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Abstract—This work focuses on two challenging types of prob-
lems related to quality assessment and comparison of thematic
maps generated from remote sensing (RS) images when little or no
ground truth knowledge is available. These problems occur when:
1) competing thematic maps, generated from the same input RS
image, assumed to be available, must be compared, but no ground
truth knowledge is found to assess the accuracy of the mapping
problem at hand, and 2) the generalization capability of competing
classifiers must be estimated and compared when the small/unrep-
resentative ground truth problem affects the RS inductive learning
application at hand. Specifically focused on badly posed image
classification tasks, this paper presents an original data-driven
(i.e., unsupervised) thematic map quality assessment (DAMA)
strategy complementary (not alternative) in nature to traditional
supervised map accuracy assessment techniques, driven by the
expensive and error-prone digitization of ground truth knowl-
edge. To compensate for the lack of supervised regions of interest,
DAMA generates so-called multiple reference cluster maps from
several blocks of the input RS image that are clustered separately.
Due to the unsupervised (i.e., subjective) nature (ill-posedness) of
data clustering, DAMA provides no (absolute) map accuracy mea-
sure. Rather, DAMA’s map quality indexes are to be considered
unsupervised (i.e., subjective) relative estimates of labeling and
segmentation consistency between every competing map at hand
and the set of multiple reference cluster maps. In two badly posed
RS image mapping experiments, DAMA’s map quality measures
are proven to be: 1) useful in the relative comparison of competing
mapping systems; 2) consistent with theoretical expectations;
and 3) in line with mapping quality criteria adopted by expert
photointerpreters. Documented limitations of DAMA are that it is
intrinsically heuristic due to the subjective nature of the clustering
problem, and like any evaluation measure, it cannot be injective.

Index Terms—Badly posed classification, clustering, competing
classifier evaluation, generalization capability, image mapping,
quality assessment of maps, remotely sensed images, resampling
techniques for estimating statistics, sampling techniques for refer-
ence data selection, supervised learning, unsupervised learning.

I. INTRODUCTION

THE PURPOSE of quantitative accuracy assessment of
maps generated from remote sensing (RS) images is the

identification and spatial distribution assessment of map errors
[1]. Quantitative accuracy assessment of maps involves the
comparison of a site on a map against reference information
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for the same site. Sample comparison strategies are used to
estimate the accuracy of maps [1]. Labeled (reference) areas
sampled on a map, equivalent to digitized prior knowledge, are
known as ground truth regions of interest (ROIs). In general,
ROIs, whose type can be a polygon, line, or point [2], are
assumed to be (crisply) correct [1].1

A possible taxonomy of two-dimensional discrete maps
generated from RS images, hereafter referred to as thematic
maps, distinguishes between cluster maps and classification
maps made, respectively, by (unsupervised) clustering and (su-
pervised) classification systems [3], [8], [11]–[16]. The goal
of clustering is to separate a finite unlabeled dataset at hand
into a finite and discrete set of “natural,” hidden data structures
on the basis of an often subjectively chosen measure of sim-
ilarity (i.e., chosen subjectively based on its ability to create
“interesting” clusters) [11], [17]–[20]. Thus, on the one hand,
the subjective nature of the nonpredictive clustering problem
precludes an absolute judgement as to the relative effectiveness
of all clustering techniques [17], [18]. On the other hand, it is
well-known that “if the goal is to obtain good generalization
performance in predictive learning, there are no context-inde-
pendent or usage-independent reasons to favor one learning or
classification method over another” [5], [21, p. 454]. When an
inductive learning approach is employed for training a classifi-
cation system from a finite set of (input, output) sample pairs,
system complexity should be optimized in order to achieve the
best generalization capability (i.e., to make good predictions for
new unobserved future inputs in the testing phase) in combina-
tion with good learning capabilities (in the training phase) [3]. To
estimate and compare the generalization capability of competing
classifiers, well-known reference data resampling methods can
be employed (e.g., cross-validation methods, refer to Table I [4]).
To summarize, the assessment and comparison of competing
discrete mapping systems or products is very critical:

1) due to the lack of inherent (i.e., application-independent)
superiority of any (supervised) predictive learning classi-
fier as well as (unsupervised) data clustering algorithm;

2) when a classification problem is badly posed, i.e., when
there is a lack of reference samples with respect to the
complexity of the problem, which is typically the case
in RS image mapping applications where ground truth
knowledge is expensive, tedious, and/or difficult to gather.

Focused on this comparative framework, an original data-
driven (i.e., unsupervised) thematic map quality assessment
(DAMA) strategy, suitable for comparative purposes when
competing discrete mapping systems or products are provided

1When soft training strategies are employed, class-specific compatibility
(membership) values are equal to 1 within the inner parts of a ROI sampled by
the expert, and decrease linearly moving toward the ROI boundaries [9], [10].
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TABLE I
TRUE (EXPECTED) ERROR ESTIMATION METHODS FOR SUPERVISED INDUCTIVE LEARNING ALGORITHMS (ADAPTED FROM [4])

with little or no ground truth knowledge, is proposed. DAMA is
conceived as complementary (not alternative) in nature to tra-
ditional supervised map accuracy assessment techniques driven
by the expensive and error-prone digitization of ground truth
knowledge. To counterbalance the lack of explicit reference
samples, DAMA exploits a large number of implicit reference
samples extracted from multiple reference cluster maps gener-
ated from unobserved (unlabeled) blocks of the input RS image
that are clustered separately to detect genuine, but small, image
details at the cost of little human supervision. This implies that,
due to the unsupervised (i.e., subjective) nature (ill-posedness)
of data clustering, the (absolute) accuracy of DAMA’s multiple
reference cluster maps is impossible to estimate quantitatively,
i.e., DAMA features an intrinsically subjective (heuristic)
nature.2 As a consequence, the output of DAMA consists of
unsupervised relative quantitative indexes (hereafter referred
to as unsupervised map quality measures in contrast with
traditional supervised map accuracy measures) of labeling and
segmentation consistency between every competing map and
the set of multiple reference cluster maps. To summarize, the
operational comparative domain of DAMA is twofold, its two
application fields differing in terms of both inputs and outputs.

• In the first comparative scenario (refer to Fig. 4), a digital
input image and two or more competing thematic maps,
generated from that image (by any discrete mapping

2This is not at all surprising as traditional supervised methods for estimating
and comparing classifiers that employ a representative dataset are also heuristic.

source, either manual or automatic, supervised or unsu-
pervised), must be assessed and compared when no prior
(ground truth) knowledge about the discrete mapping
problem at hand is available [1], [6].

• In the second comparative scenario (refer to Sections VI
and VII), a digital input image small/unrepresentative
ground truth knowledge (i.e., the classification problem
is badly conditioned; refer to Section III) and a set of
competing classifiers are available to set up an experi-
mental assessment and comparison of the generalization
capability of the classifiers at hand [7]. In this application
field, the heuristic unsupervised DAMA strategy can be
conveniently employed in combination with the traditional
heuristic supervised resampling methods for estimating
and comparing classifiers (e.g., resubstitution method [4]).

The rest of this paper is organized as follows. Reference data
selection and resampling methods in RS image classification are
reviewed in Section II. The small sample size problem in RS
applications is presented in Section III. Identification and mea-
surement of map errors are discussed in Section IV. The original
contribution of this work, i.e., the unsupervised DAMA strategy,
is proposed in Section V. In Section VI, two badly posed image
classification problems are set up to test the utility of DAMA
in estimating and comparing the generalization capabilities of
some well-known induced classifiers. In Section VII, experi-
mental results are collected and discussed. Conclusions are re-
ported in Section VIII.
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II. REFERENCE DATA SELECTION AND RESAMPLING

METHODS IN RS IMAGE CLASSIFICATION

In RS applications, the design of a map sampling procedure
is required to be [1], [6], [22] unbiased, consistent with the
distribution of information across space conditioned by map
category, and capable of selecting a sufficiently large set of
independent (and, therefore, uncorrelated) samples to become
statistically valid (e.g., spatial autocorrelation must be taken
into account when estimating local statistics that assume inde-
pendent samples). It is well-known that there are three major
map sampling schemes (refer to [1] for further details): simple
random sampling, systematic sampling and stratified random
sampling. Manual selection and identification of ground truth
ROIs has historically been a difficult process that involves more
(subjective) art than (objective) science. To improve both the
efficiency and consistency of representative field extraction and
analysis, semiautomated techniques, either context-sensitive or
context-insensitive, have been proposed [1], [6], [12], [23].

In practice, an induced classifier is first designed using
training samples, and then it is evaluated based on its clas-
sification performance on the test samples. The percentage
of misclassified test samples (empirical error) is taken as an
estimate of the true (actual, expected) error rate [4], [11]. Thus,
any classification error estimate is a random variable (sample
statistic) provided with a confidence interval at a chosen level
of significance as a function of the specific training and testing
reference datasets being used [4]. Typical reference data re-
sampling methods for generalization capability assessment are
summarized in Table I (for a detailed discussion, refer to [4],
[13], and [24]). Developed in machine learning, these reference
data resampling methods are heuristic in nature,3 like the var-
ious criteria (e.g., the Akaike information criterion) developed
in conventional statistics for assessing the generalization per-
formance of trained models without the use of validation (i.e.,
testing) data, according to an equation of the kind

Prediction error Training error Complexity term (1)

where the complexity term is proportional to the number of the
predictive learning system’s parameters free to be optimized [3].

III. SMALL/UNREPRESENTATIVE SAMPLE SIZE

PROBLEM IN RS APPLICATIONS

In recent years, enhanced spectral, temporal, and spatial
resolutions of RS sensors have increased the number of de-
tectable land cover classes and detectable small, linear, or
irregularly shaped objects. These developments have dramat-
ically increased the size of ground truth ROIs required to be
representative of the true class-conditional or object-specific
distributions. Unfortunately, in RS applications, representative
samples are expensive, difficult, and/or tedious to digitize from
up-to-date reference data acquired from topographic maps,

3In the words of Duda et al.: “indeed, if there were a foolproof method for
choosing which of two classifiers would generalize better on an arbitrary new
problem, we could incorporate such a method into the learning . . . Estimating
the final generalization performance invariably requires making assumptions
about the classifier or the problem at hand or both, and can fail if the assumptions
are not valid . . . Occasionally our assumptions are explicit (as in parametric
models), but more often than not they are implicit and difficult to identify or
relate to the final estimation (as in empirical methods)” [21, p. 482].

manually interpreted aerial photographs and/or by ground
observations [1], [7]. When labeled data are of limited quantity
relative to input space dimensionality and/or the number
of free parameters to be optimized during training, at least
for some poorly represented classes, the well-studied so-called
small sample size problem occurs, which leads any induced
classifier to potentially feature a poor generalization capability
in realistic (i.e., nontoy) mapping problems (which is also
known as the Hughes phenomenon or curse of dimensionality)
[3], [7], [11], [21], [25], [26]. With respect to the curse of
dimensionality, a possible taxonomy of badly posed predictive
learning problems is the following (to be further employed in
experimental Sections VI and VII) [7].

• Ill-posed predictive learning problems: where data dimen-
sionality and/or the number of free parameters exceeds the
total number of representative samples and, as a conse-
quence, is much greater than the number of per-class rep-
resentative samples.

• Poorly posed predictive learning problems: where data
dimensionality and/or the number of free parameters is
greater than or comparable to the number of per-class rep-
resentative samples, but smaller than the total number of
representative samples.

An additional problem that usually exists in RS applica-
tions is the unrepresentative sample problem [7], caused by
spatial autocorrelation which reduces the informativeness of
neighboring pixels by violating the assumption of sample
independence (i.e., spatial autocorrelation must be taken into
account when local statistic estimates assume sample inde-
pendence). It is well-known that when classification learning
problems are affected by the small/unrepresentative sample
size problem, then on the one hand, if the training set is small
then the induced classifier will not be robust (to changes in the
training set) and will have a low generalization capability. On
the other hand, when the test set is small then the confidence in
the estimated error rate is low [4].

In RS applications, heuristic rules traditionally adopted to
avoid the data sampling scheme affected by ill-posedness are
the following.

1) The number of independent representative samples be-
longing to each class should be approximately propor-
tional to the prior probability of that class, if a maximum
a posteriori (MAP) classification rule is adopted [27].

2) To be representative of the true class-conditional distribu-
tions, representative samples should be capable of mod-
eling all possible variations in spectral response in each
land cover type of interest.

3) To avoid the curse of dimensionality, given the number
of spectral bands , general rules of thumb require that
the minimum number of independent, representative
samples belonging to each class , where is
the total number of classes, be as follows.

a) [4], [25], [28]. For example,
this rule ensures an adequate estimation of nonsin-
gular/invertible class-specific covariance matrices
[25].

b) , so that, according to a special
case of the central limit theorem, the distribution
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of many sample statistics becomes approximately
normal [1], [22].

4) To avoid a poor generalization capability of an induced
classifier related to model complexity, the minimum
number of per-class representative samples should be
proportional to the number of the learning system’s free
parameters to be optimized during training. For example,
according to the Vapnik-Chervonenkis (VC) dimension
of a neural network with two layers of threshold units, an
approximate worst-case bound on generalization is that to
classifycorrectly a fraction ofnew examples requires
anumberof trainingpatternsat leastequal to ,
where is the total number of weights (free parameters).
If , we need around ten times as many training
patterns as there are weights in the network [3].

5) It is well-known that any classification accuracy (preci-
sion) probability estimate is a random variable (sample
statistic) with a confidence interval (error tolerance) asso-
ciated with it, i.e., it is a function of the specific training
and testing sets being used [12]. The maximum-likeli-
hood classification accuracy estimate , where

is the number of correctly classified samples out of
testing samples, is an unbiased and consistent estimator.
The probability density function of has a binomial dis-
tribution. When (large sample set), a bino-
mial sampling can be well approximated with a standard-
ized normal distribution featuring mean and
standard deviation [22]. Thus, the
reference sample set size needed to estimate a spec-
ified classification accuracy probability with a given
error tolerance of at a desired confidence level (e.g.,
if confidence level then the critical value is 1.96
[22]) becomes

(2)

For example, if with , then .
If with a confidence interval (error tolerance)

, then [51, p. 290, Table 15.4]. If
with , then . If

with , then [51, p. 290, Table 15.4].
The following can be shown.

• For a fixed precision level , if increases then the
number of required samples decreases.

• Even though it seems counterintuitive, if the confi-
dence interval for all levels of precision is fixed,
then the number of reference samples required to
achieve (i.e., when the sample popula-
tion is evenly split between the two classes) is much
higher than when the level of precision tends to
1 (i.e., when the sample population moves toward a
dominant and rare two-class composition).

IV. IDENTIFICATION AND MEASUREMENT OF MAP ERRORS

The quantitative assessment of the fidelity of a thematic map
to reference data involves [1] the labeling (thematic) fidelity of
the map to reference data [20] and the spatial distribution of

Fig. 1. Two different thematic maps that generate the same error matrix
when compared with a reference map and, as a consequence, the same index
of labeling fidelity to reference data. It is noteworthy that, whereas labeling
fidelity indexes are the same for Map 1 and Map 2, the spatial fidelities of Map
1 and Map 2 to the ground truth image differ.

classification errors [15]. These two fidelity measures of the-
matic maps are discussed below.

A. Labeling Fidelity of the Thematic Map to Reference Data

The labeling fidelity of the thematic map to reference data,
also known as thematic accuracy [1], is typically investigated
with a confusion or error matrix4 [29], [30]. The confusion ma-
trix is currently at the core of land cover classification accuracy
assessment literature because it provides an excellent summary
of the two types of thematic error that may occur, namely, omis-
sion and commission errors [1], [15].

There are many well-known measures of accuracy that can
be derived from a confusion matrix, e.g., overall accuracy, nor-
malized accuracy, producer’s accuracy, user’s accuracy, KHAT
(kappa) coefficient, variance, Z coefficient, etc. [1], [15], [31]. In
general, overall accuracy, normalized accuracy, and the KHAT
coefficient tend to disagree [1], thus reflecting different infor-
mation contained in the error matrix. On the one hand, some
authors suggest adopting the kappa coefficient as a standard
measure of classification accuracy [32]. On the other hand, in-
herently, no evaluation measure can be injective. This implies
that different maps may produce the same confusion matrix (see
Fig. 1) and that different confusion matrices may generate the
same confusion matrix accuracy measure. These observations
suggest that no single universally acceptable measure of accu-
racy, but instead a variety of indexes, should be employed in
practice [1], [15].

B. Spatial Distribution of Classification Errors

The spatial distribution of classification errors, also known
as location accuracy [1], [15], is a major concern in most RS
image mapping projects (e.g., Foody proposes incorporating
some level of positional tolerance into thematic map accuracy
assessment [15]). Unfortunately, accuracy metrics derived from

4An error matrix is a square array of numbers set out in rows and columns
that express the number of sample units (e.g., pixels) assigned to a particular
category in one reference classification (usually, the columns represent this ref-
erence data), relative to the number of sample units assigned to a particular cat-
egory in another classification (typically, rows indicate the classification whose
fidelity to reference data must be assessed) [1].
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the traditional confusion matrix provide no information on the
spatial distribution of classification errors. As a consequence,
in RS literature, estimation of the spatial fidelity of maps to
reference data is ignored in practice [1]. Our proposal is to
replace the difficult problem of locational accuracy assessment
with the more tractable problem of assessing the spatial fidelity
of maps to reference data, irrespective of their labeling [29].
This is equivalent to comparing test maps with a reference
partition in terms of segmentation quality indexes, which is a
well-known problem in image processing [29], [30], [33]–[36].
In the context of RS image mapping problems, a segmentation
quality index can be computed if

• the reference sample data form a two-dimensional lattice
(image), termed reference map or ground truth image [2];

• the segmentation process partitions the map (under inves-
tigation) as well as the ground truth image into segmented
images, where each segment (also called region [2]) is 1)
made of connected pixels belonging to the same (super-
vised) class (in the case of a classification map) or (unsu-
pervised) category type (in the case of a cluster map) and
2) is provided with a unique (segment-based) identifier [2].

From image processing literature, it is well-known that the
segmentation problem is ill-posed, i.e., it has a subjective na-
ture [33]. In other words, segmentation quality measures with
respect to a reference partition must reflect

• the variety of objectives involved with image segmenta-
tion [20], [33], [37];

• the fact that, inherently, no evaluation measure can be in-
jective, and therefore, different segmented images may
generate the same segmentation quality index [30].

Some general (subjective) criteria proposed for “good” segmen-
tation are [33] as follows:

1) regions should be homogeneous with respect to some
characteristic such as gray tone or texture;

2) region interiors should be simple, i.e., without many small
holes;

3) adjacent regions of a segmentation should have signifi-
cantly different values with respect to the characteristic
on which they are considered homogeneous;

4) boundaries of each segment should be smooth and
accurate.

In [34], Liu and Yang conclude that, in a classified image,
the mislabeling rate is a poor evaluation measure of the
segmentation quality index because it is a global measure,
whereas to be effective a segmentation quality index should
account for some (local) measure of the spatial distribution
of errors. This conclusion is consistent with the general rec-
ommendations given in [33]. In [37], quantitative measures
of the goodness of fit between two segmented images em-
ploy segment-based parameters such as segment position,
intensity, size, and shape. In landscape ecology, different
indexes of landscape pattern (e.g., area, perimeter, shape
complexity, contrast, adjacency, connectedness, etc.) are em-
ployed for comparative purposes to quantify various aspects
(patchiness) of the labeled regions (patches) belonging to
alternative classification maps of the same study area (e.g.,
see http://www.env.duke.edu/lel/env214/le_patches.html). In

Fig. 2. Four-adjacency edge map computed from a (discrete labeled) map.
Every pixel value in the four-adjacency edge map is equivalent to the number
of four-adjacency neighboring pixels that do not belong to the same label type
of the central pixel.

Fig. 3. Same segmented image can be generated starting from different
(cluster or classification) maps.

[30], it is shown that several approaches proposed for mea-
suring the spatial fidelity of a segmented image (to refresh
the conceptual difference between classified and segmented
images, refer to Fig. 3) to a reference partition are related to the
overlapping area matrix (OAM). If the number of label types
in the segmentation output (test partition) equals that in the
reference partition, then OAM becomes square (OAMS). It is
noteworthy that: 1) the OAMS sum of off-diagonal elements is
proportional to the probability of error, i.e., to the fraction of
wrongly assigned pixels in the test partition [30]; 2) to deal with
the arbitrary order of segment identification in both reference
and test partitions, OAMS may have to be reshuffled to max-
imize the sum of the diagonal elements before estimating the
probability of error [30]; and 3) after reshuffling, OAMS may
employ the same accuracy measures developed for a confusion
or error matrix (square, by definition) in classification accuracy
assessment (refer to Section IV-A and footnote 4) [1], [15]. In
[29], the spatial fidelity of an output map to a reference parti-
tion, irrespective of their labeling, is parameterized in terms of
the mean and standard deviation of their so-called edge map
difference, computed as the absolute point-by-point difference
between their two four-adjacency edge maps (generated as
shown in Fig. 2) [38]. It is to be noted that the labeling (the-
matic) fidelity of a classified image to a reference classification
(refer to Section IV-A) and the spatial fidelity of a segmented
image to a reference partition are, indeed, independent vari-
ables. In fact, based on the segment definition provided above,
different classification maps may generate the same segmented
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image [29] (see Fig. 3). As a consequence, these two thematic
map quality indexes should be investigated separately.

V. UNSUPERVISED DAMA STRATEGY FOR THE QUALITY

ASSESSMENT OF COMPETING THEMATIC MAPS

In this section, the DAMA strategy is proposed as the original
contribution of this paper.

In spectrally complex RS images, when a mutually exclusive
and totally exhaustive classification scheme5 has been defined
[1], a semiautomated “multiple clustering technique” (inspired
by [8, p. 316]) can be employed to allow the analyst more
effective interaction with the raw image in locating ground
truth ROIs. In this procedure, several blocks of the input image,
called unlabeled candidate representative raw areas, which
are sufficiently small to become spectrally simple to analyze,
are clustered separately. It is worthy of note that the semi-
automated procedure, termed reference maps generation by
multiple clustering (RMC), presented below as the core of the
original DAMA strategy, shares with this “multiple clustering
technique” the selection of candidate representative areas to be
clustered separately.

A. RMC Procedure

Let us denote with a discrete thematic map, made from a
raw image , whose accuracy is to be estimated by DAMA. The
aim of RMC is to generate from the digital input image, , two
or more implicit reference cluster (sub)maps (in line with Sec-
tion IV, where a ground truth map allows assessment of both the
spatial and labeling fidelities of an investigated map to reference
data), without exploiting any prior knowledge on the mapping
problem at hand and with a mimimum of human intervention.
RMC consists of two steps.

1) Locate, across raw image , several blocks of unlabeled
data, called unlabeled candidate representative raw areas
identified as [8], that satisfy the
following empirical constraints.

a) Every unlabeled candidate representative raw area,
, , should be selected by the user

from the input image as a block of raw data
sufficiently small to become “simple” to analyze
by a clustering algorithm capable of detecting a
discrete number of “natural,” hidden data struc-
tures (clusters) in feature space according to a
well-known pixel homogeneity criterion (either
explicit or implicit, color-, texture-, or shape-sen-
sitive) [11], [17]–[19]. The choice of one (or more)
“suitable” clustering algorithm(s), accounting for
a great deal of the heuristic nature of DAMA, is
further discussed in point 2 below.

b) Every unlabeled candidate representative raw area
, , to be independent of (and there-

fore uncorrelated with) prior knowledge (if any),

5It is to be noted that a classification scheme consisting of an exhaustive set of
classes is not always desirable. For example, the presence of untrained classes
may significantly degrade the classification accuracy of multilayer perceptrons
(MLPs). An MLP network partitions feature space by decision boundaries or
hyperplanes, whereas a radial basis function (RBF) may be less sensitive to the
presence of untrained classes as it partitions feature space locally [39]–[41].

should be extracted from the (unobserved) subset
of image that does not overlap with the available
ground truth ROIs (if any). It is worth noting that
this constraint clearly reveals the different objec-
tive of RMC with respect to that of the “multiple
clustering technique” (see above), whose goal is to
assist the analyst in selecting ground truth ROIs that
identify all possible variations in spectral response
in each land cover type [8].

c) Every block of unobserved data , ,
should contain from a minimum of two up to the
entire set of cover types of interest (according to
photointerpretation criteria, since no ground truth
knowledge is assumed available [8]).

d) Each land cover type must be contained (according
to photointerpretation criteria, see point 1.c above)
in one or, possibly, more blocks of unobserved data

, [8].
e) In line with the desirable reference data sampling

design properties listed in Section III, the set
of unlabeled candidate representative raw areas

should be, as a whole: 1)
sufficiently large to provide a statistically valid
reference dataset of independent samples (despite
the spatial autocorrelation which violates the as-
sumption of independence of neighboring pixels)
and 2) spread across the raw image surface to be
representative of all possible variations (e.g., in
spectral response) in each land cover type [1], [6],
[22].

It is worth noting that the selection of the loca-
tion, number, and size of unlabeled candidate repre-
sentative raw areas should not be considered more
heuristic than the selection of the location, number,
and size of ROIs in traditional supervised resam-
pling techniques.

2) Unlabeled candidate representative raw areas,
, are clustered separately to generate indepen-

dent so-called multiple reference cluster maps, identified
as . The following are noteworthy.

a) At this step, depending on the clustering algorithm
being adopted to generate multiple cluster maps
from unlabeled candidate representative raw areas,
RMC (and, therefore, DAMA) makes implicit
assumptions about the raw data, or the mapping
problem at hand, or both, which may be difficult
to identify or relate to the final estimation re-
sults (as also occurs with supervised resampling
techniques, refer to footnote 3). For example, as
(predictive) vector quantizers are also used for
(nonpredictive) data clustering [11, p. 177], a typ-
ical choice for clustering the blocks of unobserved
data separately would be to employ a vector quan-
tization algorithm (i.e., one capable of minimizing
a mean square error [11]), such as the standard
hard C-means (HCM) [3], [11], the HCM-based
enhanced Linde–Buzo–Gray (ELBG) [42], etc. It
is well-known that HCM-based vector quantizers
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are expected to perform well only with convex
datasets approximately equiprobable [3]. In this
case, RMC generates spectral cluster maps [8],
[28]. In other words, in this case DAMA makes
the implicit assumption of dealing with a spectral,
rather than textural, image mapping problem, i.e.,
DAMA assumes that map (being investigated)
is generated from a piecewise constant or slowly
varying RS color image featuring little useful
texture information [29], [43].

b) If the condition requiring each unlabeled candidate
representative raw area , , to be
“simple” to analyze is satisfied, then genuine but
small image details, which are typically difficult to
detect at the global (image-wide) scale of analysis,
are expected to be correctly identified in each im-
plicit reference cluster map , .

c) It is impossible to estimate quantitatively the
quality of implicit reference cluster maps

, as they do not overlap with
available labeled data (if any). Thus, the mapping
consistency between unlabeled candidate repre-
sentative raw area and implicit reference cluster
map pairs can only be
verified qualitatively by photointerpretation criteria
or quantitative clustering quality measures (e.g.,
Jeffries–Matusita distance [8], etc.).

B. DAMA Procedure

As an original combination of methods and concepts that are
well-known to image processing experts and practitioners (refer
to Section IV), the novel DAMA strategy computes labeling
and segmentation indexes of consistency between a test map ,
generated from a digital input image , and multiple reference
cluster maps, , generated from without em-
ploying any prior knowledge (labeled dataset) about the map-
ping problem at hand. In particular, DAMA incorporates RMC
as follows.

1) Locate unlabeled candidate representative raw areas,
, by applying step 1) of the RMC

procedure described in Section V-A.
2) In line with step 2) of the RMC procedure described in

Section V-A, a large set of implicit reference samples, to
be statistically valid and independent of prior knowledge
(if any), is generated from the set of unlabeled candidate
representative raw areas, , with a
minimum of human intervention. Thus, for ,
cluster each block of unobserved data separately, with
a number of per-block (“local”) clusters strictly equal
to , which is the number of (“global,” image-wide) label
types in the test map , such that a reference cluster map

is generated as output, with (refer to
Fig. 4). The hypothesis behind this clustering strategy is
that, when each input subimage , ,
selected as being simple to analyze, is separately mapped
into feature space (whatever features may be), then one
single natural cluster suffices to group any information

Fig. 4. Block diagram of the unsupervised DAMA strategy for the quality
assessment of competing maps made from digital input images.

class, i.e., . This hypothesis seems reasonable and
useful. In fact we have the following.

• Implicit reference cluster maps ,
generated from subimages ,
by means of processing resources (clusters)
should be able to capture genuine, but small, image
details eventually better than map (under investi-
gation) generated from the whole (more complex)
input image by means of the same number of
processing resources (label types).

• The labeling fidelity of map (under investigation)
to the set of implicit reference cluster maps ,

can be investigated by standard ac-
curacy assessment methods developed for the con-
fusion matrix as discussed in Section IV-B [see step
3) below].

3) Implicit reference cluster maps allow
the estimation of spatial indexes of map quality, in addi-
tion to the typical assessment of labeling map quality in-
dexes (refer to Section IV). For each implicit reference
cluster map , , perform the following
steps.

a) Locate the portion of the test map that overlaps
with the reference cluster map . Let this portion



864 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 4, APRIL 2005

TABLE II
(a) OAMS BETWEEN AN IMPLICIT REFERENCE CLUSTER MAP x AND AN

EXPLICIT SUBMAP x . (b) OAMS SHOWN IN (a) AFTER ROW AND COLUMN

RESHUFFLING, TO MAXIMIZE THE SUM OF THE MAIN DIAGONAL ELEMENTS

(a)

(b)

of the explicit map be identified as testing submap
.

b) Compute the labeling fidelity of the explicit submap
to the implicit reference cluster map ac-

cording to some well-known standard measure of
thematic accuracy. For example:

i) from each map pair , , com-
pute the dimensional OAMS, identified as
OAMS (refer to Section IV-B).

ii) From each OAMS , , extract
standard accuracy measures developed for the
confusion matrix (refer to Section IV-B). For ex-
ample, [30] extracts from an OAMS the max-
imum sum (after reshuffling, if necessary, refer
to Section IV-B) of the main diagonal elements.
As an example, Table II(a) shows an OAMS.
By reshuffling columns and rows of Table II(a)
until the sum of the main diagonal elements (i.e.,
the overall accuracy, best when largest) is maxi-
mized, Table II(b) is obtained.

c) Compute the segmentation fidelity of the explicit
submap to the reference segmentation extracted
from the implicit reference cluster map , based
on some well-known measure of segmentation ac-
curacy. For example, the mean and standard de-
viation of the edge map difference, computed as
the absolute pixel-by-pixel difference between the
two four-adjacency edge maps extracted from pair

, , can be used [29] (refer
to Fig. 2). In this case, values of the edge map
difference, measuring the segmentation fidelity of
submap to the reference segmentation extracted
from the reference cluster map , are best when
smallest.

4) Combine independently the spatial and labeling fidelity
results collected by submaps , , according
to empirical (subjective) image quality criteria. For
example, in a classification model selection problem
among competing classifiers, first, for each th ref-
erence cluster map, with , the labeling
fidelity values LF , are standardized

Fig. 5. Like any evaluation measure, the semiautomated unsupervised DAMA
strategy for the quality assessment of competing maps is inherently noninjective,
i.e., different maps may feature the same index of labeling and/or spatial fidelity
to the reference map.

(to feature zero mean and unit variance) upon the set
of competing classifiers. Next, for each th competing
classifier, with , standardized labeling fi-
delity values LF , are summed over
index , to get per-system overall labeling fidelities
OLF . Finally, competing classifiers

are ranked upon their OLF values, their set of ranks
being identified as ROLF (best when
smallest). The same approach can be adopted for spa-
tial fidelities ,
to get the set of ranks ROSF (best
when smallest). The correlation between sets of ranks
ROLF and ROSF can

be assessed according to the Spearman coefficient [22]

Diff
(3)

where Diff is chosen as the difference ROLF
ROSF , with . Traditionally, a correlation
coefficient greater than 0.80 represents strong agreement,
between 0.40 and 0.80 describes moderate agreement, and
below 0.40 represents poor agreement [1].

The block diagram of DAMA is shown in Fig. 4. It is worth
noting that potential limitations of DAMA are that

• map quality indexes provided by DAMA are, like any
evaluation measure, inherently noninjective, i.e., different
competing maps may obtain the same DAMA quality
index values in terms of labeling and/or spatial consis-
tency to implicit reference cluster maps (see Fig. 5).

• Comparisons between map pairs
, where implicit reference cluster maps

are generated independently, provide
independent estimates of the consistency of map to im-
plicit reference cluster maps. Unfortunately, the accuracy
of implicit reference cluster maps is impossible to esti-
mate quantitatively due to the ill-posedness (subjective
nature) of clustering. In other words, the subjective nature
of the clustering problem precludes an absolute judgement
on the accuracy of a discrete map , which would require
availability of labeled samples (ground truth knowledge).
Rather, the goal of DAMA is to provide enough quantita-
tive and qualitative evidence on the relative (subjective)
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quality of competing discrete mapping systems/products
independent of prior knowledge (if any). This means that
DAMA is complementary (not alternative) in nature to
traditional heuristic supervised resampling methods for
estimating and comparing classifiers based on a reference
dataset.

As stated in Section I, DAMA is expected to be useful in two
comparative RS image mapping problems, where reference data
are typically difficult and/or expensive to gather, namely:

1) in the comparison of competing discrete maps (generated
by mapping sources assumed to be unknown) of the same
RS raw image, which is assumed to be available, when no
ground truth ROI is found (see Fig. 4).

2) In the generalization capability assessment of competing
induced classifiers when the RS image classification
problem at hand is badly posed (refer to Section III). In
such a comparative problem featuring little useful refer-
ence information, DAMA can be employed in combina-
tion with traditional supervised resampling techniques
for estimating and comparing classifiers. For example, to
mitigate the small/unrepresentative sample problem by
fully exploiting the labeled dataset for training, DAMA
can be combined with the well-known resubstitution
method (which employs the sample dataset totally for
training, see Table I). The following are advantages of
this combination.

a) In line with the resubstitution and the holdout
methods, DAMA requires the inducer and the
resulting classifier to run only once (for training
and testing, respectively). Thus, the combination
of DAMA with the resubstitution method is com-
putationally more efficient than the bootstrap,
leave-one-out, and n-fold cross validation methods
(which require multiple training/testing sessions).

b) The representative dataset is totally (i.e., efficiently)
used for training. Thus the combination of DAMA
with the resubstitution method is more efficient
than the holdout method in passing prior knowl-
edge on to the inducer. Whereas the resubstitution
error is an optimistically biased estimate, the unsu-
pervised DAMA strategy provides mapping quality
indexes independent of prior knowledge.

It is worthwhile to note that, in [44], Finn proposes a method
for comparison of consistency between thematic maps taking
into consideration spatial fidelity as well as thematic accuracy
and thus adopts an approach which in some aspects is close to
the spirit of DAMA.

VI. EXPERIMENTAL DESIGN: TEST IMAGES, EVALUATION

MEASURES, AND COMPARED ALGORITHMS

In this section, a realistic experimental framework consisting
of two badly posed RS image classification problems is set up
to test the utility of the DAMA strategy in estimating and com-
paring induced classifiers when little ground truth knowledge
is available. Thus, a test set of RS images provided with little
representative ROIs, a battery of measures of success, and an
ensemble of existing data classification algorithms are selected
for comparison [37], [45], [46].

A. Dataset Description

According to [37], a set of RS images, suitable for com-
paring the performance of algorithms employed in image under-
standing tasks, should be: 1) as small as possible; 2) consistent
with the aim of testing; 3) as realistic as possible; and 4) such
that each member of the set reflects a given type of image en-
countered in practice.

In this work, the test set consists of two RS satellite images,
characterized by different sizes and dimensionalities, fragmen-
tation (i.e., visual complexity, related to the presence of genuine
but small image details), and levels of prior knowledge, ranging
from ill- to poorly posed (see Section III). The raw image
adopted in test case 1 is shown in Fig. 6. This is a three-band
SPOT image, 512 512 pixels in size, featuring spatial resolu-
tion of 20 m, that depicts the city area of Porto Alegre, Brazil
[43]. The image employed in test case 2 is shown in Fig. 7.
It is a seven-band Landsat Thematic Mapper (TM) image,
750 1024 pixels in size, with a spatial resolution of 30 m,
depicting a country scene in Flevoland, The Netherlands. This
image is extracted from the standard grss_dfc_0004 dataset
provided by the IEEE Geoscience and Remote Sensing Society
(GRSS) Data Fusion Committee (http://www.dfc-grss.org). In
visual terms, the presence of nonstationary image structures,
such as step edges and lines, combined with many genuine but
small image details, makes the town scene more fragmented
than the country scene. Both test images are considered as
piecewise constant or slowly varying intensity images featuring
little useful texture (correlation) information, i.e., ground truth
ROIs localized and identified in test cases 1 and 2 correspond
to spectrally, rather than texturally, homogeneous areas of
interest. Moreover, in both test cases 1 and 2, each ground truth
ROI identifies a distinct surface class of interest (which is a
rather common practice in real-world RS applications [38]).
Twenty-one ROIs/classes are identified in Fig. 6 (see Table III),
and 12 ROIs/classes are identified in Fig. 7 (see Table IV),
respectively. It is noteworthy that test problem 1 is rather poorly
posed (ill-posed, if the spatial autocorrelation is considered).

B. Set of Measures of Success

In test cases 1 and 2, the presence of a single ROI per class,
in combination with spatial autocorrelation effects, reduces
the number of independent representative samples, i.e., the
small and unrepresentative sample problem is likely to occur.
In this context, if (unobserved) testing samples are selected
randomly from a ROI, then they would be highly correlated
with (observed) training samples belonging to the same ROI.
In this circumstance, traditional error estimation methods, like
holdout, n-fold cross validation, and leave-one-out [3], [4],
[11], [47], would be affected by low bias, but high variance,
which is typically the case with the resubstitution error (where
training and testing datasets are the same). In other words,
when dealing with this type of badly conditioned ROIs, tradi-
tional error estimation methods would overestimate the gener-
alization capability of any induced classifier, i.e., overall accu-
racies of confusion matrices computed upon training as well
as testing datasets would increase with data overfitting (when
exact training data interpolation is pursued). In this context,
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Fig. 6. Test case 1. False-color composition (B: VisBlue, G: NearIR, R:
VisRed) of the SPOT image of Porto Alegre, Brazil, 512 � 512 pixels in size,
three-band, 20–m spatial resolution, acquired on November 7, 1987.

Fig. 7. Test case 2. True-color composition (B: Visblue, G: VisGreen, R:
VisRed) of the seven-band Landsat TM image provided by the GRSS Data
Fusion Committee, 750 � 1024 pixels in size, 30–m spatial resolution. The
lower left corner of the image (in black) is masked out from processing.

TABLE III
TEST CASE 1. TWENTY-ONE ROIS SELECTED ON

THE SPOT IMAGE DEPICTED IN FIG. 6

TABLE IV
TEST CASE 2. TWELVE ROIS SELECTED ON THE

LANDSAT IMAGE DEPICTED IN FIG. 7

(a)

(b)

(c)

Fig. 8. (a) Test case 1. One of the unobserved blocks of data sz , i = 1; . . . ; 3,
100 � 300 pixels in size, extracted from the SPOT image shown in Fig. 6.
(b) Test case 1. HCM clustering of (a), with number of clusters L = 21, where
cluster types are depicted by pseudocolors. (c) Test case 1. Four-adjacency
neighboring edge map of (b).

results provided by, say, the standard resubstitution or holdout
methods may not be in line with qualitative results by expert
photointerpreters [29].

The proposed unsupervised DAMA strategy is employed to
mitigate, with a mimimum of human intervention, the small and
unrepresentative sample problem, which affects the estimation
and comparison of image mapping systems in test cases 1 and 2.
DAMA is implemented as follows. In test case 1, three nonover-
lapping blocks of unobserved data , , 100
300 pixels in size, are extracted from Fig. 6 (in column-line
coordinates, columns: 213 512, lines: 100 199,
which is shown in Fig. 8(a); columns: 213 512, lines:
240 339; columns: 1 300, lines: 413 512), ac-
cording to the RMC procedure (see Section V-A). In test case 2,
which is less fragmented than test case 1, unobserved image
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TABLE V
TAXONOMY OF THE DATA LABELING ALGORITHMS ADOPTED FOR COMPARISON. LEGENDA: Y: YES, N: NO; P: PARAMETRIC. NP: NONPARAMETRIC

areas, which must be spectrally simple to analyze, can be larger
than those in test case 1. Thus, two unobserved image areas
( ) 400 400 pixels in size, are extracted from the top left
and bottom right corners of the raw image , respectively. Ac-
cording to the DAMA strategy, each unobserved block of data

, , is clustered separately by a standard clus-
tering algorithm to generate an implicit reference cluster map

, .
In our experiments, the standard HCM vector quantizer

found in a commercial image processing software toolbox
[2] is arbitrarily adopted in test case 1, whereas the enhanced
Linde–Buzo–Gray (ELBG) vector quantizer [42], implemented
in-house as a nearly optimal version of HCM (i.e., ELBG
is nearly independent of random initialization), is arbitrarily
employed in test case 2. These arbitrary selections are intended
to stress the fact that DAMA is not required to exploit any
specific clustering algorithm. With regard to the operational
hypotheses implicitly made by DAMA at this stage, it is to be
noted that, when employed for clustering, HCM-based vector
quantizers are expected to perform well only with approxi-
mately equiprobable convex datasets [3] (refer to Section V-A,
point 2). As an example of implicit reference cluster map
made from , see Fig. 8(b). Let be the portion of map
that overlaps with . According to the DAMA strategy (see
Section V-B): 1) the labeling fidelity of the explicit submap

to the reference cluster map is computed as the overall
accuracy of the square, reshuffled overlapping area matrix
OAMS OAMS , , , where

in test case 1, and in test case 2; and 2) the
spatial fidelity of results to reference data is computed as the
mean absolute difference (in range [0, 4]) between the two
four-adjacency edge maps extracted from maps and [as
shown in Fig. 8(c)]. To summarize, DAMA provides two map
quality indexes (namely, one labeling plus one spatial fidelity
index), times three (respectively, two) cluster maps in test case
1 (respectively, test case 2), for each th competing classifier,

.
In combination with the unsupervised DAMA strategy, ad-

ditional measures of classification success can be computed in
badly posed image classification problems, such as test cases
1 and 2. Since ground truth ROIs are available and fully em-
ployed for training the inducer, a confusion matrix, computed
between the output map and the available representative dataset,
allows estimation of the so-called resubstitution error (upon the
training dataset). If the resubstitution (learning) error is small,
then bias is low, which means that the prior knowledge has been
passed on to the image mapping system successfully. This is a

necessary condition to keep the combination of bias with vari-
ance low, but says nothing about the generalization capability of
the image mapping system.

A fourth feature that may be considered important in the as-
sessment of competing classifiers is computation time, which
affects the application domain of RS image mapping systems
[29], [38]. However, since it is not directly related to the pro-
posed DAMA strategy, computation time will be ignored in this
experimental session.

C. Set of Algorithms to Be Compared

In the framework of the DAMA strategy for the quality
assessment of competing maps, a comparison between image
mapping systems is: 1) possible, whenever the (supervised)
classifier or (unsupervised) clustering algorithm generates a
(discrete, labeled) map and 2) fair, if the prior knowledge,
having the initial form of ground truth ROIs, adapts its max-
imally informative representation to the learning strategies
of the image mapping system at hand. Starting from these
considerations, five well-known data labeling algorithms,
featuring rather different architectural properties, are selected
from the literature for comparison purposes. These algo-
rithms are either nonparametric, like the context-insensitive
(i.e., pixel-based) memory-based probabilistic neural network
(PNN) classifier [48], or parametric, like the single-scale
context-sensitive iterative conditional mode (ICM)-based
maximum a posteriori (MAP)-Markov random field (MRF)
classifier [49], the pixel-based plug-in nearest prototype
(NP) (also called minimum-distance-to-mean [28], [50]) and
Gaussian maximum-likelihood (ML) classifiers [3], both taken
from a commercial image processing software toolbox [2], and
the recently published pixel-based semisupervised expecta-
tion–maximization (SEM) classifier [7], which is capable of
working in either supervised or unsupervised learning mode,
identified with acronyms SEM1 and SEM2, respectively. A
rough taxonomy of the compared data labeling algorithms is
proposed in Table V.

D. Initialization Strategies

Before starting the learning sessions of competing inducers,
prior knowledge, having the initial form of ground truth ROIs,
must adapt its maximally informative representation to the
learning properties of the system at hand (refer to Table V). In
a parametric labeling algorithm (either supervised or unsuper-
vised), the number of template vectors (also called reference
vectors, prototypes, or codewords) is assumed coincident with
the number of surface types of interest (in a classification
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framework, these systems are known as one-prototype classi-
fiers [50]). This implies that the distribution of class-specific
representative samples is assumed to be consistent with the
model of the class-specific spectral distributions adopted by the
parametric labeling algorithm.

In cases of adaptive iterative unsupervised SEM1, and su-
pervised SEM2 and ICM-MAP-MRF, class-specific mean vec-
tors are extracted from class-specific ROIs and passed on to an
NP classification stage to extract initial estimates of image-wide
class-specific (mean vector, covariance matrix) pairs.

In the case of plug-in classifiers, like NP and ML, class-spe-
cific template vectors are extracted from ROIs by the external
analyst and plugged into the classifier. These fixed template vec-
tors are category-specific mean vectors in the case of NP, and
category-specific (mean vector, covariance matrix) pairs in the
case of ML.

In cases of memory-based classifier PNN and iterative clas-
sifier SEM2, all representative labeled samples, belonging to
ground truth ROIs, are passed on to the inducer to optimize the
system’s free parameters during training.

VII. EXPERIMENTAL RESULTS

Class-conditional distributions in nonadaptive classifiers (ei-
ther parametric, like NP and ML, or nonparametric, like PNN;
see Section VI-C) are modeled on the basis of samples ex-
tracted from supervised ground truth ROIs exclusively, i.e.,
without considering unlabeled samples. Thus, NP, ML, and
PNN are expected to perform well in minimizing the re-
substitution error (where bias must be low). On the other
hand, parametric iterative (adaptive) labeling algorithms (like
ICM-MAP-MRF, SEM1, and SEM2), where all unlabeled sam-
ples contribute to the adaptation of category-specific template
vectors, are expected to improve their generalization ability on
unobserved image areas (when the combination of bias with
variance must be kept low) at the cost of a possible increase
in their resubstitution error on ground truth ROIs (due to an
increase in bias).

A. Test Case 1

This test image, depicting a urban scene with many small
image segments featuring a homogeneous spectral response,
is more fragmented than test case 2. The maximum number
of iterations is set equal to 10 in iterative algorithms, namely,
ICM-MAP-MRF, SEM1, and SEM2. With regard to the
ICM-MAP-MRF algorithm, it is obvious that optimal,
MRF-based smoothing parameters (two-point cliques) ,

, are both class- and application-dependent. To
avoid a time-consuming, class-specific, trial-and-error pa-
rameter selection strategy that would represent a degree of
user’s supervision superior to that required by the rest of the
algorithms involved in our comparison, we set two-point clique
potential parameters , ,
independent of the class. This choice is in line with recommen-
dations found in [49], where is claimed to be independent of
the dataset if , because larger values of would
lead to excessive smoothing of regions. In PNN, spread pa-
rameter is set to 0.6 after a class-independent trial-and-error

Fig. 9. Test case 1. PNN classification map of the three-band SPOT image
shown in pseudocolors (number of classes L = 21). To enhance human
interpretability of mapping results, pseudocolors are chosen to mimic the true
colors of surface classes (refer to footnote 6).

Fig. 10. Test case 1. SEM2 classification map of the three-band SPOT image
shown in pseudocolors (number of classes L = 21). To enhance human
interpretability of mapping results, pseudocolors are chosen to mimic the true
colors of surface classes (refer to footnote 6).

TABLE VI
TEST CASE 1. RESUBSTITUTION OVERALL ACCURACY (SUM OF DIAGONAL

ELEMENTS OF THE CONFUSION MATRIX) BETWEEN LABELING RESULTS

AND REFERENCE DATA (ROIS) (BEST WHEN LARGEST). NUMBER OF

LABEL TYPES (= number of ground truth ROIs) = 21. �: WITHOUT

SUPERVISED (TRAINING) SAMPLES. ��: WITH SUPERVISED (TRAINING)
SAMPLES. RANK1 IS BEST WHEN SMALLEST

selection procedure, which is fast and easy, also due to the
sensitivity of PNN to a small range of values.
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TABLE VII
TEST CASE 1. OVERLAPPING AREA (SUM OF DIAGONAL ELEMENTS OF THE CONFUSION MATRIX AFTER RESHUFFLING) BETWEEN THE EXPLICIT

SUBMAP x AND THE IMPLICIT REFERENCE CLUSTER MAP x , i = 1; . . . ; 3 (BEST WHEN LARGEST). NUMBER OF LABEL

TYPES (= number of ground truth ROIs) = 21. RANK2 IS BEST WHEN SMALLEST

TABLE VIII
TEST CASE 1. MEAN AND STANDARD DEVIATION OF THE IMAGE COMPUTED AS THE ABSOLUTE DIFFERENCE BETWEEN THE TWO EDGE

MAPS MADE FROM x AND x , i = 1, 2, 3 (BEST WHEN SMALLEST). RANK3 IS BEST WHEN SMALLEST

As two interesting examples of the mapping results obtained
with this parameter setting, Figs. 9 and 10 show (in pseudo-
colors)6 the maps generated with, respectively, PNN and SEM2
classifiers (whose functional properties are quite different, refer
to Table V) (the other output maps are omitted to save presenta-
tion space). According to perceptual quality criteria adopted by
expert photointerpreters, SEM2 appears to perform better than
PNN.

In the framework of a resubstitution error estimation method,
Table VI reports the training accuracy between labeling results
and ground truth ROIs. Table VI shows that, in line with theoret-
ical expectations, the resubstitution accuracy of SEM is largely
inferior to that of traditional nonparametric (PNN) and para-
metric nonadaptive classifiers (e.g., NP). The supervised clas-
sifier SEM2, performs better than its unsupervised counterpart
SEM1, in line with theoretical expectations. Although a low re-
substitution error is a desirable property (meaning low bias), re-
sults provided by Table VI are counterintuitive for expert pho-
tointerpreters employing perceptual quality criteria (e.g., see
Figs. 9 and 10), which justifies the exploitation of the noncon-

6Every class index is associated to a pseudocolor chosen to mimic the true
color of that surface class (e.g., three shades of blue are adopted to depict labels
belonging to classes sea water 1 to sea water 3, etc.), to enhance human inter-
pretability of mapping results.

ventional DAMA strategy to assess the generalization capabili-
ties of competing classifiers.

Table VII shows the maximum sum (after reshuffling) of
diagonal elements of the overlapping area matrix computed
between the explicit submap , and the reference cluster map
(adopted as the ground truth image) , , 100

300 pixels in size, generated by the HCM vector quan-
tizer. Table VII reveals that the labeling fidelity of the output
map generated by SEM to implicit reference cluster maps is
superior to that of the other labeling approaches, where non-
adaptive classifiers, like NP and PNN, perform rather poorly,
in line with theoretical expectations. Parametric, adaptive, con-
text-sensitive ICM-MAP-MRF, by enforcing spatial continuity
in pixel labeling, is incapable of preserving genuine but small
image details.

To investigate the spatial fidelity of the output map to implicit
reference cluster maps, Table VIII reports the mean and stan-
dard deviation of the edge map difference computed between
the two edge maps extracted from and , .
Table VIII shows that SEM is superior to the other algorithms in
preserving genuine but small image details, irrespective of their
labeling. These spatial fidelity results are somehow in contrast
with the labeling fidelity results shown in Table VII, although
the Spearman correlation value between Rank2 and Rank3 is
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Fig. 11. Test case 2. PNN classification map of the seven-band Landsat TM
image shown in pseudocolors (number of classes L = 12). To enhance human
interpretability of mapping results, pseudocolors are chosen to mimic the true
colors of surface classes (refer to footnote 6). The masked portion of the image
is in black.

0.8857 (revealing strong agreement; see Section V-B). Overall,
these conclusions appear to be consistent with those of expert
photointerpreters and in line with the theoretical expectations
concerning the algorithms’ potential utilities.

B. Test Case 2

This test image, depicting an agricultural site, is less frag-
mented than test case 1. As a consequence, in this experiment,
functional benefits deriving from using the single-scale, con-
text-sensitive ICM-MAP-MRF algorithm, which is provided
with an MRF-based mechanism to enforce spatial continuity
in pixel labeling, are expected to be superior to those in test
case 1. User-defined parameters are the same as those selected
in test case 1, except for spread parameter in PNN, which
is set equal to 1.0 after (an easy and fast) trial-and-error se-
lection procedure. As in test case 1, interesting examples of
the mapping results obtained with this parameter setting are
shown in Figs. 11 and 12, where two maps generated with,
respectively, classifier PNN and SEM2 are depicted (in pseu-
docolors). In test case 2, due to its large fragmentation and
to the absence of easy-to-recognize built-up areas, it is very
difficult for expert photointerpreters to determine whether, for
example, PNN (see Fig. 11) performs better than SEM2 (see
Fig. 12).

In the framework of a resubstitution error estimation method,
Table IX shows the overall accuracy (sum of diagonal elements
of the confusion matrix) between output mapping results and
ground truth ROIs. In this experiment, the nontraditional algo-
rithm (SEM) is more competitive with traditional labeling ap-
proaches (like NP, ML, and PNN), than in test case 2 (refer to
Table VI).

Table X shows the maximum sum (after reshuffling) of the
elements on the main diagonal of the overlapping area matrix
computed between the reference cluster map (generated by
the ELBG vector quantizer) and the explicit submap ,

, with . In Table X, SEM provides a labeling

Fig. 12. Test case 2. SEM2 classification map of the seven-band Landsat TM
image shown in pseudocolors (number of classes L = 12). To enhance human
interpretability of mapping results, pseudocolors are chosen to mimic the true
colors of surface classes (refer to footnote 6). The masked portion of the image
is in black.

TABLE IX
TEST CASE 2. RESUBSTITUTION OVERALL ACCURACY (SUM OF DIAGONAL

ELEMENTS OF THE CONFUSION MATRIX) BETWEEN LABELING RESULTS AND

REFERENCE DATA (ROIS) (BEST WHEN LARGEST). NUMBER OF LABEL TYPES

(= number of ground truth ROIs) = 12. RANK4 IS BEST WHEN SMALLEST

fidelity of output results to multiple cluster maps superior to
those of the other image labeling approaches, in line with test
case 1 (refer to Table VII).

To investigate the spatial fidelity of segmentation results to
reference data, Table XI reports the mean and standard devia-
tion of the difference edge map computed between the two edge
maps made from and , with . In contrast with re-
sults shown in Table X, Table XI reveals that SEM is ranked
average in preserving genuine but small image details, irrespec-
tive of their labeling. The Spearman correlation value between
Rank5 and Rank6 is 0.4857 (revealing poor agreement; refer
to Section V-B), which justifies the separate computation of la-
beling and spatial fidelity indexes for map quality assessment.
Overall, these conclusions are consistent with those of test case
1 (see Section VII-A) and with theoretical expectations con-
cerning the algorithms’ potential utilities.

VIII. CONCLUSION

The unsupervised DAMA strategy is proposed to quantita-
tively assess the (subjective) quality of thematic maps gener-
ated from RS images when little or no ground truth knowledge
is available. The core of DAMA consists of a semiautomatic
procedure where multiple reference cluster maps, independent
of the available representative dataset (if any), are generated
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TABLE X
TEST CASE 2. OVERLAPPING AREA (SUM OF DIAGONAL ELEMENTS OF THE CONFUSION MATRIX AFTER RESHUFFLING) BETWEEN x AND x , i = 1; 2

(BEST WHEN LARGEST). NUMBER OF LABEL TYPES (= number of ground truth ROIs) = 12. RANK5 IS BEST WHEN SMALLEST

TABLE XI
TEST CASE 2. MEAN AND STANDARD DEVIATION OF THE IMAGE COMPUTED AS THE ABSOLUTE DIFFERENCE BETWEEN THE TWO EDGE

MAPS MADE FROM x AND x , i = 1, 2 (BEST WHEN SMALLEST). RANK6 IS BEST WHEN SMALLEST

from blocks of unobserved data (called unlabeled candidate
representative raw areas) with a minimum of human interven-
tion. To assess the consistency between the map under investi-
gation and multiple reference cluster maps, DAMA computes
labeling as well as spatial quality indexes. This is a potential
improvement over traditional map accuracy assessment tech-
niques, where the spatial fidelity of maps to reference data is
ignored in practice. Although intrinsically heuristic (due to the
subjective nature of the clustering problem) and noninjective
(like any evaluation measure), DAMA is expected to be particu-
larly useful in poorly to ill-posed image classification compara-
tive problems (i.e., in image classification applications affected
by the small/unrepresentative sample problem), where the con-
fidence in the estimated classification error rate (computed by
traditional, heuristic supervised resampling techniques) is low
(due to the small size of the test set).

In this paper, DAMA is applied to two badly posed RS
image classification problems in combination with the holdout
resampling technique. This combination provides quantitative
results that, in line with theoretical expectations and qualitative
results by human photointerpreters, appear to be useful in
estimating and comparing the generalization capabilities of
competing induced classifiers in badly posed image mapping
tasks.

As a future development of this work, additional experiments
will be planned where DAMA and the approach proposed in
[44] are adopted in the estimation and comparison of standard
discrete mapping systems applied to badly posed image classi-
fication tasks.
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