalization capability
of the ENMP classifier on the entire low-water season GRFM
South America radar mosaic, the following procedure is set up.
First, the GRFM mosaic is downscaled from 100- to 1200-m

pixel size. Due to the large number of equivalent looks, this
dataset does not need to be preprocessed for speckle removal.
Next, ELBG is run with 32 prototype vectors on the entire
dataset. Finally, clusters are combined into classes of interest
F, DF, NF, and W as shown in Fig. 9(a). According to expert
photointerpreters, this classification map at 1.2-km resolution
is qualitatively consistent with the JRC-ESA TREES project
forest map [43]. This map [see Fig. 9(b)] was derived from
300 ERS ATSR-2 optical images acquired between 1998 and
2000. Thematic classes are: water, evergreen forest, dry forest,
mangrove, open/fragmented forest, plantation, nonforest, and
semievergreen forest/shrubs (“Chaco”). In Fig. 9(b), classes
evergreen forest, dry forest, mangroves are color-coded as class
F, open/fragmented forest as class DF, plantation, nonforest,
and semievergreen forest/shrubs as class NF.

C. Computational Performance Assessment

In terms of computational time, classifiers INMP, SNMP, and
ENMP are compared on a training dataset equivalent to a GRFM
data block of 660 x 660 pixels in size. The clustering stage of
the three classifiers detects a final number of clusters equal to
10. The number of clustering iterations of classifiers INMP and
ENMP is set to 10. Processing times are shown in Table VIII
when all classifiers are run on a Sun Microsystems SPARC II
400-MHz workstation. This table reveals that the improved ac-
curacy of SNMP with respect to INMP is achieved at the cost
of an increased computational time that may become soon un-
acceptable in mapping tasks at the regional scale.

VIII. FURTHER DEVELOPMENTS

According to our training and testing results, based on
both qualitative and quantitative map quality assessments (see
Section VII), ENMP seems to provide a clear improvement in
the tradeoff between classification performance, computational
time, and ease of use (i.e., user-defined parameters, if any, are
easier to select) with respect to other classification approaches
like INMP and SNMP.
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Fig. 10. Swamp forest map of the Amazon Basin compiled using the two-season GRFM radar mosaics and the ENMP classifier.

Based on these encouraging results, ENMP is applied to the
entire two-season GRFM South America mosaic for a different
thematic goal: the generation of a regional-scale map of the
swamp forest extent in the Amazon Basin. Spaceborne radar
data have been proven to be quite effective in mapping tropical
swamp forests and their floodplains, which are environments of
great interest for biodiversity and global change studies. Indeed,
they harbor a series of important biochemical processes, such as
nitrogen turnover and methane emission. Swamp forests can be
discriminated from the surrounding lowland rain forest in radar
imagery using simple texture measures. Texture is induced by
the different canopy structure of the two forest types. Moreover,
at L-band, radiation penetrates the vegetation layers, and there-
fore, also the flooding conditions can be monitored thanks to the
double-bounce effect between the standing water and the trunks
[741, [75].

Reference maps, delivered by the local forestry service (In-
stituto Nacional de Recursos Naturales INRENA) and gener-
ated by visual interpretation of Landsat TM imagery in com-
bination with ground surveys, are employed to define classes
of interest and locate training sites. The GRFM South America
swamp forest map, compiled using the ENMP method, is shown
in Fig. 10. In this figure, the insets reveal details of the radar
map at full resolution (100 m) and bear evidence of the richness

of thematic information and spatial details obtainable with this
kind of ecosystemwide products. Inset 1 corresponds to an area
located across the Maranon River in Peru that has been selected
as one of the ENMP training sites. Insets 2, 3 (Central Amazon
Basin—State of Amazonia), and 4 (State of Para) correspond to
testing sites employed for the map validation that was carried
out by visual comparison with Landsat TM imagery.

Considered as a unique source of information on the extent
and flooding conditions of the South America ecosystem [76],
the ENMP swamp forest map is adopted as one information
layer of a continental-scale land cover map of South America
in the context of the Global Land Cover (GLC 2000) project
[77].

IX. SUMMARY AND CONCLUSION

In this paper, a novel operational GRFM radar data-mapping
approach, termed ENMP, suitable for processing radar datasets
at the continental scale, is proposed. It consists of: 1) an applica-
tion-dependent edge-preserving image smoothing stage and 2)
a per-pixel two-stage hybrid learning classifier, whose core is a
nearly optimal vector quantizer, called ELBG.

Due to difficulties in gathering reliable ground data in trop-
ical forest areas at the regional scale, estimation of the abso-
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lute accuracy of the GRFM thematic products is not realistic.
Rather, the aim of this paper is to provide enough quantitative
and qualitative evidence on the relative efficacy (in terms of
mapping accuracy, computation time, and ease of use) of ENMP
compared against alternative GRFM radar data-mapping sys-
tems. Collected qualitative and quantitative evidence show that
ENMP: 1) in a forest/nonforest-mapping task provides a testing
accuracy of 87%, which is in line with training accuracies, i.e.,
ENMP seems capable of generalizing over the entire dataset (as
confirmed by a qualitative comparison of a radar map covering
the entire Amazon Basin with a reference optical map at 1.2-km
resolution); 2) is superior to two alternative approaches, INMP
and SNMP, in terms of training accuracies; 3) is more robust
than INMP and SNMP to changes in the geometric fragmen-
tation of classes of interest; and 4) is competitive with INMP
and SNMP in terms of processing time and largely superior to
SNMP in terms of ease of use.

Results also show that, in line with theoretical expectations,
the discrepancy between radar and reference optical maps in-
creases when considering the boundary regions between cer-
rado (belonging to class NF) and humid forest ecosystems. A
set of multitemporal radar images may be used to avoid such
classification ambiguities. The foreseen JAXA Advanced Land
Observing Satellite mission will possibly provide such multi-
temporal data.

Finally, ENMP is applied to the whole two-season GRFM
South America mosaic to generate a map of the swamp forests
and their flooding conditions at the regional scale. This map, in
turn, provides a layer for a multisource global land cover map
of South America generated in the context of the GLC 2000
project.

Based on these experiments, ENMP appears as a viable op-
erational approach to the generation of regional-scale thematic
maps using the GRFM radar mosaics.
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