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Abstract—The increasing amount of remote sensing (RS) im-
agery acquired from multiple platforms and the recent announce-
ments that scientists and decision makers around the world will
soon have unrestricted access at no charge to large-scale space-
borne multispectral (MS) image databases make urgent the need
to develop easy-to-use, effective, efficient, robust, and scalable
satellite-based measurement systems. In these scientific and in-
dustrial contexts, it is well known that, to date, the operational
performance of existing stratified non-Lambertian (anisotropic)
topographic correction (SNLTOC) algorithms has been limited by
the need for a priori knowledge of structural landscape character-
istics, such as surface roughness which is land cover class specific.
In practice, to overcome the circular nature of the SNLTOC
problem, a mutually exclusive and totally exhaustive land cover
classification map of a spaceborne MS image is required before
SNLTOC takes place. This system requirement is fulfilled by
the original operational automatic two-stage SNLTOC approach
presented in this paper which comprises, in cascade, 1) an auto-
matic stratification first stage and 2) a second-stage ordinary
SNLTOC method selected from the literature. The former com-
bines 1) four subsymbolic digital-elevation-model-derived strata,
namely, horizontal areas, self-shadows, and sunlit slopes either
facing the sun or facing away from the sun, and 2) symbolic
(semantic) strata generated from the input MS image by an oper-
ational fully automated spectral-rule-based decision-tree prelimi-
nary classifier recently presented in RS literature. In this paper,
first, previous works related to the TOC subject are surveyed,
and next, the novel operational two-stage SNLTOC system is pre-
sented. Finally, the original two-stage SNLTOC system is validated
in up to 19 experiments where the system’s capability of reduc-
ing within-stratum spectral variance while preserving pixel-based
spectral patterns (shapes) is assessed quantitatively.

Index Terms—Decision-tree classification, digital elevation
model (DEM), fuzzy rule, image-understanding system, inductive
data learning, prior knowledge, topographic correction.
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I. INTRODUCTION

THE POTENTIAL of remote sensing (RS) for the mon-
itoring of the Earth’s environment and the detection of

its temporal variations at geographic extents ranging from
local (areas up to 100 000 km2) to regional (roughly between
100 000 and 1 000 000 km2 [1]), continental, and global scales
is well known by user communities involved with urban growth
assessment and planning, intelligence/surveillance applications
for national security and defense purposes, ecosystem man-
agement, watershed protection, water balance calculations, risk
management, and global change [1]–[3].

The increasing number of Earth observation (EO) space-
borne platforms featuring enhanced combinations of radiomet-
ric, spatial, spectral, and temporal resolution and the recent
announcements that scientists and decision makers around the
world will soon have unrestricted access at no charge to large-
scale RS image databases [4] make urgent the need to develop
operational satellite-based measurement systems suitable for
automating the quantitative analysis of RS imagery, which is
one of the traditional goals of the RS community involved with
global land cover and land cover change assessment [1].

Unfortunately, to date, the transformation of huge amounts of
multisource spaceborne imagery into information still remains
far below reasonable expectations and mostly confined to sci-
entific applications [5]. In common practice, an insufficient RS
image mapping capability may be due to two main factors.

1) Existing scientific and commercial RS image-
understanding systems (RS-IUSs), such as [6] and
[7] which have recently gained a noteworthy popularity,
score low in operational performance which encompasses
[8], [9] the following:
a) ease of use (degree of automation);
b) effectiveness (e.g., classification accuracy);
c) efficiency (e.g., computation time and memory

occupation);
d) economy (costs increase monotonically with man-

power, e.g., the manpower required to collect scene-
specific training samples);

e) robustness to changes in input parameters;
f) robustness to changes in the input data set;
g) maintainability/scalability/reusability to keep up with

users’ changing needs;
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h) timeliness (defined as the time span between data
acquisition and product delivery to the end user; it
increases monotonically with manpower).

For example, a low operational performance measure-
ment may explain why the impact upon commercial
RS image-processing software toolboxes of the literally
hundreds of so-called novel low (subsymbolic)- and high
(symbolic)-level image-processing algorithms presented
each year in scientific literature remains negligible [5].

2) The increasing rate of collection of RS data of enhanced
quality outpaces the capabilities of both manual inspec-
tion and inductive machine learning from supervised
(labeled) EO data [2]. The cost, timeliness, quality, and
availability of adequate reference (training/testing) data
sets derived from field sites, existing maps, and tabular
data as a source of prior knowledge are considered the
most limiting factors on RS data product generation and
validation [1].

From a technical viewpoint, a data processing system is
termed fully automated when it requires neither user-defined
parameters nor reference data samples to run; therefore, its
ease of use is unsurpassed [10]. To automate a data processing
system, necessary, although not sufficient, conditions are for
input data to be [11] 1) well behaved (well conditioned), i.e.,
not violating any assumptions needed to successfully apply
whatever analysis the system performs, e.g., every input data
source is expressed in a physical unit of measure and belongs
to a known domain of variation, and 2) well understood by the
system developer, namely, every input data source is provided
with a clear physical meaning and with a community-agreed
data format.

In particular, EO sensor-derived data are well behaved when
they are as follows.

1) Radiometrically calibrated, i.e., dimensionless digital
numbers (DNs) are transformed into a community-agreed
radiometric unit of measure. For example, in the con-
text of the Global Monitoring for the Environment and
Security (GMES) program, led by the European Union
(EU) in partnership with the European Space Agency
(ESA), and of the Global Earth Observation System of
Systems (GEOSS), conceived by the Group on Earth
Observations (GEO) [12]–[14], calibration and valida-
tion (Cal/Val)-related activities are considered crucial
in accomplishing harmonization and interoperability of
EO data and derived products generated from multiple
sources. In particular, the Quality Assurance Framework
for Earth Observation data (QA4EO) [15] initiative led
by the Committee of Earth Observations (CEOS) [16]
Working Group on Calibration and Validation [17] aims
at establishing an appropriate coordinated program of
Cal/Val initiatives throughout all stages of a spaceborne
mission, from sensor build to end of life.

2) Geometrically corrected, i.e., projected onto a
community-agreed terrestrial reference system.

3) Validated, i.e., provided with quantitative, unequivocal,
and traceable measures of geometric and radiometric EO
data quality. For example, in the words of the QA4EO

initiative, in an EO data product generation and delivery
chain, every operation or data flow must be provided
with a quality indicator (QI) based on an unequivo-
cal quantifiable metrological/statistically based measure
[15, p. 7], i.e., a QI is based on a documented quantitative
assessment of its traceability to a community-agreed ref-
erence standard ideally tied to a physical unit of measure
belonging to an international system of units. Accurate
operation performance/data quality tracking (traceability)
provides knowledge on what is not performing up to a
reference standard, so that alternative quality assurance
strategies can be enforced at that stage.

In multisensor data fusion, image mosaicking for visualiza-
tion and classification purposes, multitemporal image analysis,
and quantitative biophysical [e.g., leaf area index (LAI)] and
biochemical [e.g., fraction of absorbed photosynthetically ac-
tive radiation (FAPAR)] parameter extraction [11], [18]–[26],
well-known undesired RS inter- and intra-image radiometric
changes are due to the following:

1) changes in instrumental conditions;
2) changes in solar illumination due to changes in the sun’s

position and in the Earth–sun distance;
3) atmospheric effects;
4) changes in solar illumination due to topographic

influences.

To normalize the aforementioned sources 1)–4) of radiomet-
ric change, a standard Cal/Val-related protocol for RS image
preprocessing should comprise steps 1) and 2), which are
described next.

1) Radiometric calibration and atmospheric correction. It
comprises a sequence of three steps.
a) Absolute radiometric calibration [27], namely, the

linear transformation of DNs into nonnegative top-
of-atmosphere (TOA) radiance (TOARDT ) values ≥
0, where the subscript T means terrain, i.e.,
TOARDT values are affected by topographic ef-
fects. This first calibration step depends on offset and
gain calibration parameters retrieved from calibration
metadata files accounting for instrumental conditions.

b) Nonlinear transformation of TOARDT values into
TOA reflectance (TOARFT ) values belonging to
range [0, 1], where influences of the sun zenith angle
(as a function of the time of RS data acquisition
and position of the RS image footprint) and of the
Earth–sun distance (as a function of the time of RS
data acquisition) are normalized [24]. In the rest of
this paper, this step is considered mandatory and pre-
liminary to topographic normalization.

c) When atmospheric effects are taken into account,
the transformation of either TOARDT or TOARFT

values into terrain radiance LT values ≥ 0 or
terrain reflectance ρT values belonging to range [0, 1]
[28]. In existing literature, some authors recommend
the concurrent application of topographic and at-
mospheric correction [29] while other authors and
commercial RS image-processing software toolboxes,
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such as [6], recommend applying RS image at-
mospheric correction prior to topographic normal-
ization. Atmospheric correction is a typical ill- or
poorly posed problem requiring ancillary data (sum-
mary statistics) to be collected at several locations
within the RS image footprint at the time of RS
image acquisition, which are rarely available in prac-
tice. Consequently, atmospheric correction is very
difficult to solve and requires the user’s supervision
to make it better posed [6]. In this paper, ill-posed
atmospheric correction is considered optional (there-
fore, it is ignored in practice) by an RS image spectral-
rule-based decision-tree preliminary classifier (SRC)
requiring as input a multispectral (MS) image radio-
metrically calibrated into TOARFT values, which
are considered a parent class of surface reflectance
ρT values, i.e., TOARFT ⊇ ρT (see Sections III-A
and IV-A2).

2) RS image topographic correction (TOC), also called
topographic normalization, whose aim is to compen-
sate for changes in terrain exposure to direct sun-
light, i.e., to transform TOARFT /LT /ρT values into
TOARFH/LH/ρH values where the index H identifies
a horizontal-like surface. Although it has been investi-
gated for at least 20 years, the TOC problem has not
yet been solved satisfactorily due to its circular nature
[6], [18], [29]–[44]. While an automatic classification
of an RS MS image must rely upon well-behaved in-
put data, realistic TOC approaches must account for
non-Lambertian (anisotropic) surface reflectance as a
function of structural landscape characteristics such as
surface roughness, which is land cover class specific.
In other words, realistic non-Lambertian TOC (NLTOC)
systems must incorporate the “stratified” or “layered”
approach. In RS common practice, the exploitation of
stratified NLTOC (SNLTOC) approaches is limited by
the need for a priori knowledge of land-cover-class-
specific surface roughness. To overcome this limitation,
“more research regarding the use of better stratifica-
tion methods” is strongly encouraged [37, p. 2130],
[38, p. 294].

To summarize, an original operational automatic solution to
the aforementioned circular SNLTOC problem 2) stems from
the a priori availability of a classification map automatically
generated from an RS image well behaved in agreement with
the aforementioned resolution 1). On the contrary, several land-
cover-class- or unsupervised data-cluster-specific SNLTOC
applications found in existing literature ignore or neglect the
necessary, although not sufficient, radiometric calibration re-
quirement for automating data processing. As a consequence,
these SNLTOC applications adopt a manual or semiautomatic
scene-by-scene data understanding approach. For example, in
[43], an extended pixel-based k-means clustering algorithm, ca-
pable of detecting automatically the number k of unlabeled data
clusters, is employed for preliminary stratification (slicing).
One-class (vegetation) [31], [42], two-class (vegetation/
nonvegetation and forest/nonforest) [34]–[36], or three-class
(snow/vegetation/nonvegetation) [37], [38] image strata are

generated by preliminary image photointerpretation [36], image
feature [e.g., normalized difference vegetation index (NDVI)]
thresholding [34], [35], or semiautomated two-stage hybrid
data-learning image-classification approaches [37], [38]. In
addition, in [34] and [35], a dichotomous digital elevation
model (DEM)-driven terrain slope thresholding is adopted
where slopes below 10◦, which include horizontal surfaces, are
excluded from SNLTOC. In [44], ten strata based on DEM-
driven slope ranges are generated irrespective of land cover
types. Next, ten stratum-specific Minnaert coefficients (refer
to Section III-B2b) are estimated image-wide and interpolated.
Finally, pixel-based Minnaert coefficients are estimated from
the interpolation curve to be employed in a pixel-based
SNLTOC approach. Unfortunately, the correlation of surface
roughness, relevant to the TOC problem, with empirical DEM-
derived stratification (slicing) criteria independent of land cover
types is expected to be moderate or low.

The original contribution of this paper to existing knowl-
edge on the TOC subject is fourfold. First, Lambertian TOC
(LTOC), NLTOC, and SNLTOC approaches found in existing
literature are critically revised, which provides this paper with
a significant survey value. Second, an original combination of
automatic subsymbolic and symbolic (semantic) stratification
methods suitable for developing an operational SNLTOC sys-
tem are proposed in line with recommendations found in [37]
and [38]. The novel stratification strategy combines: 1) four
subsymbolic (asemantic) solar illumination layers, namely,
self-shadows, horizontal surfaces, slopes facing the sun, and
slopes facing away from the sun, generated from a DEM
and the sun zenith and azimuth angles at the time of RS
data acquisition and 2) symbolic (semantic) strata generated
from a spaceborne MS image radiometrically calibrated into
TOARFT ⊇ ρT values by a fully automated SRC system of
systems presented and discussed in related papers [21]–[23],
[45]. Third, this paper presents a novel operational automatic
two-stage SNLTOC approach capable of satisfying the system
requirements a)–h) listed previously to be considered eligible
for use in an operational satellite-based measurement system.
To the best of our knowledge, no alternative operational so-
lution to the circular MS image TOC problem can be found
in existing literature. Fourth, a novel set of SNLTOC quality
indexes is proposed.

Due to its degree of novelty in agreement with the new
QA4EO guidelines, this paper is of potential interest to the
segment of the RS community involved with automating the
quantitative analysis of RS data, e.g., in the framework of
the ongoing GEOSS and GMES international programs.

This paper is structured as follows. Section II introduces
the terms and symbols adopted in the rest of this paper. In
Section III, previous works related to the TOC problem are
surveyed. The novel operational two-stage SNLTOC system
is presented in Section IV. Study areas, testing images, and
ancillary data employed in the experimental session are de-
scribed in Section V. Methods for the quantitative assessment
of alternative SNLTOC algorithms are discussed in Section VI.
Quantitative and qualitative SNLTOC results are collected and
discussed in Section VII. Final conclusions are proposed in
Section VIII.
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Fig. 1. Taken from [29]. The angles involved in the computation of the
pixel-based illumination IL(n) = cos γi(n) = (1), n = 1, . . . , N , where N
is the total number of pixels. The adopted symbols mean the following:
1) θi (in this figure) = θz (in the rest of this paper) ∈ [0◦, 90◦] is the solar
zenith angle, equal to (90◦—sun’s elevation angle); 2) φa ∈ [0◦, 360◦] is
the solar azimuth angle; 3) θp(n) ∈ [0◦, 90◦] is the pixel-based slope angle
computed from the DEM exclusively, i.e., irrespective of the sun’s zenith and
azimuth angles; and 4) φ0(n) ∈ [0◦, 360◦] is the pixel-based aspect angle
computed from the DEM exclusively, i.e., irrespective of the sun’s zenith and
azimuth angles.

II. DEFINITIONS AND SYMBOLS

The per-pixel solar incident angle, γi(n) ∈ [0◦, 180◦],
n = 1, . . . , N , where N is the total number of pixels in an
MS image, is defined as the angle between the normal to the
ground and the sun’s rays (refer to Fig. 1, which is selected from
RS literature). The cosine of the solar incident angle is called
illumination, i.e., IL(n) = cos γi(n) ∈ [−1, 1], n = 1, . . . , N .
Given the sun zenith angle θz ∈ [0◦, 90◦], the sun azimuth
angle φa ∈ [0◦, 360◦], and a DEM of the same size and spatial
resolution as the RS image to be topographically normalized,
the pixel-based illumination value IL(n), n = 1, . . . , N , is
computed as follows [29], [31], [34], [35], [37], [38], [44]:

IL(n) = cos γi(n) = cos θp(n) cos θz

+ sin θp(n) sin θz cos (φa − φ0(n)) ,

IL(n) ∈ [−1, 1]; n = 1, . . . , N (1)

where the following are true (see Fig. 1).

1) θi (in Fig. 1) = θz (in the rest of this paper) ∈ [0◦, 90◦]
is the solar zenith angle equal to (90◦—sun’s elevation
angle). It is either provided by the RS image metadata file
or can be computed from the 1) image acquisition date
and time and 2) (average) image-specific or pixel-based
latitude/longitude spatial coordinates.

2) φa ∈ [0◦, 360◦] is the solar azimuth angle defined as the
angle between the line from the observer to the sun
projected on the ground and the line from the observer
due north in a clockwise direction. It is either provided

Fig. 2. If φa = φ0(n), then (1) becomes θz = γi(n) + θp(n), n ∈ {1, N}.

by the RS image metadata file or can be computed from
the 1) image acquisition date and time and 2) (average)
image-specific or pixel-based latitude/longitude spatial
coordinates.

3) θp(n) ∈ [0◦, 90◦] is the pixel-based slope angle computed
from the DEM exclusively, i.e., irrespective of the solar
zenith and azimuth angles. It can easily be proved that the
per-pixel slope θp(n) can be alternatively defined as the
angle between the normal to the surface and the direction
to the zenith [46], although this angle is confused with the
sun zenith angle θz in [42, Fig. 2].

4) φ0(n) ∈ [0◦, 360◦] is the pixel-based aspect angle mea-
sured clockwise from the north. It is computed from the
DEM exclusively, i.e., irrespective of the solar zenith and
azimuth angles.

Equation (1) implies the following.

1) For a horizontal surface, such that θp(n) = 0, n ∈
{1, N}, equality γi(n) = θz always holds.

2) If the per-pixel aspect angle is equivalent to the sun
azimuth angle, i.e., φ0(n) = φa, then (1) becomes
(see Fig. 2)

θz = γi(n) + θp(n), if φ0(n) = φa; n ∈ {1, N}. (2)

3) If φ0(n) = φa, i.e., if (2) holds, AND θp(n) = θz,
n ∈ {1, . . . , N}, then γi(n) = 0; thus, IL(n) = 1, i.e.,
this slope faces the sun perfectly.

According to the IL(n) definition provided previously, the
aim of TOC can be considered as a compensation for changes in
the solar incident angle due to topographic influences. Several
implications stem from this general definition.

It is well known that the solar irradiance (energy) at each
terrain point has two components comprising three terms [19],
[46], [47]: 1) a direct solar irradiance, called sunlight [18], and
2) an indirect [46] or diffuse [40] solar irradiance comprising
the following two components. First, in nonflat terrain areas,
light is reflected from other objects (e.g., adjacent slopes in
rugged terrain) before being reflected from the pixel under
consideration; this first component is called reflected terrain
radiance and is null in flat terrain [6]. Second, in both flat and
rugged terrain, radiation is reflected from the neighborhood of
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the pixel under consideration, and next, it is scattered by the
atmosphere into the viewing direction; this second component
is called skylight [18] or adjacency radiance [6]. The contri-
bution of indirect illumination to the radiance reflected by the
target terrain area subject to direct illumination is relatively low,
particularly in a flat terrain [48]. On sunlit (sunny) slopes, both
direct and indirect light sources provide their contribution to
the energy at the sensor, whereas on sun-shaded (shady) slopes
direct sunlight at the surface is occluded.

In spite of their common use, the two terms sunlit slopes and
sun-shaded slopes, which are totally exhaustive and mutually
exclusive, suffer from vague or ambiguous definitions in RS lit-
erature. For example, in [29, p. 1056], shaded areas are defined
as “slopes showing less than expected reflectance, whereas
in sunny areas, the effect is the opposite.” In [31], the term
sun-shaded or shady slope is considered a synonym of slope
facing away from the sun while the term sunny slope is used
interchangeably with slope facing the sun. A formal definition
of sun-shaded slopes and sunlit slopes either facing the sun or
facing away from the sun as a function of the pixel-based solar
incident angle γi(n) ∈ [0◦, 180◦], n = 1, . . . , N , and the solar
zenith angle θz ∈ [0◦, 90◦] is provided in Section IV-A1.

To summarize, despite some confusion in the definitions of
sun-shaded slopes and sunlit slopes either facing the sun or
facing away from the sun found in RS literature, an alter-
native definition of traditional LTOC (isotropic) and NLTOC
(anisotropic) methods (see Section I) refers to compensation for
changes in terrain exposure to the direct (sunlight) component
of solar energy at the surface. This is tantamount to saying that
LTOC and NLTOC methods transform radiance (respectively,
reflectance) values of sunlit slopes either facing the sun or fac-
ing away from the sun into radiance (respectively, reflectance)
values of sunlit horizontal-like surfaces.

This latter definition of LTOC and NLTOC methods is not
trivial. It means that, in slopes occluded from the sun, illumi-
nated by no sunlight, LTOC and NLTOC methods cannot be
applied. Rather, shaded slopes require a physically based
surface-reflectance model (whose aim is to link surface prop-
erties with sensor-measured radiance) specific for skylight and
reflected terrain irradiance [19], [42], [46]–[48]. If the afore-
mentioned definition holds, i.e., if LTOC and NLTOC methods
have nothing to do with shaded slopes, then the assessment
of NLTOC methods across sunlit and shadow areas, such as
that proposed in [39] and, perhaps [31], makes no theoretical
sense.

III. PREVIOUS WORKS

This section provides a summary of related works on the
following subjects:

1) radiometric calibration of DNs into TOARFT ⊇ ρT val-
ues, which are required as input by the SRC first stage
of the original two-stage SNLTOC method proposed in
Section IV;

2) traditional methods for reducing topographic effects re-
quiring no ancillary data;

3) LTOC, NLTOC, and SNLTOC methods requiring ancil-
lary data (e.g., a DEM).

A. Radiometric Calibration and Atmospheric Correction

Although it is often ignored in common practice by RS
scientists and practitioners in disagreement with the QA4EO
guidelines, radiometric calibration, which is the transformation
of dimensionless DNs into a unit of measure related to a
community-agreed radiometric scale, achieves the following
objectives well known by a significant portion of existing liter-
ature and clearly acknowledged by international EO programs
such as GEOSS and GMES (see Section I).

1) It ensures the harmonization and interoperability of mul-
tisource observational data and derived products such
as those required by the ongoing GEOSS and GMES
projects [12]–[14].

2) It makes RS data well behaved and well understood
[11], which paves the way to automating the quantitative
analysis of EO data [19], [24].

The first step in radiometric calibration, which is the so-
called absolute radiometric calibration [27], is the linear trans-
formation of a pixel value DN(n, b) ≥ 0, with n = 1, . . . , N
and b = 1, . . . , Bnd, where N is the total number of pixels
and Bnd is the number of spectral channels (bands), into a
TOARDT value TOARDT (n, b) ≥ 0, expressed in a radio-
metric unit of measure, either W/(m2 × sr × μm) (e.g., in the
spaceborne Landsat, Satellite Pour l’Observation de la Terre
(SPOT), Advanced Spaceborne Thermal Emission and Reflec-
tion (ASTER), and QuickBird optical sensors) or mW/(cm2 ×
sr × μm) (e.g., in the spaceborne IKONOS and Indian RS
Satellite (IRS) optical sensors) [6], as a function of the gain
G(b) ≥ 0 and offset O(b) ≥ 0 calibration parameters for band
b = 1, . . . , Bnd, to be retrieved from the RS metadata file. For
example, in the case of SPOT-1/-5 imagery [49]

0 ≤ TOARDT (n, b) = [DN(n, b)/G(b)] + O(b),

n = 1, . . . , N ; b = 1, . . . , Bnd (3)

where gain and offset parameters are identified, respectively,
as “〈PHYSICAL_GAIN〉” and “〈PHYSICAL_BIAS〉” in the
SPOT metadata digital image map (DIMAP) file format.

The model for obtaining dimensionless true terrain re-
flectance ρT (n, λ, t, lat, long) ∈ [0, 1] from the spectral ra-
diance at the sensor’s aperture TOARDT (n, λ) may be
expressed as follows [29]:

ρT (n, λ, t, lat, long)

=
π · d(t)2 ·

(
TOARDT (n,λ)−La(λ)

τuw(λ)

)
ESUN(λ) · cos (θz(t, lat, long)) · τdw(λ) + Ed(n, λ)

∈ [0, 1],

n = 1, . . . , N (4)

where λ is the electromagnetic wavelength, (lat, long) is
the pixel position in geographic coordinates, and d(t) is the
Earth–sun distance in astronomical units to be interpolated
from values found in literature as a function of the view-
ing day and time t, transformed into a Julian day value in
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the range {1, 365}, such that d(t) approximately belongs to
range 1 ± 3.5% [50]. La(λ) ≥ 0 is the atmospheric upwelling
radiance scattered at the sensor by the atmosphere (called
airlight [18], equivalent to an additive term to be assessed by
dark-object subtraction techniques: If, by definition of a dark
object, ρT = (4) = 0, then the unknown variable La is equal
to the measured TOARDT value [28]), and Ed(n, λ) ≥ 0 is
called diffuse irradiance at the surface [29], ambient light,
or indirect illumination [46], contains no information on the
surface properties of the pixel, and comprises two compo-
nents: 1) in nonflat terrain areas, reflected terrain radiance
[6] or 2) in both flat and rugged terrain, skylight [18] or
adjacency radiance [6] (also refer to Section II). Overall,
Ed(λ) changes with wavelength; it can provide a relevant
contribution to incident radiance in rugged terrains [28], [29],
but is relatively low in flat terrains [48]. Furthermore, τuw(λ) ∈
[0, 1] and τdw(λ) ∈ [0, 1] are the path atmospheric transmit-
tances of the upwelling (ground surface–sensor path) and
downwelling (sun–ground surface path) flows, respectively, and
ESUN(λ) is the mean solar exoatmospheric (TOA, plane-
tary) irradiance found in literature [29] (e.g., in the SPOT
metadata DIMAP file format, parameter ESUN(λ) is iden-
tified as “〈SOLAR_IRRADIANCE_VALUE〉”). θz ∈ [0◦, 90◦]
is the sun’s zenith angle in degrees (also refer to Section II),
typically provided in the image metadata file or computed
from the data acquisition time t and per-scene or pixel-based
latitude–longitude coordinates. The term [ESUN(λ) · cos(θz)]
is called sunlight [18] or direct illumination [29] and represents
the only radiation component reflected from the pixel under
consideration that contains “pure” information on the surface
properties of the pixel (also refer to Section II).

In (4), atmospheric effects are modeled by atmospheric pa-
rameters τuw(λ) ∈ [0, 1], τdw(λ) ∈ [0, 1], and La(λ) ≥ 0. To
retrieve these atmospheric parameters, ancillary data (summary
statistics), which are rarely available in practice, should be
collected at several locations within the RS image footprint
at the time of RS image acquisition. This means that the
problem of atmospheric correction is typically ill or poorly
posed. Consequently, it is very difficult to solve and requires
user’s supervision to make it better posed [6] (also refer to
Section I). In common practice, Baraldi has observed that RS
images radiometrically calibrated into ρT values by several EU
institutions mentioned later in this paper are unreliable, namely,
they are affected by spectral distortion causing scene-derived
surface-reflectance spectra to disagree with reference surface-
reflectance signatures found in existing literature (e.g., refer to
[81, p. 273]) or in public domain spectral libraries such as the
U.S. Geological Survey (USGS) mineral and vegetation spec-
tral libraries, the Johns Hopkins University spectral library, and
the Jet Propulsion Laboratory mineral spectral library [6], [56].

A reduction in interscene variability across time, space,
and sensors can be achieved by a simplification of (4) into
dimensionless TOARFT values belonging to the range [0, 1].
Starting from (4), TOARFT values are computed as a func-
tion of the electromagnetic wavelength for spectral band b =
1, . . . , Bnd, by considering the following: 1) atmospheric
effects negligible, such as for relatively “clear” scenes
where τuw(λ) ≈ 1, τdw(λ) ≈ 1, and La(λ) ≈ 0 [6], [29], and

2) flat and/or nonflat neighboring terrain effects negligible, i.e.,
Ed(λ) ≈ 0 [29]. Thus, (4) becomes

TOARFT (n, b, t, lat, long)

=
π · d(t)2 · TOARDT (n, b)

ESUN(b) · cos (θz(t, lat, long))
∈ [0, 1],

n = 1, . . . ; N, b = 1, . . . , Bnd. (5)

Although often overlooked by RS scientists and practi-
tioners, it is well known in existing literature that the ra-
diometric calibration of DNs into TOARFT = (5) values
features several advantages over the radiometric calibration into
TOARDT = (3) values.

1) The former is recommended before calculating various
vegetation indices (VIs) [19]. In fact, while the relation-
ships between the LAI and a great variety of well-known
VIs calculated from TOARDT values are nonlinear, the
relationships between LAI and the same VIs calculated
from TOARFT are, in several cases, reasonably linear.

2) By accounting for seasonal and latitudinal differences in
solar illumination, the former guarantees better interim-
age comparability/interpretation (classification, mapping)
across time, space, and sensors [24], [25], which is in line
with the goals of EO data harmonization and interoper-
ability required by the GEOSS and GMES programs.

3) The former is more consistent with the scenario of
low- and high-level image-processing capabilities to be
developed onboard future intelligent fourth-generation
EO satellites (FIEOSs) [52], [53]. The development
of FIEOS, where onboard integration of sensors, data
processors, and communication systems is pursued,
should become a major scientific challenge to the RS
community within the next ten years [52].

It is noteworthy that, when neighboring terrain effects are
omitted, i.e., Ed(λ) ≈ 0, then ρT |Ed(λ)≈0 = (4)|Ed(λ)≈0 =
f1(TOARDT )|Ed(λ)≈0 can be expressed as ρT = |Ed(λ)≈0 =
f2(TOARFT ) as follows:

ρT (n, λ, t, lat, long)|Ed(λ)≈0

= (4)|Ed(λ)≈0 ∈ [0, 1]

= TOARFT (n, b, t, lat, long)

× 1
τuw(λ) · τdw(λ)

− π · d(t)2

ESUN(λ) · cos (θz(t, lat, long))

× La(λ)
τuw(λ) · τdw(λ)

= (5) · AtmsphEffct1(λ)

− π · d(t)2

ESUN(λ) · cos (θz(t, lat, long))
× AtmsphEffct2(λ),

n = 1, . . . , N ; b = 1, . . . , Bnd (6)

where TOARFT (n, b, t, lat, long) = (5) ∈ [0, 1],
AtmsphEffct1(λ) = {1/[τuw(λ) · τdw(λ)]} ≥ 1, and
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AtmsphEffct2(λ)={La(λ)/[τuw(λ)·τdw(λ)]}≥La(λ)≥0.
Vice versa

TOARFT (n, b, t, lat, long)
=(5) ∈ [0, 1]
=ρT (n, λ, t, lat, long)|Ed(λ)≈0 · [τuw(λ) · τdw(λ)]

+
π · d(t)2

ESUN(λ) · cos (θz(t, lat, long))
· La(λ)

=
(4)|Ed(λ)≈0

AtmsphEffct1(λ)

+
π · d(t)2

ESUN(λ)· cos(θz(t, lat, long))
· AtmsphEffct2(λ)
AtmsphEffct1(λ)

.

Equation (6) shows that, if Ed(λ) ≈ 0, the following
are true.

1) For a clear sky condition, when τuw(λ) ≈ 1, τdw(λ) ≈
1, and La(λ) ≈ 0 [6], [29], AtmsphEffct1(λ) ≈ 1
and AtmsphEffct2(λ) ≈ 0; thus, ρT = (4) ≈ (6) ≈
TOARFT = (5), i.e., if Ed(λ) ≈ 0, then surface-
reflectance values can be computed from TOARFT val-
ues when atmospheric effects are 1) accounted for, i.e.,
scene-specific parameters τuw(λ), τdw(λ), and La(λ) are
retrieved, or 2) considered negligible. In other words,
if Ed(λ) ≈ 0, then TOARFT = (5) ⊇ ρT = (4) ≈ (6);
in fact, according to (6), it is possible to intuitively
consider TOARFT (λ) ≈ ρT (λ) + AtmsphNoise(λ),
where term AtmsphNoise is zero for a clear sky con-
dition. This (obvious) concept will be further recalled by
the SRC system of systems, described in Section IV-A2,
adopted as the automatic preliminary classification first
stage of the novel two-stage SNLTOC approach.

2) Independent of wavelength λ, when atmospheric effects
are omitted (ignored), i.e., AtmsphEffct1(λ) ≈ 1 and
AtmsphEffct2(λ) ≈ 0 such that ρT = (4) ≈ (6) ≈
TOARFT = (5), numerical effects of the two simpli-
fied atmospheric terms 1 ≤ AtmsphEffct1(λ) = 1 and
0 ≤ La(λ) ≤ AtmsphEffct2(λ) = 0 tend to counter-
balance each other, i.e., whereas the first approximation
causes an underestimation of the true ρT values, the sec-
ond approximation does otherwise. Across wavelengths,
this property improves the effectiveness of TOARFT as
an estimator of the true ρT values.

3) When wavelength λ increases, TOARFT provides a
better approximation of ρT . It is well known that light
scattering due to atmospheric conditions (haze consisting
of gas molecules and water droplets) and aerosols (con-
sisting of liquid droplets and solid particles suspended
in the atmosphere and generated by either natural or
anthropogenic sources) is inversely proportional to the
energy wavelength λ, i.e., shorter wavelengths of the
spectrum are scattered more than the longer wavelengths.
Thus, a visible blue (B) channel is affected by scattering
across all atmospheric conditions ranging from “very
clear” (where scattering is proportional to a factor λ−4) to
“very hazy” (where scattering is proportional to a factor
λ−0.5) and cloudy (where complete scattering occurs,
proportional to a factor λ0) [28]. On the contrary, in

the medium infrared (MIR) wavelengths, the amount
of atmospheric scattering is known to be “quite small
except for very hazy atmospheres and can be considered
negligible” [28, p. 476]. In these various atmospheric
conditions, ranging from very clear and clear visible
wavelengths to any MIR portion of the electromagnetic
spectrum unless it is very hazy, atmospheric effects can be
omitted (ignored), i.e., 1 ≤ AtmsphEffct1(λ) ≈ 1 and
0 ≤ La(λ) ≤ AtmsphEffct2(λ) ≈ 0 in (6), such that,
if Ed(λ) ≈ 0, then ρT = (4) ≈ (6) ≈ TOARFT = (5).

B. Methods for Reducing Topographic Influences on
Solar Illumination

TOC has been widely acknowledged in existing literature for
more than 20 years [6], [18], [29]–[44], [54]. While some au-
thors have indirectly approached reflectance variations caused
by topographic effects by including DEM-driven information
as ancillary input bands in multiband classification [29], several
methods for correcting topographic effects on solar irradiance
at the surface have been proposed [6], [29]–[44], [54]. They
may be grouped into two categories: 1) those based on spectral
band ratios and other empirical criteria requiring no ancillary
data [55] and 2) those requiring the computation of the solar
incident angle γi(n) ∈ [0◦, 180◦], n = 1, . . . , N , as a function
of the sun’s zenith angle, the sun’s azimuth angle, and a DEM
of the same spatial resolution as the image to be topograph-
ically normalized. These two families of algorithms are des-
cribed next.

1) Reduction of Topographic Effects Without Ancillary
Data:

a) Band ratioing: In TOC methods based on band ratios,
reflectance is assumed to increase or decrease to the same
degree in the two bands involved in the ratio. If this hypothesis
holds, then the quotient between these two bands compensate
for topographic influences. Unfortunately, while this assump-
tion applies to the incident angle whose effects are independent
of wavelength, it does not apply to the diffuse irradiance at
the surface Ed(λ) [see (4)]. In addition, band ratioing causes
a loss in spectral resolution, which is a drawback in MS image
classification [29].

b) Class splitting into sunlit and shaded subclasses: A
“traditional” inductive supervised data-learning approach suit-
able for land cover classification in mountainous terrain is to
split each target land cover class into two “illuminated” and
“shadow” subclasses, i.e., per-class reference samples must be
acquired in sunlit and shaded areas [39]. According to [39],
this classification training strategy can give classification results
similar to those obtained by a supervised classification of an MS
image topographically corrected by an NLTOC method applied
image-wide without any preliminary stratification. However,
the so-called traditional approach requires a degree of user
interaction in defining possible land cover subclasses far greater
than the latter. Above all, it is noteworthy that (S)NLTOC
methods aim at compensating for changes in terrain exposure
to direct sunlight, i.e., (S)NLTOC methods do not apply to
shadow areas where diffuse light-specific reflectance models
must be employed instead (refer to Section II). The automatic
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detection of occluded areas in spaceborne imagery requires
ancillary data, namely, a DEM, the sun’s zenith angle, and
the sun’s azimuth angle. If this ancillary data are missing,
then a manual photointerpretation of occluded areas is typically
affected by commission errors with slopes facing away from the
sun (refer to Section II). To conclude, (S)NLTOC approaches
and supervised class splitting into sunlit and shaded subclasses
are complementary rather than alternative approaches.

c) Standard SAM: Due to its relative insensitiveness to
topographic and atmospheric effects, the spectral angle map-
per (SAM) is considered a standard classifier implemented in
several commercial image-processing software toolboxes such
as the Environment for Visualizing Images (ENVI), licensed
by ITT Industries, Inc. [56]. In a D-dimensional measurement
(feature) space, SAM computes the spectral angle α formed
between a reference vector from the origin r̄, representing a
reference spectrum (signature) belonging to a collection of so-
called endmember spectra [56], and the vector from the origin
representing an unclassified pixel v̄. The unclassified pixel is
assigned to the reference class forming the smallest angle with
the pixel vector.

The vector pair in between angles is computed as [57], [58]

SAM(
v, 
r) = arccos(α) = arccos
(

< 
v,
r >

‖
v‖ · ‖
r‖
)

∈ [0, π] (7)

where 〈
v, 
r〉 =
∑D

d=1 vdrd is the dot product between vectors v̄

and r̄, ‖
v‖ =
√∑D

d=1(vd)2 is the magnitude (intensity) opera-
tor, and cos α = (〈
v, 
r〉/‖
v‖ · ‖
r‖) ∈ [−1, 1] is the normalized
dot product. It is to be noted that the so-called Cosine of the
Angle Concept (CAC) classifier employs the normalized dot
product in place of (7) [57]. Both SAM and CAC are invariant
to linearly scaled variations of vectors v̄ and r̄ when they are
both multiplied by a coefficient belonging to the domain of real
numbers R.

The fuzzy prior knowledge exploited by SAM is the fol-
lowing: “spectra of the same type of surface objects are ap-
proximately linearly scaled versions of one another due to the
atmospheric and topographic variations” [57]–[59]. According
to existing literature (e.g., [60]), this statement is known to be
extremely fuzzy (vague, qualitative), as shown in Fig. 3, where
a set of reflectance patterns, extracted from Landsat images
radiometrically calibrated into TOARFT values and belonging
to the endmember collection spectra employed to develop SRC
[45] (refer to Section IV-A2), can be compared.

An additional theoretical drawback of both SAM and CAC
is that, by ignoring a comparison between magnitudes ‖
v‖ and
‖
r‖, they employ no intensity (brightness, panchromatic [61])
information criteria in their decision rule. This information loss
is well known in existing literature where, starting from SAM,
alternative transformed distance concepts were proposed, e.g.,
refer to [62].

2) TOC Methods Exploiting Ancillary Data: To estimate
the flat-normalized (horizontal) reflectance TOARFH(n, b),
where n = 1, . . . , N and b = 1, . . . , Bnd, from an input MS
image radiometrically calibrated into TOARFT (n, b) values,
with n = 1, . . . , N and b = 1, . . . , Bnd, several TOC meth-

Fig. 3. Endmember collection spectra employed to design the decision rule
set in SRC [45]. Spectral signatures in TOARFT values, belonging to the
continuous range [0, 1] linearly scaled onto the discrete range {0, 255} (with
a discretization error equaling 0.4%), are extracted from Landsat-7 ETM+
images.

ods require the precomputation of the pixel-based illumina-
tion, IL(n) = cos(γi(n)) = (1) ∈ [−1, 1], n = 1, . . . , N , as a
function of the sun’s zenith angle θz ∈ [0◦, 90◦], the sun’s
azimuth angle φa ∈ [0◦, 360◦], and a DEM of the same spatial
resolution as the MS image to be topographically normalized
(see Section II). These TOC approaches can be grouped into
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the following two subcategories, depending on whether they
assume the surface reflectance as being independent of the
observation and incident angles (see Section I).

1) LTOC (isotropic) approaches. The Lambertian assump-
tion is very simple but unrealistic because most land cover
types are rugged and feature non-Lambertian behavior.

2) NLTOC (anisotropic) approaches comprising either
nonstratified or stratified (SNLTOC) methods. On a the-
oretical basis, the bidirectional reflectance distribution
function (BRDF) describes how reflectance varies in each
land cover type by considering all possible angles of
incidence and observation. In practice, the determination
of BRDF is extremely complex. To provide a simpli-
fied estimation of a non-Lambertian spectral reflectance
model, NLTOC and SNLTOC methods have been devel-
oped starting from different assumptions about the real
(3-D) scene depicted in an (2-D) MS image.

Ordinary LTOC and NLTOC methods are surveyed and
discussed next to highlight several inconsistencies found in
existing literature.

a) LTOC (isotropic) methods: The simplest and best
known LTOC method is the cosine LTOC equation. Widely
adopted in most image-processing software toolboxes [56], it
is computed as follows [29], [31], [34], [35]:

TOARFH(n, b) = TOARFT (n, b)
(

cos θz

cos γi(n)

)
,

n = 1, . . . , N ; b = 1, . . . , Bnd (8)

where incident angle γi(n) ∈ [0◦, 180◦], and thus, cos γi(n) =
IL(n) ∈ [−1,+1] (see Section II), and where the sun’s zenith
angle θz ∈ [0◦, 90◦] is used to take into account the nonvertical-
ity of direct sun rays. Several considerations stem from (8).

1) In (8), the larger the incident angle γi(n) in range
[0◦, 90◦], i.e., the lower the per-pixel illumination IL(n)
in range [0, +1], the higher the corrected reflectance
TOARFH(n, b).

2) When γi(n) ∈ (90◦, 180◦], i.e, IL(n) ∈ [−1, 0), then (8)
< 0, which has no physical meaning. To the best of our
knowledge, the sole explicit strategy on employing (8)
when γi(n) ∈ (90◦, 180◦] is found in [36], where it is
written that, if γi(n) ≥ 85◦, then the pixel information
value is low and topographic normalization does not
help. This is tantamount to saying that, when γi(n) ∈
[85◦, 180◦], (8) is not applied.

3) For a horizontal surface, where γi(n) = θz ∈ [0◦, 90◦]
(see Section II), (8) becomes TOARFH(n, b) =
TOARFT (n, b), i.e., the measured terrain surface
TOARFT (n, b) is left unchanged after topographic
normalization. This means that, when (8) is adopted,
horizontal surfaces can be skipped in topographic
normalization to save computation time.

In contrast with the RS image preprocessing protocol recom-
mended in Section I, if (8) is meant to be applied to TOARDT

rather than to TOARFT values, i.e., when topographic normal-
ization is applied in series with absolute radiometric calibration

[see (3)] but before the transformation of TOARDT into
TOARFT values [refer to (5)], (8) becomes [34], [35]

TOARDH(n, b) =
TOARDT (n, b)

cos γi(n)
,

with n = 1, . . . , N ; b = 1, . . . , Bnd (9)

where incident angle γi(n) ∈ [0◦, 180◦]; thus, cos γi(n) =
IL(n) ∈ [−1,+1] (see Section II). The following are worth
noting.

1) According to [36], when γi(n) ∈ [85◦, 180◦], (9) should
not be applied (see aforementioned comments).

2) If γi(n) ∈ [0◦, 90◦], i.e., IL(n) ∈ [0,+1], then (9) shows
that TOARDH(n, b) ≥ TOARDT (n, b) n ∈ {1, N}
and b = 1, . . . , Bnd. Condition γi(n) ∈ [0◦, 90◦]
includes horizontal surfaces, where γi(n) = θz ∈
[0◦, 90◦] (refer to Section II), such that (9) be-
comes TOARDH(n, b) = (TOARDT (n, b)/ cos θz) ≥
TOARDT (n, b). This means that, unlike (8), whose
effect on TOARFT values belonging to horizontal
surfaces is null, (9) must be applied to the whole
TOARDT image, including horizontal surfaces. The
reason for this difference between (8) and (9) is that,
in line with the RS image preprocessing protocol
recommended in Section I, (8) is applied in series with
(5), such that the denominator cos(θz) employed in (5) is
elicited by the numerator cos(θz) adopted by (8).

Unfortunately, differences between (8) and (9) appear to
be not always understood in literature. For example, in [31],
(8) is wrongly referred to as radiance rather than reflectance
while (9) is incorrectly identified as topographically normalized
reflectance rather than radiance in [44]. More dangerous than
that, in [39, p. 3839], (9) is not applied to horizontal surfaces.

Limitations:

1) Several authors have shown that (8) and (9) overcor-
rect the image in areas of “low” IL(n) values [29],
[34], [35]. The empirical (fuzzy) nature of this state-
ment can be better formalized as follows. In (8) and
(9), low IL(n) values should be identified as values
where IL(n) = cos γi(n) < cos θz with θz ∈ [0◦, 90◦],
i.e., γi(n) ∈ (θz, 180◦]. This condition corresponds to
1) nonhorizontal nonoccluded surfaces facing away from
the sun if γi(n) ∈ (θz, 90◦] and 2) occluded surfaces
belonging to shadow casters (self-shadows) if γi(n) ∈
(90◦, 180◦] (see Section IV-A1).

2) Topographic normalization introduced by (8) and (9) is
wavelength independent. This assumption is unrealistic
because diffuse irradiance at the surface [refer to term
Ed(λ) in (4)] is highly wavelength dependent [28], [29].

3) Most land cover types are rugged and feature non-
Lambertian behavior.

b) NLTOC (anisotropic) methods: NLTOC and SNLTOC
methods employ different hypotheses to constrain the problem
of surface-roughness estimation. In particular, NLTOC methods
adopt the following hypothesis [29].

Hypothesis 1: The pixel-based corrected horizontal (flat-
normalized) reflectance TOARFH(n, b), where n = 1, . . . , N
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and b = 1, . . . , Bnd, is assumed to be per-band image-wide
constant (homogeneous), i.e., TOARFH(n, b) = Constant(b),
where n = 1, . . . , N and b = 1, . . . , Bnd. This is tantamount
to saying that the whole image belongs to a single land cover
class.

Some authors consider Hypothesis 1 so poorly constrained
that unrealistic but simpler LTOC methods are preferred to
NLTOC approaches [29]. To replace Hypothesis 1 with a
more realistic constraint, SNLTOC approaches assume the
following.

Hypothesis 2: Before topographic normalization takes place,
the input MS image radiometrically calibrated into
TOARFT (n, b) values, where n = 1, . . . , N and b = 1, . . . ,
Bnd, must be provided with an exhaustive and mutually
exclusive partition (map) equivalent to a land-cover-class-
specific surface-roughness stratification Strtm(n) ∈ {1, S},
n = 1, . . . , N , where S is the total number of strata, such that
S ≥ C ≥ 1, where C is the total number of land cover classes
(excluding class “unknown”) predetected in the input image
TOARFT (n, b), where n = 1, . . . , N and b = 1, . . . , Bnd. In
other words, an SNLTOC approach assumes that, first, each
predefined stratum s ∈ {1, S} features a typical or “average”
surface roughness. Second, the map-conditional topographical-
ly corrected (horizontal) reflectance TOARFH [n, b|Strtm(n);
n = 1, . . . , N , b = 1, . . . , Bnd, Strtm(n) ∈ {1, S}] is
assumed to be per-band per-stratum piecewise constant, i.e.,
TOARFH [n, b|Strtm(n) = s;n ∈ {1, N}, s = 1, . . . , S, b =
1, . . . , Bnd] = Constant[b, s; s = 1, . . . , S, b = 1, . . . , Bnd].

In practice, SNLTOC approaches are limited by the need for
a priori knowledge of the spatial structure (namely, roughness)
of the landscape (refer to Section I) [37]. For example, several
papers in literature employ SNLTOC approaches capable of
satisfying Hypothesis 2, where the number of target classes C is
as coarse as one to three [31], [34]–[39], [43]. It is noteworthy
that the stratification strategy adopted in [44], which is DEM
driven but land cover class independent, does not satisfy the
aforementioned Hypothesis 2.

3) Minnaert Equation: In existing literature, the best known
NLTOC and SNLTOC approaches are based on the ideas of
Minnaert, who first proposed a semiempirical equation to as-
sess the roughness of the moon’s surface [29]. According to
Minnaert’s ideas, the LTOC equation (8) is revised as follows
in the so-called Minnaert NLTOC equation [29]:

TOARFH(n, b) = TOARFT (n, b)
[

cos θz

cos γi(n)

]K(b)

,

n = 1, . . . , N ; b = 1, . . . , Bnd (10)

where incident angle γi(n) ∈ [0◦, 180◦], and thus, cos γi(n) =
IL(n) ∈ [−1,+1] (see Section II), and where coefficient
K(b) ∈ [0, 1] is a dimensionless real number, called the
Minnaert constant for spectral band b = 1, . . . , Bnd, capable
of modeling the non-Lambertian behavior of the surface due
to surface roughness. If K(b) = 1, the surface behaves as a
perfect Lambertian reflector. If K(b) → 0, the surface is porous
and exhibits asymmetrical diffuse scattering (which explains
the low values of K(b) for class forest) [36].

To estimate the value of K(b) for each spectral band b =
1, . . . , Bnd, (10) can be linearized as follows:

Y (n, b) = log10 [TOARFT (n, b)]

= log10 [TOARFH(b)] + K(b) log10

[
cos γi(n)
cos θz

]

= D(b) + A(b) · X(n) (11)

where n = 1, . . . , N , b = 1, . . . , Bnd, and D(b) =
log10[TOARFH(b)] and A(b) = K(b) are the two
regression coefficients of the observed reflectance values
Y (n, b) = log10[TOARFT (n, b)], where n = 1, . . . , N and
b = 1, . . . , Bnd, versus incident angle-dependent terms
X(n) = log10[cos γi(n)/ cos θz], n = 1, . . . , N .

In practice, estimated Minnaert constant values K(b) > 1
and K(b) < 0 indicate that the adopted regression method
and its Y (n, b) and X(n) data sets are poor, e.g., when data
sets Y (n, b) and X(n) feature large and unstable variations
due to the presence of “outliers,” namely, pixels belonging
to different strata of surface roughness within the image-wide
data set of observed reflectance values TOARFT (n, b), where
n = 1, . . . , N and b = 1, . . . , Bnd [36]. Thus, the estimated
Minnaert constant values K(b) > 1 and K(b) < 0 should be
rounded to values 1 and 0, respectively, in line with [36],
although this is rarely done in practice, e.g., refer to [44].

When (9) is employed in place of (8), (10) becomes

TOARDH(n, b) =
TOARDT (n, b)

[cos γi(n)]K(b)
=

TOARDT (n, b)
IL(n)K(b)

,

n = 1, . . . , N ; b = 1, . . . , Bnd. (12)

For the sake of completeness, the SNLTOC version of the
Minnaert NLTOC equation (10) incorporates Hypothesis 2,
defined previously, to become

TOARFH (n, b|Strtm(n) = s)

= TOARFT (n, b|Strtm(n) = s)
[

cos θz

cos γi(n)

]K(b,s)

(13)

where n ∈ {1, N}, b = 1, . . . , Bnd, s = 1, . . . , S, and
k(b, s) ∈ [0, 1].

Limitations:

1) In their original formulation, the NLTOC equations (10)
and (11) adopt the unrealistic Hypothesis 1. In [34], an
SNLTOC version of (10) adapted to incorporate a strati-
fied or layered approach [see (13)] performs better than
the NLTOC equation (10) by improving classification
accuracies of land cover types after SNLTOC.

2) In [29], (10) is found to overcorrect the TOARFT

image in areas of low IL(n) values, like (8) (refer to
Section III-B2a).

4) Enhanced Minnaert Equation: In [54], the Minnaert
NLTOC equation (10) was further modified to include the slope
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of the terrain, which is θp(n) ∈ [0◦, 90◦], n = 1, . . . , N , as
follows [29], [34], [35]:

TOARFH(n, b) =TOARFT (n, b) cos θp(n)

×
[

cos θz

cos γi(n) cos θp(n)

]K(b)

,

n = 1, . . . , N ; b = 1, . . . , Bnd (14)

where incident angle γi(n) ∈ [0◦, 180◦], and thus, cos γi(n) =
IL(n) ∈ [−1,+1] (see Section II), K(b) ∈ [0, 1] (as discussed
previously), and θz ∈ [0◦, 90◦].

The NLTOC-enhanced Minnaert equation (14) for
TOARDT values becomes [31], [36]–[38], [44]

TOARDH(n, b) =
TOARDT (n, b) cos θp(n)

[cos γi(n) cos θp(n)]K(b)
,

n = 1, . . . , N ; b = 1, . . . , Bnd. (15)

For the sake of completeness, the SNLTOC version of
the enhanced Minnaert NLTOC equation (14) incorporates
Hypothesis 2, defined previously, to become

TOARFH (n, b, |Strtm(n) = s)

= TOARFT (n, b, |Strtm(n) = s)

× cos θp(n) ·
[

cos θz

cos γi(n) cos θp(n)

]K(b,s)

,

n ∈ {1, N}; b = 1, . . . , Bnd;

s = 1, . . . , S; k(b, s) ∈ [0, 1]. (16)

Limitations: According to [29] where an NLTOC ap-
proach is adopted, (14) suffers from the same limitations as
the Minnaert equation (10). This conclusion is in contrast with
[35], where (14) employed in an NLTOC approach performs
better than the ordinary Minnaert equation (10) by reducing
overcorrection when IL(n) is low and by increasing image-
wide homogeneity. In [35], in line with theoretical expectations,
the SNLTOC equation (16) performs better than the NLTOC
equation (14).

5) C Correction Method: In an NLTOC framework, the C
correction method assumes a linear correlation between the ob-
served terrain reflectance of each spectral band TOARFT (n, b)
and illumination IL(n) = cos γi(n) ∈ [0◦, 180◦] as follows
[29], [34], [35]:

Y (n, b) = TOARFT (n, b) = TOARFH(b) + C(b)IL(n)

= E(b) + C(b) · X(n) (17)

where n = 1, . . . , N , b = 1, . . . , Bnd, and the terms E(b) =
TOARFH(b), which is assumed to be constant for the entire
image band b in line with Hypothesis 1, and C(b) are the re-
gression coefficients, namely, the former is the intercept and the
latter is the gradient of the regression equation TOARFT (n, b)

versus IL(n). Next, starting from the equations proposed in
[29], the C correction method is defined as

TOARFH(n, b) =TOARFT (n, b)·
(

C(b) cos θz+E(b)
C(b) cos γi(n)+E(b)

)

=TOARFT (n, b)·
(

C(b) cos θz+E(b)
C(b)IL(n)+E(b)

)
,

n = 1, . . . , N ; b = 1, . . . , Bnd. (18)

The SNLTOC version of the C correction equation (18)
incorporates Hypothesis 2, defined previously, to become

TOARFH(n, b|Strtm(n)=s)
= TOARFT (n, b|Strtm(n)=s)

×
(

C(b, s) cos θz+E(b, s)
C(b, s) cos γi(n)+E(b, s)

)
,

n∈{1, N}; b=1, . . . , Bnd; s=1, . . . , S. (19)

Limitations: According to [29], in an NLTOC framework,
the limitations of (18) are the same as for the Minnaert equation
(10) (refer to the earlier part of this paper). This conclusion is
in line with [34], [35], and [41], where only small differences
were observed between (10) and (18) in an NLTOC framework,
although (18) is considered simpler to use.

6) Smoothed C Correction Method: In [29], it was ob-
served that, in an NLTOC framework, (10), (14), and
(18) cause an overcorrection of the horizontal reflectance
TOARFH(n, b) where IL(n) is low. Thus, in (10), (14),
and (18), a reduction of the slope angle θp(n) ∈ [0◦, 90◦]
is forced. To justify this strategy, consider that, in (10), if
θp(n) ⇒ 0, then γi(n) ⇒ θz; thus, cos(θz)/ cos γi(n) ⇒ 1 and
TOARFH(n, b) ⇒ TOARFT (n, b) ∀K(b) ∈ [0, 1] and ∀n ∈
{1, N}. In practice, in (1), the slope angle θp ∈ [0◦, 90◦] is
replaced by the smoothed slope angle θ̄p ∈ [0, θp] where, ac-
cording to [29]

θ̄p(n) =
θp(n)
Smt

, Smt = 3, 5, 7; n = 1, . . . , N (20)

where the smoothing factor Smt ≥ 1.
In [29], the Minnaert NLTOC equation (10), the enhanced

Minnaert NLTOC equation (14), the C NLTOC equation (18),
and the smoothed C NLTOC equations (18) and (20) are
compared on the basis of their capability of decreasing within-
class variance (i.e., increasing intraclass homogeneity). On the
average, the smoothed C correction method with a correction
factor Smt = 5 gave the best performance.

Limitations:

1) The unrealistic Hypothesis 1 is implicitly adopted.
2) The smoothed C NLTOC method is provided with

one free parameter Smt to be user defined based on
heuristics.

IV. NOVEL OPERATIONAL TWO-STAGE SNLTOC SYSTEM

This section is the core of the present work, where the
novel two-stage operational SLTOC system is proposed. The
data flow diagram (DFD) of the original operational automatic
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Fig. 4. DFD of the proposed operational two-stage SNLTOC system. According to [8], in a DFD, a process is shown as a bubble, a data flow is shown as an
arrow, and a data store is shown as a rectangle with rounded corners.

two-stage SNLTOC approach is shown in Fig. 4 [8]. This sys-
tem comprises, in cascade (also refer to Section I), the following.

1) A first-stage automatic MS image stratification. This par-
tition maps each input pixel into a discrete and finite set of
totally exhaustive and mutually exclusive strata (layers)
provided with a well-understood physical and seman-
tic meaning relevant to the provision of an operational
SNLTOC solution. This stratification strategy combines
the following.
a) Four slices generated from the continuous domain of

change of the subsymbolic (asemantic) pixel-based
solar incident angle γi(n) ∈ [0◦, 180◦], n = 1, . . . , N ,
computed from a DEM and the sun’s position. Refer
to Processes 1–3 in Fig. 4.

b) Symbolic (semantic) strata generated from the MS im-
age by a fully automated SRC presented and discussed
in related papers [21]–[23], [45]. Refer to Processes 6
and 7 in Fig. 4.

2) An ordinary second-stage SNLTOC method selected
from among alternative approaches surveyed in
Section III-B2b. Refer to Processes 4, 5, and 8 in
Fig. 4.

A. First-Stage Automatic MS Image Stratification

The concept of stratification is well known in statistics and
system design. In statistics, stratified sampling means that
“a sampling frame is divided into nonoverlapping groups or
strata, e.g., equivalent to geographical areas. A sample is taken
from each stratum, and when this sample is a simple random
sample, it is referred to as stratified random sampling.” One
advantage is that “stratification will always achieve greater
precision provided that the strata have been chosen so that
members of the same stratum are as similar as possible with
respect to the characteristic of interest.” For example, in [34],
an SNLTOC equation (13) performs better than the NLTOC
equation (10). A possible disadvantage is that the identification
of appropriate strata may be difficult [63]. Hereafter, this poten-
tial disadvantage does not hold because stratification is pursued
automatically.

It is worthy to note that, in system design, the concept of
stratification is adopted as a synonym of modularization, which
enforces the well-known divide-and-conquer problem-solving
principle. It works by recursively breaking down a problem into
two or more subproblems of the same (or related) type, until
these become simple enough to be solved directly [64].
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Finally, it is worth mentioning that the stratified or layered
approach works analogously to the focus of visual attention,
which is selectively shifted in both biological vision (during
so-called attentive vision [65], [66]) and artificial IUSs to detect
subtle image features (namely, points and regions or, vice versa,
region boundaries, i.e., edges) within a localized image area
[51], [67], [68].

1) Continuous Incident Angle Domain Slicing: Stratifica-
tion criteria employing per-pixel terrain properties, such as
the pixel-based slope angle θp(n) ∈ [0◦, 90◦], n = 1, . . . , N ,
computed from a DEM irrespective of the sun’s position are not
a novelty in SNLTOC applications. For example, in [34] and
[35], a dichotomous slope-thresholding approach is adopted,
where slope values below 10◦ are omitted from SNLTOC.
In [39], where (15) is employed in an NLTOC framework,
horizontal surfaces are masked [which is inappropriate (refer
to Section III-B2a)]. In [44], ten strata based on slope ranges,
but irrespective of land cover types that affect the target surface
roughness (refer to Section I), are employed as input to an
SNLTOC method.

In place of the pixel-based slope angle θp(n) ∈ [0◦, 90◦],
n = 1, . . . , N , stratification irrespective of the sun’s position
[34], [35], [39], [44], the per-pixel solar incident angle γi(n) ∈
[0◦, 180◦], computed via (1) from a DEM and the sun’s zenith
and azimuth angles θz ∈ [0◦, 90◦] and φa ∈ [0◦, 360◦], can be
mapped onto four slices, provided with a well-understood phys-
ical meaning, as a discrete function of the sun’s zenith angle.
These four strata Strtm(n, γi(n) = (1), θz) ∈ {1, S = 4} are
described next.

1) Self-shadows [82], i.e., (shaded) pixels occluded from
the sun and belonging to shadow-casting objects, where
γi(n) ∈ [90◦, 180◦], i.e., IL(n) ∈ [−1, 0], n ∈ {1, N},
illuminated by indirect light exclusively (refer to
Section II). This condition is acknowledged in
[39, p. 3833] where it is stated that pixels featuring
negative illumination (indicated erroneously as negative
incident angle values, which do not exist) “will be
illuminated solely by the diffuse skylight effect.” These
pixels must be masked in the stratum-specific selection
of training samples for a two-stage SNLTOC second
stage [42], which makes SNLTOC approaches more
effective and more efficient (in terms of computation
time). This is in line with [42], where “bad pixels are
masked if their incident angles are bigger than a certain
value (for example, 90◦).” Two important observations
follow.
a) Context-sensitive determination of cast shadows, i.e.,

shadows cast on the ground by objects occluding
the direct sunlight, in series with the pixel-based
self-shadow detection [where γi(n) ∈ [90◦, 180◦] (see
earlier part of this paper)]. For example, the
prestratification approach proposed in [42] em-
ploys a context-sensitive so-called sun-ray-tracing
algorithm suitable for shadow casting. Inputs of the
sun-ray-tracing algorithm are a DEM and the sun’s
azimuth angle φa ∈ [0◦, 360◦]. As output, it generates
a so-called line of sight (LOS) image. Each pixel in a

LOS image stores the minimum required solar eleva-
tion angle for that pixel to be unshadowed (sunlit) as
a function of the given solar azimuth angle φa and the
available DEM. Alternative real-time shadow-casting
algorithms using shadow volumes extracted from an
irregular mesh of vertices have been developed in
computer graphics and virtual reality, e.g., refer to
[69]. In general, when the sun’s elevation angle de-
creases, shadows cast on the ground increase their
length dramatically and proportional to the cotangent
of the sun’s elevation angle. It is worthy to note that,
if a sun-ray-tracing algorithm were incorporated in
our operational two-stage SNLTOC system to detect
cast shadows, this sun-ray-tracing algorithm could be
made more efficient (“intelligent”) by providing it
with an input mask consisting of pixels where γi(n) ∈
[90◦, 180◦], n ∈ {1, N}, i.e., occluded pixels belong-
ing to shadow-casting objects (self shadows [82]).

b) Physically based surface-reflectance model for
shaded (occluded) pixels. Shaded pixels, belonging
to self-shadows, such that γi(n) ∈ [90◦, 180◦], n ∈
{1, N}, or cast shadows (as discussed previously),
should employ a physically based surface-reflectance
model specific for indirect illumination. For exam-
ple, in computational geometry and terrain modeling
[46], the so-called ambient occlusion is commonly
used as a lighting technique to simulate a subtle
indirect illumination effect accounting for multiple
scattering due to nearby surfaces. In [46], ambient
occlusion is computed by the OpenGL extension
ARB_OCCLUSION_QUERY [70] for every point
in an irregular mesh of vertices, which is the data
structure commonly used in terrain modeling. This
query employs, as input parameter, the resolution of
the local window for the context-sensitive occlusion
calculation. Since it is computationally expensive, the
ambient occlusion can be precalculated once and for
all for a given DEM.

2) Sunlit (sunny) pixels, unless occluded from the sun
by one or more shadow-casting objects, where γi(n) ∈
[0◦, 90◦), i.e., IL(n) ∈ (0, 1], n ∈ {1, N}. Every pixel
belonging to this layer is exposed to direct sunlight in
addition to indirect light (see Section II) unless it is
occluded from the sun by a shadow-casting object lo-
cated in the surroundings of the pixel depending on the
topography of the terrain and the sun’s position. Based
on per-pixel (context-insensitive) terrain properties, it is
impossible to state whether an nth pixel featuring γi(n) ∈
[0◦, 90◦) falls in a shadow cast by an object located near
the pixel (see earlier discussion). If shaded, this pixel
should be masked in an SNLTOC second stage (refer to
earlier discussion). Otherwise, if a pixel featuring γi(n) ∈
[0◦, 90◦) is not occluded from the sun by a shadow caster,
then it is exposed to both direct sunlight and indirect light.
Therefore, its reflectance value tends to be superior to
those of pixels belonging to the same land cover type
localized on slopes occluded from the sun and illuminated
by indirect light exclusively where γi(n) ∈ [90◦, 180◦].
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When γi(n) ∈ [0◦, 90◦), n ∈ {1, N}, this range of values
can be further split into three layers featuring a physical
meaning relevant to the SNLTOC problem solution as
described next.
a) Sunlit horizontal pixels, unless occluded from

the sun by one or more shadow-casting objects,
where slope angle θp(n) ≈ 0, n ∈ {1, N},
and thus, according to (1), γi(n) ≈ θz

(see Fig. 2). For example, in this case, (13)
becomes TOARFH(n, b|Strtm(n)) ≈
TOARFT (n, b|Strtm(n)) ∀K(b, s) ∈ [0, 1], n ∈
{1, N}, b = 1, . . . , Bnd, and Strtm(n) ∈ {1, S},
i.e., reflectance values in horizontal surfaces are
left unchanged. Thus, sunlit pixels belonging to
horizontal surfaces should be excluded from (13) to
save computation time (see Section III-B2a).

b) Sunlit nonhorizontal pixels facing the sun, unless
occluded from the sun by one or more shadow-
casting objects, where incident angle
γi(n) ∈ [0◦, θz), n ∈ {1, N}. Thus, in (13),
the term cos θz/ cos γi(n) < cos θz ≤ 1 and
(13) becomes TOARFH(n, b|Strtm(n)) <
TOARFT (n, b/Strtm(n)). It is noteworthy that,
when γi(n) = 0, i.e., the slope is perfectly facing the
sun because conditions [φ0(n) = φa] AND [θp(n) =
θz] hold [see (2)] cos θz/ cos γi(n) = cos θz ≤ 1.
This means that, based on (13), per-stratum mean
reflectance values on sunlit slopes facing the sun are
expected to decrease.

c) Sunlit nonhorizontal pixels facing away from
the sun, unless occluded from the sun by one or
more shadow-casting objects, where incident
angle γi(n) ∈ (θz, 90◦), n ∈ {1, N}. Thus,
in (13), the term cos θz/ cos γi(n) > 1 and
(13) becomes TOARFH(n, b|Strtm(n)) >
TOARFT (n, b/Strtm(n)). This means that,
based on (13), per-stratum mean reflectance values on
sunlit slopes facing away from the sun are expected to
increase. In combination with the opposite behavior
of (13) upon sunlit slopes facing the sun (refer to
earlier comments in this paper), it means that the
spectral variability (standard deviation) of a land
cover class-specific stratum, computed across sunlit
slopes facing the sun and facing away from the
sun, where γi(n) ∈ [0◦, θz) OR γi(n) ∈ (θz, 90◦),
n ∈ {1, N}, is expected to decrease.

To the best of our knowledge, the proposed stratification of
the incident angle domain of change, i.e., γi(n) ∈ [0◦, 180◦],
n = 1, . . . , N , into the four aforementioned slices is original. If
so, this would be surprising if we consider the amount of work
on the subject of TOC found in the literature. For example,
in [31], the TOC method proposed by Civco [32] was tested
on vegetation class-specific large samples falling on the slope
either facing the sun or away from the sun. Unfortunately,
in [31], slopes either facing the sun or away from the sun
are also called sunny slopes and either shady or sun-shaded
slopes, respectively, which is quite misleading according to

the terminology introduced earlier in this paper (also refer to
Sections II and III-B2). The same misunderstanding appears
to hold in [39] where an ordinary NLTOC method is compared
against a standard plug-in maximum likelihood classifier whose
Gaussian basis functions are generated independently from land
cover class (e.g., grass) samples belonging to sunlit and shadow
areas to be merged into one output class.

To summarize, the main contribution of this section to exist-
ing knowledge on the TOC subject is to point out that, when
a two-stage SNLTOC system is input with a stratified MS im-
age radiometrically calibrated into TOARFT (n, b/Strtm(n))
values, with n = 1, . . . , N , b = 1, . . . , Bnd, and Strtm(n) ∈
{1, S}, the SNLTOC linear regression second stage, comprising
(13), (16), or (19) discussed in Section III-B2b, must mask out
(omit) horizontal pixels together with shaded pixels belonging
to self-shadows or cast shadows. This is tantamount to saying
that such a two-stage SNLTOC method applies exclusively to
sunlit slopes either facing the sun or facing away from the sun,
in agreement with the preliminary masking strategy adopted in
[42] (although that work selected occluded pixels belonging
to shadow casters on the basis of DEM-driven considerations
that are more empirical than those reported previously in this
paper).

2) Automatic Preliminary MS Image Classification: It is
obviously true that, in general, surface roughness changes
with land cover class (as a special case, two different land
cover types observed from space, for example, (calm) water
and (smooth) snow, may feature the same surface roughness),
although surface roughness may vary locally within class (e.g.,
within a deciduous forest). In addition, changes in roughness
do not necessarily imply changes in spectral signature (spectral
category), but changes in symbolic (semantic) spectral cate-
gories [for example, vegetation versus bare soil or built-up
(refer to the latter part of this paper)] imply, in general, a change
in surface roughness (as a special case, two different spectral
categories observed from space, for example, strong vegetation
(SV) and average vegetation (AV), may feature a difference in
surface roughness equal to zero).

To conclude, it is unquestionable that, in primis, land cover
classes [(3-D) concepts] and, in addition, semantic spectral
categories [(2-D) spectral-based semiconcepts] provide can-
didate areas for homogeneous surface-roughness estimation.
While land cover classes are provided with a superior semantic
meaning, but are difficult to be detected automatically, spectral-
based semiconcepts are provided with an inferior semantic
meaning, but can be detected automatically as shown in recent
works [21]–[23], [45].

To the best of our knowledge, the integrated SRC system of
systems constitutes the sole example found in existing literature
of an operational fully automated classifier requiring neither
user-defined parameters nor reference data samples to map
onto a discrete and finite set of spectral categories an MS
image, acquired across time, space, and sensors, radiometri-
cally calibrated into TOARFT = (5) or ρT = (4) values, the
latter being an ideal case of the former when atmospheric
effects are accounted for or are considered negligible (refer
to Section III-A) [21]–[23], [45]. As a consequence, SRC
may benefit from, but does not require, inherently ill-posed
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atmospheric correction preprocessing stage. In other words,
SRC considers ill-posed atmospheric correction an optional
MS image preprocessing stage unlike competing classification
approaches employing surface-reflectance spectra, such as the
Atmospheric/Topographic correction (ATCOR3) [6], for which
the solution of the ill-posed atmospheric correction problem
becomes mandatory. Due to its operational properties, SRC is
eligible for use as the automatic preliminary classification first
stage in a two-stage stratified hierarchical RS-IUS architecture
originally proposed by Shackelford and Davis [51], [68].

Starting from concepts (terms) of the terminology defined
in the (3-D) world, namely, land cover classes belonging to
taxonomies such as the USGS land cover taxonomy [18], the
Coordination of Information on the Environment (CORINE)
[71], and the International Geosphere–Biosphere Programme
Discover (IGBP-DIS) [11], the rationale of SRC is to map a
pixel-based vector of MS TOARFT values (see Section III-A)
into a discrete and finite set of (2-D) color-based semiconcepts.
Each spectral-based semiconcept is 1) a semantic conjecture
based solely on the per-pixel (noncontextual) color (spectral,
i.e., chromatic and achromatic) properties and 2) equivalent to
a class (concept) set comprising either one (land cover) class or
more (land cover) classes affected by spectral overlap. Thus, by
definition, spectral categories are mutually exclusive in terms
of spectral overlap. In particular, the SRC set of (mutually
exclusive) spectral-based semiconcepts is finite and totally ex-
haustive, in line with the Congalton requirements [88]. This set
of spectral-based semiconcepts comprises six parent spectral
categories (supercategories, eventually split into a hierarchical
tree of subcategories [45]) listed as follows according to their
order of detection: 1) cloud; 2) either snow or ice; 3) either
water or shadow; 4) vegetation; 5) either bare soil or built-up;
and 6) outliers.

It has been proven that the original seven-band Landsat-like
SRC system (LSRC), together with its downscaled versions
suitable for mapping MS imagery whose spectral resolution
overlaps with, but is inferior to, the Landsat-5 Thematic Mapper
(TM) and Landsat-7 Enhanced TM (ETM)+ spectral resolution,
such as the four-band SPOT-like SRC (SSRC) system, are
effective, efficient, and robust to changes in the input data
set acquired across time, space, and sensors [21]–[23], [45].
LSRC together with its downscaled versions, such as SSRC, are
identified as the integrated SRC system of systems [21], [22].

Starting from [45], where enough information is provided
to the reader for the LSRC implementation to be reproduced,
the SSRC system is generated by removing the excess spectral
channels from the LSRC rule set, namely [21], [22]

1) (E)TM1 (B);
2) (E)TM62 [thermal IR (TIR)];
3) (E)TM7 [medium IR (MIR2)].

For the remaining spectral bands, the following equalities are
enforced, where bands CH1 to CH4 identify the four SPOT-like
bands monotonically increasing with wavelength:

1) (E)TM2 [Visible Green (G)] → Channel 1 (CH1);
2) (E)TM3 [Visible Red (R)] → CH2;
3) (E)TM4 [near IR (NIR)] → CH3;
4) (E)TM5 (MIR1) → CH4.

From a theoretical standpoint, the following are the expected
consequences of the loss in spectral resolution affecting SSRC
in comparison with LSRC.

1) Due to the loss of the TIR channel, an increase in spec-
tral confusion (decrease in spectral separability) between
light-toned (highly reflective) soil types, particularly in
mountainous (and cold) areas, with classes cloud, snow,
and ice, is expected.

2) It is well known that light scattering due to atmospheric
conditions (haze) and aerosols is inversely proportional
to the energy wavelength λ (refer to Section III-A).
Thus, the B channel is affected by scattering across all
atmospheric conditions ranging from very clear to very
hazy and cloudy [28]. As a consequence, due to the
loss of the B channel, a decrease in the capability of
detecting haze, smoke plumes, and water types is ex-
pected in SSRC. The other spectral categories detected
by LSRC and, as a consequence, by its downscaled
version SSRC, were designed to be scarcely affected by
atmospheric scattering by taking visible bands into scant
consideration [45], in line with the well-known Landsat-7
automatic cloud cover assessment (ACCA) algorithm
[24]. In practice, weights of visible channels are low
in the LSRC decision rules based on a convergence-of-
evidence mechanism.

3) Due to the loss of the MIR2 channel, a decrease in the
capability of discriminating bare soil types is expected in
SSRC. For example, several burned area indexes employ
MIR2 in comparison with the NIR channel [49]. How-
ever, in general, weights of the MIR2 channel are low in
the LSRC decision rule set based on a convergence-of-
evidence approach [45], i.e., the importance of the MIR2
channel is not relevant in LSRC.

4) An overall decrease in the number of detected spec-
tral categories is expected due to the fact that, when
adapted to the four-band SPOT-like spectral resolution,
the following occur: 1) Several LSRC’s spectral indexes
and their fuzzy sets cannot be computed (refer to [45,
Table 3]); 2) different LSRC spectral rules may coincide
(refer to [45, Table 4]); 3) several LSRC spectral cate-
gories cannot be computed (refer to [45, Table 5]); and
4) different LSRC spectral categories may coincide.
Overall, the number of spectral types detected by the
downscaled LSRC version reduces from 46 in LSRC to
32 in SSRC, which is approximately equal to a 30% loss
in comparison with LSRC [21], [22].

As will be recalled in Section VII, it is noteworthy that,
starting from the “standard fine” classification map where
spectral categories are equivalent to leaves in the hierarchical
rule-based decision tree (respectively, 46 leaves in LSRC (refer
to [45, Table 7]) and 32 leaves in SSRC, as aforementioned),
LSRC (respectively, SSRC) derives two additional “standard”
classification maps, featuring a medium and a coarse semantic
granularity, potentially useful for different end users. The “in-
termediate set of spectral categories,” equal to 24 (respectively,
20 for SSRC), is generated by grouping leaves of the decision
tree up to their mother category, if any (for LSRC, refer to
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[45, Table 7]). The “small (coarse) set of spectral categories,”
equal to 17 (respectively, 14 for SSRC), is obtained by an arbi-
trary (user-specific) semantic-driven grouping of spectral cate-
gories belonging to the “intermediate set of spectral categories.”
For example, as will be employed in Section VII, the SSRC
“standard coarse” semantic granularity comprises the following
14 spectral categories (also refer to [45, Table 7]): 1) vegetation;
2) shadow area with vegetation; 3) rangeland; 4) weak range-
land; 5) pit bog (also typical of forests and vegetated agri-
cultural fields); 6) greenhouse (also typical of forests and
vegetated agricultural fields); 7) barren land and built-up;
8) shadow area with barren land (also typical of built-up areas,
particularly asphalt roads, lava rock, etc.); 9) water or shadow;
10) cloud; 11) thin cloud; 12) smoke plume; 13) snow; and
14) outliers.

To conclude, when compared to alternative symbolic
(semantic) stratification techniques adopted as the first stage in
a two-stage SNLTOC approach found in literature [31], [34]–
[38], [42], SRC features several advantages. Compared to one
to three land cover types predetected manually or semiautomat-
ically (refer to Section I) [31], [34]–[36], [42], SRC provides a
standard fine information granularity which is 1) automatically
detected and 2) much finer than the former’s.

When compared to traditional parametric or nonparametric
supervised classifiers such as the supervised SAM classifier
revised in Section III-B1c, the spectral prior knowledge-based
SRC is complementary and not at all alternative in operational
terms as described in Appendix I.

When compared to well-known unsupervised (unlabeled)
data-learning (e.g., clustering) algorithms adopted as the first
stage of a traditional two-stage hybrid (unsupervised and su-
pervised) data-learning classifier (such as in [37] and [38],
where an ISODATA clustering algorithm is applied to a
univariate NDVI image, and in [43] where an extended
k-means unsupervised data-learning algorithm capable of au-
tomatically defining the number of clusters is applied to an
MS image), SRC features several advantages highlighted in
Appendix II.

B. Second-Stage Automatic SNLTOC Method

In cascade to the two-stage SNLTOC stratification first
stage (refer to Section IV-A), a second-stage SNLTOC method
comprising the stratified Minnaert equation (13), the stratified
enhanced Minnaert equation (16), or the stratified smoothed C
equations (19) and (20), does the following: 1) Free param-
eter(s) of the selected SNLTOC method are estimated per
input stratum s = 1, . . . , S, by means of a robust linear re-
gression technique, e.g., implemented in the Interactive Data
Language (IDL), licensed by ITT Industries, Inc. [56], and
2) the trained SNLTOC method is applied per input stratum
s = 1, . . . , S.

To benefit from the degree of novelty of the stratification
criteria proposed in Section IV-A, a stratified version of (20)
is presented next, together with the pseudocode of the second-
stage SNLTOC module.

1) Stratified Smoothing Slope Criterion: To exploit the
novel stratification strategy proposed in Section IV-A, a

stratified version of (20) was conceived as follows:{
θ̄p(n|Strtm = s1) = θp(n|Strtm=s1)

Smtfs

θ̄p(n|Strtm = s2) = θp(n|Strtm=s2)
Smtnfs

, n ∈ {1, N}
(21)

where the stratum instantiation s1 ∈ {1, S} identifies a
per-class layer c1 ∈ {1, C ≤ S, refer to Hypothesis 2 in
Section III-B2b} generated by SRC (refer to Section IV-A2)
and overlapping with the DEM-driven stratum of nonhorizontal
pixels facing the sun (refer to Section IV-A1) while stratum
s2 ∈ {1, S}, s2 �= s1, belongs to the same per-class layer c1 ∈
{1, C} and overlaps with nonhorizontal pixels facing away
from the sun (refer to Section IV-A1). In (21), smoothing
factors Smtnfs ≥ Smtfs ≥ 1 are user defined, e.g., based on
a trial-and-error strategy. Standard values are Smtnfs = 3 and
Smtfs = 1.

The advantage of (21) compared to (20) is that the former
allows 1) the reduction of undesired overcorrection effects of,
for example, the Minnaert SNLTOC equation (13) for low
IL(n) values by increasing the system parameter Smtnfs ≥ 1
when incident angle γi(n) ∈ (θz, 90◦), i.e., in nonhorizontal
slopes facing away from the sun, and, simultaneously, 2) the
conservation of (not a decrease in) the desired capability of,
for example, the Minnaert SNLTOC equation (13) in reducing
terrain reflectance values in slopes facing the sun, i.e., when
incident angle γi(n) ∈ [0◦, θz), by letting Smtfs = 1.

The drawback of (21) in comparison with (20) is that the for-
mer requires two system parameters to be user defined based on
heuristics, whereas the latter requires only one free parameter.
Moreover, the exploitation of (21) increases the computation
time of the two-stage SNLTOC system (refer to Fig. 4).

2) Pseudocode: The two-stage SNLTOC second stage,
equivalent to Process 8 in Fig. 4, is described in the pseudocode
in Table I. Its advantages are as follows.

1) SNLTOC computation time is optimized by masking hor-
izontal surfaces and occluded slopes belonging to shadow
casters.

2) The preliminary classification map generated by
SRC enforces the better constrained and realistic
Hypothesis 2 in place of the traditional Hypothesis 1
(refer to Section III-B2b).

3) It combines (21) with the following: 1) the stratified Min-
naert equation (13); 2) the stratified enhanced Minnaert
equation (16); and 3) the stratified C correction equation
(19). If Smtnfs = Smtfs = 1, then (21) becomes ineffec-
tive. Otherwise, Smtnfs = 3 and Smtfs = 1 by default.

V. STUDY AREAS, TESTING IMAGES,
AND ANCILLARY DATA

The Forestry Department of Regione Veneto (FDRV), Italy,
is the institution in charge of the management and protection
of forests across the Veneto region in Northern Italy. Areas
of activity of the FDRV are forestry planning, hydrogeological
surveys, and control of forest fires.

A forest cartography of the Veneto region at scale 1 : 10 000,
generated by manual photointerpretation of airborne 1-m
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TABLE I
PROCESS 8 IN FIG. 4: SECOND STAGE OF THE TWO-STAGE

SNLTOC SYSTEM IN PSEUDOCODE

resolution orthophotos in true colors acquired in August–
September 2000, was delivered by FDRV to end users in 2005.

In collaboration with the European Commission Joint Re-
search Centre (EC-JRC), a comparison between airborne and
spaceborne data mapping techniques and derived output prod-
ucts was planned and carried out in 2008.

A. Study Area and Observation Period

A rugged and mountainous area in the vicinity of the
city of Vicenza (Italy) was selected as the testing site where
accurate ground surveys of forest types were conducted by
FRDV from the year 2006 to the present. The geographic
coordinates of the area of interest are as follows: upper left

corner latitude–longitude coordinates (45.61, 11.32) and lower
right corner latitude–longitude coordinates (45.14, 11.92).

To overlap with the acquisition time of available airborne
imagery (see the following section), the summer season of the
year 2006 was set as the target observation period.

B. Airborne Imagery

Uncalibrated 0.5-m-resolution three-band true-color pho-
togrammetric images of the study area were acquired by an
airborne camera in September 2006.

C. Spaceborne Imagery

According to [83], a set of RS images suitable for comparing
the performance of alternative algorithms should be as follows:
1) as small as possible; 2) consistent with the aim of testing; and
3) as realistic as possible, i.e., each member of the set reflects a
given type of images encountered in practice.

In the frame of the ESA Category 1 policy of free access to
data in the ESA IMAGE2006 online archive at the European
scale for scientific users [84], two satellite MS images of the
surface area of interest acquired in the target observation period
were selected for testing.

The first selected RS image is a four-band SPOT-4 high-
resolution visible and infrared (HRVIR) image comprising a G,
an R, a NIR, and a MIR channel and featuring 20-m spatial
resolution, with an acquisition date and time equal to July 21,
2006 at 10:34:42, path 060, row 258, orthorectified by the
Deutsches Zentrum für Luft- und Raumfahrt (DLR) and de-
livered to ESA in the framework of the GMES IMAGE2006
component and development of the European mosaic [84].

The second selected RS image is a SPOT-like four-band
IRS-P6 Linear Imaging Self-Scanner (LISS)-III image com-
prising a G, R, NIR, and MIR channel and featuring a 23.5-m
spatial resolution, with an acquisition date and time equal to
June 13, 2006 at 10:15:05, orbit 13786, frame 37, orthorecti-
fied by the DLR and delivered to ESA in the framework of
the GMES IMAGE2006 component and development of the
European mosaic [84].

Unfortunately, in disagreement with the QA4EO guidelines
delivered by the CEOS to which the aforementioned European
institutions ESA, DLR, and EC belong [23], the two selected
images retrieved from the ESA IMAGE2006 online archive
were not provided with their original calibration metadata
files. These two metafiles were incidentally recovered from the
EC-JRC IMAGE2006 repository by P. Soille of the EC-JRC
who radiometrically calibrated the two orthorectified images
into TOARFT values (refer to Section III-A).

D. DEM

The standard requirements of a DEM for rugged terrains are
listed next.

1) A root mean square (rms) coregistration error with
the MS image to be draped over the DEM should be
≤ 0.5 pixels according to [85] and < 1/5 of a pixel based
on change detection application requirements [86].
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2) DEM spatial resolution should be ≤ (1/4) ÷ 1 times the
spatial resolution of the MS sensor [6].

To assess the robustness of alternative SNLTOC approaches
to changes in the input data set, two DEMs were selected.

1) The well-known 90-m spatial resolution Shuttle Radar
Topography Mission (SRTM). It is noteworthy that, given
the two testing images described in Section VI-C, the
SRTM does not satisfy the second recommendation listed
previously.

2) A 25-m spatial resolution digital terrain model (DTM),
georeferenced to the Italian national grid Gauss-Boaga-1,
with Hayford-1924 datum. Provided by Regione Veneto, it
was generated from contour lines and known altitude
points acquired from cartographic maps provided by the
Istituto Geografico Militare Italiano (Florence, Italy).

It is worthy to note that, in the target study area (refer
to Section VI-A), the maximum height value varies around
900–1000 m, namely, 894-m height in the 25-m resolution
DTM and 1061-m height in the 90-m resolution SRTM. The
maximum slope is estimated at about 48◦, namely, 47.76◦ in
the DTM and 48.14◦ in the SRTM.

VI. METHODS

A. Reference Data Set

This section computes the reference sample size as a func-
tion of the classification project requirements. Although well-
known in the existing literature [87], [88], this issue is typically
neglected by RS scientists and practitioners.

In this paper, the forest classification problem inherited from
FRDV is dealt with as a one-class classification problem. In this
classification case, it is well known that a classification overall
accuracy (OA) probability estimate pOA ∈ [0, 1] is a random
variable (sample statistic) with a confidence interval ±δ (also
known as error tolerance, such that 0 < δ < pOA ∈ [0, 1]) as-
sociated with it, i.e., pOA is a function of the specific reference
sample set being used for its assessment. As a consequence,
the reference sample size can be estimated from a given target
classification accuracy and confidence interval pOA ± δ [87],
[88]. For example, based on the assumption that reference sam-
ples are independent and identically distributed (i.i.d.; which
does not strictly hold in the case of image mapping due to
spatial autocorrelation between neighboring pixels), the testing
sample set size Mtest needed to estimate a target pOA ± δ at a
desired confidence level (e.g., if confidence level = 95% then
the critical value is 1.96) becomes [88]

Mtest =
(1.96)2 · pOA · (1 − pOA)

δ2
. (22)

For example, if in a dichotomous (e.g., one-forest class) classi-
fication problem, where the target pOA ± δ is equal to 0.85 ±
0.05 at a confidence level of 95%, then Mtest = (22) ≈ 196
i.i.d. (e.g., forest) samples. Typically, ground-truth samples
belong to connected regions of interest (ROIs) located across an
RS image footprint. Thus, ROIs are inherently affected by au-
tocorrelation, i.e., they violate the i.i.d. assumption; therefore,

the size of these ROIs should be largely superior to the Mtest

value provided by (22).
In the present one-forest class project, forest ROIs were ex-

tracted from two different sources of prior semantic knowledge.
As a consequence, two independent forest ground-truth sample
data sets were collected, featuring different combinations of
reference sample cardinality and reliability as described next.

1) ROIs extracted from a first ground-truth knowledge base
of certified quality, but smaller in size, namely, 1) 0.5-m
orthophotos in true colors acquired in September 2006
(refer to Section V-B) and 2) ground surveys conducted
from the year 2006 to the present. This reference data set
was overlapped with the two testing satellite images as
follows.
a) SPOT-4 image draped over the SRTM or DTM (refer

to Section V-D). The forest-class reference data set
consists of 9770 pixels, hereafter referred to as ref-
erence data set 1(a).

b) IRS-P6 LISS-III image draped over the SRTM or
DTM (refer to Section V-D). The forest-class ref-
erence data set consists of 21 999 pixels, hereafter
referred to as reference data set 1(b).

2) ROIs extracted from a second ground-truth knowledge
base of uncertified quality, but larger in size than the for-
mer, namely (refer to Sections I–V), forest cartography at
scale 1 : 10 000 generated by FDRV from 1-m resolution
orthophotos acquired in August–September 2000. This
reference data set was overlapped with the available RS
imagery as follows.
a) SPOT-4 image draped over the SRTM or DTM (refer

to Section VI-D). The forest-class reference data set
consists of 163 393 pixels, hereafter referred to as
reference data set 2(a).

b) IRS-P6 LISS-III image draped upon the SRTM or
DTM (refer to Section VI-D). The forest-class ref-
erence data set consists of 305 244 pixels, hereafter
referred to as reference data set 2(b).

It is noteworthy that, to compensate for their autocorrelation
superior to zero, the four aforementioned reference data sets
feature a size far larger than the 200 i.i.d. samples required
by (22).

B. Image Preprocessing

As discussed in Section I, RS image preprocessing steps 1.a
(linear transformation of DNs into TOARDT values) [refer
to (3)] and 1.b (nonlinear transformation of TOARDT into
TOARFT values) [refer to (5)] were applied to the SPOT-4
and IRS-P6 testing images described in Section V-C. Next, the
two radiometrically calibrated MS input images were projected
onto the European Terrestrial Reference System 1989, usually
referred to as ETRS89, which is the EU-recommended frame of
reference for European geodata, while the SRTM data portion
of interest was projected onto a geographic (latitude/longitude)
projection with the WGS84 horizontal datum and the EGM96
vertical datum. Finally, the two selected DEMs (refer to
Section V-D) were resampled at the spatial resolution of the MS
image at hand by cubic convolution and reprojected onto the
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ETRS89 system. The four estimated rms coregistration errors
were below one pixel, which was considered satisfactory based
on project requirements (refer to Section V-D).

C. Software Solutions

Several commercial RS image-processing software tool-
boxes can be employed for image preprocessing tasks such
as image resampling, orthorectification, geographic projection,
3-D surface viewing, etc. Unfortunately, in most cases, these
software toolboxes do not support RS image radiometric cal-
ibration into TOARFT values (refer to Section III-A). This
observation supports the opinion that, although the problem
of RS image radiometric calibration is well known in the
existing literature, it is often underestimated in RS common
practice (also refer to Section III-A). In our experiments, all
image preprocessing operations (see Section VI-B), except the
radiometric calibration of DNs into TOARFT values, were
performed with the ENVI commercial software, licensed by
ITT Industries, Inc. [56]. The software for the radiometric
calibration of DNs into TOARFT values for the testing
SPOT-4 and IRS-P6 image pair was implemented by the
EC-JRC in the IDL, licensed by ITT Industries, Inc. [56].

The SSRC module, downscaled from the LSRC system
described in [45], and the two-stage SNLTOC system (refer
to Fig. 4), including the second-stage algorithm sketched in
Table I, were implemented by the EC-JRC in the IDL program-
ming language.

D. SNLTOC Quality Indexes

Inherently, no evaluation measure can be injective. For ex-
ample, different classification maps may produce the same
confusion matrix, and different confusion matrices may gener-
ate the same confusion matrix accuracy measure (e.g., Kappa
coefficient). These observations suggest that no single uni-
versally acceptable measure of accuracy should be employed
in practice. Instead, a variety of uncorrelated quality indexes
are required. Although in agreement with a part of existing
literature [88], [89], this statement is in contrast with the high
scientific impact of universal image quality indexes widely and
“profitably used” by the scientific community of image and
signal processing [90].

In [29], [31], and [39], several quality indexes suitable
for assessing results of an NLTOC procedure are reviewed
and selected. In [38], quality indexes are adopted in an
SNLTOC framework. These two sets of quality criteria are
discussed next.

1) Image-wide changes in pixel-based spectral patterns
(spectral shapes [57], reflectance patterns [58]) before
and after NLTOC should be small [29]. This statement,
although vague, appears reasonable. However, in prac-
tice, it is enforced by requiring that image-wide summary
statistics, namely, mean and standard deviation, should
be maintained before and after NLTOC. In [31], image-
wide per-class mean values must be maintained before
and after NLTOC because the mean values of each land
cover type on sunlit slopes facing away from the sun
(identified erroneously as the shady side) should increase

while those on sunlit slopes facing the sun (identified
erroneously as the sunny side) should decrease.

2) For each land-cover-class-specific reference data set, the
image-wide spectral standard deviation after NLTOC
should decrease irrespective of the pixel-based solar
incident angle [29], [31].

3) In [38], the per-class local spectral variance computed by
means of a semivariogram analysis must decrease after
SNLTOC.

4) A spectrally homogenous class (namely, snow) is ex-
pected to feature a radiance value constant across incident
angles after SNLTOC [38].

5) In [38], the quality assessment of a land-cover-specific
stratified linear regression enforced by a two-stage
SNLTOC approach is twofold. First, the estimated slope
of the linear regression, equivalent to the Minnaert con-
stant, must belong to range [0, 1] and monotonically
decrease with surface roughness, i.e., if the Minnaert
constant equals 1, then an isotropic surface model holds
(see Section III-B2b). Second, the square of the cor-
relation between terms in the linear regression r2 ∈
[0, 1] monotonically increases with the capacity of the
estimated Minnaert constant (slope) to characterize the
class-specific relationship between topography and solar
energy at the surface [37]–[39]. For example, in [38],
when the enhanced Minnaert SNLTOC equation (16) is
applied to the NIR band of a SPOT-3 image for classes
nonvegetation, vegetation, and snow, respectively, then r2

equals 0.40, 0.51, and 0.57, and the Minnaert constant
equals 0.40, 0.44, and 0.48. In [39], when the enhanced
Minnaert NLTOC equation (14) is applied image-wide to
the three bands of a SPOT-2 image, r2 ranges from 0.17
to 0.57.

6) In [39], supervised classification accuracy on a testing
sample must increase after (S)NLTOC.

The quality criterion 1) listed previously (mean and standard
deviation to be maintained before and after NLTOC) is max-
imized when image-wide spectral statistics after NLTOC are
left unchanged, i.e., when no NLTOC takes place. Therefore,
it does not guarantee consistency with the (S)NLTOC objective
and is ignored hereafter.

The NLTOC quality assessment criterion 2) listed previously
(image-wide spectral standard deviation after NLTOC should
decrease) contradicts the first criterion and is consistent with the
target of an (S)NLTOC procedure. Therefore, the first SNLTOC
quality index adopted hereafter requires per-stratum spectral
standard deviation to decrease after SNLTOC, where each stra-
tum consists of slopes facing the sun and facing away from the
sun within the same spectral category (refer to Section IV-A).

The quality criterion 3) listed previously (per-class radiance
constant across incident angles) is difficult to apply because of
the lack of per-class (e.g., snow) spectrally homogeneous slopes
in spaceborne MS imagery. It is ignored hereafter.

The physical meaning of the estimated Minnaert constant
within range [0, 1], if any, and the maximization of the square
correlation r2 in stratified linear regression, refer to the afore-
mentioned points 4) and 5), provide the second and third
SNLTOC quality criteria adopted hereafter.
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In addition to the three aforementioned quality factors taken
from existing literature, a fourth original (S)NLTOC quality
index is conceived to assess how well the pixel-based spectral
(reflectance) pattern (shape) is maintained after SNLTOC. This
means that, for example, a pixel that looks like snow before
(S)NLTOC must look like snow after (S)NLTOC. In practice,
the within-stratum spectral mean is required to change by a
similar amount (in terms of absolute or percentage quantity?
This aspect remains vague to the authors of this paper.) after
(S)NLTOC irrespective of band. Although stemming from the
same rationale somehow expressed in point 1) previously, this
implementation differs from those proposed in [29], [31], [38],
and [39].

Finally, related to point 6), a fifth original (S)NLTOC quality
index using semantics is adopted. It requires spectral-based
semiconcepts [e.g., vegetation (refer to Section IV-A2)] pro-
vided as output by (S)SRC both before and after SLNTOC
to be semantically consistent with land cover concepts (e.g.,
forest) provided by an independent reference data set (see
Section VI-A). If this semantic consistency is proven before
SNLTOC occurs, its merit is due to (S)SRC alone. If this
semantic consistency holds after SNLTOC, its merit ought to
be assigned to the two-stage SNLTOC system as a whole. The
latter semantic consistency implicitly requires the two-stage
SNLTOC system to maintain the overall shape of the pixel-
based spectral signature for every pixel in the image, which is
the same SNLTOC system requirement assessed by the fourth
(S)NLTOC quality index selected previously.

VII. EXPERIMENTAL RESULTS

In [91] and [92], the following algorithm benchmarking
criteria are proposed.

1) At least two real and standard/ appropriate data sets must
be adopted to demonstrate the potential utility of an
algorithm.

2) The proposed algorithm must be compared against at
least one existing technique.

3) At least one-fifth of the total paper length should be
devoted to evaluation.

To fulfil the aforementioned requirements, this experimental
session is organized as follows.

1) The selected testing data set is two source and two reso-
lution. It comprises a four-band 20-m-resolution SPOT-4
HRVIR image and a four-band 23.5-m resolution IRS-P6
LISS-III image (refer to Section V-C).

2) Two different DEMs, namely, a 90-m resolution SRTM
and a 25-m resolution DTM are selected (refer to
Section V-D). The latter is expected to guarantee en-
hanced SNLTOC performance.

3) To the best of our knowledge, no automatic SNLTOC
system alternative to the operational automatic two-stage
SNLTOC algorithm proposed in Section IV exists in
RS literature. As a consequence, the latter is compared
to no alternative approach. Rather, three different in-
stantiations (A)–(C) of the proposed two-stage SNLTOC
architecture are implemented and quantitatively com-

pared by means of two different reference data sets as
described next.

a) First-stage stratification implemented according to
Section IV-A. To maintain the size (cardinality)
of output strata statistically significant, the selected
granularity of the SSRC output map is standard
coarse, featuring 14 spectral categories, i.e., C =
14 (refer to Section IV-A2). Thus, the total number
of input image strata is (refer to Hypothesis 2 in
Section III-B2b) S = 2 (horizontal areas + occluded
areas, to be ignored) + 14 (spectral categories) ∗ 2
(slopes facing the sun + slopes facing away from the
sun) = 30. As a consequence (refer to Table I above),
the total number of linear regressions to be performed,
NLR, is equal to C = 14.

b) Competing second-stage SNLTOC methods where
the stratified smoothing slope (21) (refer to
Section IV-B1) is combined with (refer to
Section III-B2b) the following: (A) the stratified
Minnaert equation (13); (B) the stratified enhanced
Minnaert equation (16); and (C) the stratified C
correction equation (19). If Smtnfs = Smtfs = 1,
then the stratified smoothing slope (21) is ineffective.
Otherwise, Smtnfs = 3 and Smtfs = 1 by default
(refer to Section III-B2b).

c) Two independent sets of ground-truth ROIs are em-
ployed for result validation [e.g., within-stratum vari-
ance is expected to decrease after SNLTOC (refer to
Section VI-D)]. The first reference data set features
inferior cardinality but superior reliability than the
second data set (refer to Section V-A).

A. Second-Stage SNLTOC Method Selection

In [29], the smoothed C NLTOC equations (18) and
(20) outperform alternative NLTOC methods described in
Section III-B2b. In disagreement with [29], in [35], the en-
hanced Minnaert NLTOC equation (14) performs better than
the C NLTOC equation (18), and in line with theoretical
expectations, the enhanced Minnaert SNLTOC equation (16)
performs better than its nonstratified counterpart (14), when
the number of predefined input strata S = C = 2 (forest and
nonforest).

These conclusions are expected to be of scant utility in the
selection of the best second-stage SNLTOC method among
those surveyed in Section III-B2b in the framework of the
proposed two-stage SNLTOC system whose number of input
strata S = 30 > C = 14 = NLR (see this earlier discussion).

Table II compares quantitative results collected when
the three aforementioned competing implementations (A)–(C)
of the proposed two-stage SNLTOC system employ, as input,
the NIR band (CH3) of the testing IRS-P6 image draped over
the DTM. Table II shows that, if Smtnfs =3 and Smtfs =1,
then implementation (C) maximizes the spectral category-
specific linear regression variables r2

c , c = 1, . . . , C = 14 (also
refer to Table I), which is somehow in line with the conclusions
in [29]. However, absolute values of these square correlations
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TABLE II
LAND COVER STRATIFIED REGRESSION ANALYSIS. SEMANTIC MEANING OF SPECTRAL CATEGORIES: (1) VEGETATION. (2) SHADOW AREA WITH

VEGETATION. (3) RANGELAND. (4) WEAK RANGELAND. (5) PIT BOG (ALSO TYPICAL OF FORESTS AND VEGETATED AGRICULTURAL FIELDS).
(6) GREENHOUSE (ALSO TYPICAL OF FORESTS AND VEGETATED AGRICULTURAL FIELDS). (7) BARREN LAND AND BUILT-UP. (8) SHADOW AREA WITH

BARREN LAND (ALSO TYPICAL OF BUILT-UP AREAS, PARTICULARLY ASPHALT ROADS, LAVA ROCK, ETC.). (9) WATER OR SHADOW.
(10) CLOUD. (11) THIN CLOUD. (12) SMOKE PLUME. (13) SNOW. (14) OUTLIERS (EMPTY, IN THIS CIRCUMSTANCE). (IN GRAY HIGHLIGHT) RELEVANT

VALUES. (IN DARK GRAY HIGHLIGHT) MINNAERT CONSTANT VALUES WITHOUT A CLEAR PHYSICAL MEANING

are extremely low, i.e., below those (≈0.5) found in [38]
where S = 2 (refer to Section VI-D). High values (> 0.8) of
the spectral category-specific linear regression variables r2

c ,
c = 1, . . . , C = 14, are obtained with implementation (B) if
and only if the enhanced Minnaert SNLTOC equation (16) is
adopted in combination with no smoothing effect, i.e., Smtfs =
Smtnfs = 1, which is fairly in line with the conclusions found
in [35]. Additional advantages of (16) versus (19) and (21) are
that the former is automatic (i.e., it requires no system param-
eter to be user defined) and computationally more efficient
(see Fig. 4).

These conclusions were found invariant to changes in the
input MS image and DEM. Thus, (16) is the only one adopted in
the further testing of the proposed two-stage SNLTOC system.

B. Two-Stage SNLTOC System Results

Three preliminary classification maps, featuring a standard
fine semantic granularity comprising 32 spectral categories (see
Section IV-A2), are automatically generated by SSRC from the
testing SPOT (respectively, IRS) image 1) without SNLTOC,
2) with SNLTOC based on the SRTM, and 3) with SNLTOC
based on the DTM [see Figs. 5–8 (respectively, Figs. 9–12
for IRS)].

Table III (respectively, Table IV for IRS) is generated from
the SPOT (respectively, IRS) image to investigate the first
and fourth quality indexes selected in Section VI-D, namely:
1) the within-forest class variance, measured in ground-truth
ROIs, expected to decrease after SNLTOC and 2) the within-
forest class mean, measured in ground-truth ROIs, whose rate
of change after SNLTOC should be homogeneous (constant)
across spectral bands.

Table V (respectively, Table VI) is generated from the SPOT
(respectively, IRS) image to investigate the fifth quality index
proposed in Section VI-D, namely, ground-truth forest ROIs
should overlap with vegetation spectral categories automati-
cally detected by SSRC.

In the following discussion of Tables III–VI, wherever nec-
essary, land cover classes are defined according to the USGS
[18], the CORINE [71], and the IGBP-DIS [11] land cover
taxonomies.

1) Spot-4 Image Data Set: To make Tables III and V more
meaningful, their quantitative results are commented in the
following.

a) Reference data set 1(a): ROIs of forest areas from
orthophotos and ground surveys

Case 1—No TOC: Table III provides statistics generated
from the input radiometrically calibrated SPOT-4 image before
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Fig. 5. (a) SPOT-4 HRVIR image. Spatial resolution: 20 m. Acquisition time: July 21, 2006 at 10:34:42. Path: 060. Row: 258. Orthorectified and radiometrically
calibrated into TOARFT values, shown in false colors (R: band 4, G: band 3, and B: band 1). (b) Preliminary spectral classification map, shown in pseudocolors,
generated by SSRC from the SPOT-4 image shown in (a). Water and shadow areas are in blue, clouds are in white, snow and ice are in light blue, vegetation types
are in different shades of green, rangeland types are in different shades of light green, and barren land types are in different shades of brown and gray.

Fig. 6. (a) SPOT-4 SRTM-based SNLTOC image generated from Fig. 5(a) and (b). (b) Preliminary spectral classification map, shown in pseudocolors [same as
in Fig. 5(b)], generated by SSRC from the SPOT-4 image shown in (a).

Fig. 7. (a) Zoomed area extracted from Fig. 5(a), shown in grayscale from
false colors (R: band 4, G: band 3, and B: band 1). (b) Zoomed area extracted
from Fig. 6(a), shown in grayscale from false colors (R: band 4, G: band 3, and
B: band 1). (c) Three-dimensional surface view of (a) draped over the SRTM.

SNLTOC takes place to be used as a reference by the SNL-
TOC approach with SRTM and by the SNLTOC approach
with DTM.

Table V, in line with theoretical expectations, shows the
following.

1) Six vegetation spectral categories feature a degree of
overlap with the reference forest data set 1(a) superior
to 0.5% and, overall, cover 99.62% of the forest ground

truth. The acronyms of these six vegetation spectral cat-
egories [sorted according to their decreasing LAI values
(see the following discussion)] are SVVHNIR, SVHNIR,
SVMNIR, AVHNIR, AVMNIR, and AVLNIR.

2) Aside from few reference samples belonging to mixed
pixels, no semantic inconsistency between SSRC and the
reference forest data set 1(a) is found. This confirms the
SSRC reliability and robustness to changes in the input
data set acknowledged in related works [21]–[23], [45].

These quantitative results were validated by visual (qual-
itative) photointerpretation of year 2006 orthophotos (see
Section V-B) where relationships between land cover classes
and the six aforementioned vegetation spectral categories were
identified as follows.

1) Strong Vegetation (SV) featuring Very High NIR Leaf
(in the SSRC decision tree) Spectral Category (LSC)
(SVVHNIR). It overlaps with very high density decidu-
ous forests and agricultural fields.
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Fig. 8. (a) SPOT-4 DTM-based SNLTOC image generated from Fig. 5(a) and (b). (b) Preliminary spectral classification map, shown in pseudocolors [same as
in Fig. 5(b)], generated by SSRC from the SPOT-4 image shown in (a).

Fig. 9. (a) IRS-P6 LISS-III image. Spatial resolution: 23.5 m. Acquisition time: June 13, 2006 at 10:15:05.83. Orbit: 13 786. Frame: 37. Orthorectified and
radiometrically calibrated into TOARFT values, shown in false colors (R: band 4, G: band 3, and B: band 1). (b) Preliminary spectral classification map, shown
in pseudocolors [same as in Fig. 5(b)], generated by SSRC from the IRS-P6 image shown in (a).

Fig. 10. (a) IRS-P6 SRTM-based SNLTOC image generated from Fig. 9(a) and (b). (b) Preliminary spectral classification map, shown in pseudocolors [same as
in Fig. 5(b)], generated by SSRC from the IRS-P6 image shown in (a).

2) SV with High-NIR LSC (SVHNIR). It overlaps with
high-density deciduous forests, agricultural fields, and
pastures (grasslands).

3) SV with Medium-NIR LSC (SVMNIR). It overlaps with
high-density evergreen forests, mainly broad leaved, and
high-density deciduous forests.
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Fig. 11. (a) Zoomed area extracted from Fig. 9(a), shown in grayscale from
false colors (R: band 4, G: band 3, and B: band 1). (b) Zoomed area extracted
from Fig. 10(a), shown in grayscale from false colors (R: band 4, G: band 3, and
B: band 1). (c) Three-dimensional surface view of (a) draped over the SRTM.

4) AV candidate area featuring High-NIR LSC (AVHNIR).
It overlaps with deciduous forests, agricultural fields, and
pastures.

5) AV candidate area featuring Medium-NIR LSC
(AVMNIR). It overlaps with evergreen forests, mainly
broad leaved, and deciduous forests.

6) AV candidate area featuring Low-NIR LSC (AVLNIR). It
overlaps with evergreen forests, mainly needle leaved.

These relationships confirm the effectiveness of the LAI
adopted by SSRC to detect, in combination with a plethora of
other decision criteria, vegetation phenomena in RS imagery
(refer to [45]).

Case 2—SRTM-based SNLTOC: Based on Table III, in line
with theoretical expectations, the following are observed.

1) Within-forest class variance decreases in all spectral
bands after SNLTOC.

2) The overall shape of the forest spectral signature is main-
tained (the mean statistic slightly increases irrespective of
the spectral band) after SNLTOC.

Based on Table V, in line with theoretical expectations, the
following are noticed.

1) Forest samples fall in a set of six vegetation spectral
categories coincident with that of Case 1, but the overall
occurrence of the most significant four spectral cate-
gories in both Cases 1 and 2, namely, spectral cate-
gories SVHNIR, SVMNIR, AVHNIR, and AVMNIR (in
decreasing LAI order), is superior in Case 2 to that in
Case 1. In other words, the within-forest class variance
after SNLTOC is reduced with respect to the original no-
TOC data set (Case 1); in fact, the same set of forest pixels
is mapped onto an inferior number of vegetation color
types (spectral categories).

2) No semantic inconsistency between vegetation spectral
categories detected by SSRC and the reference forest data
set 1(a) occurs.

Case 3—DTM-based SNLTOC: Based on Table III, in line
with theoretical expectations, we observe the following.

1) Within-forest class variance decreases in all spectral
bands after SNLTOC, and this decrease is superior to that
with SRTM (Case 2) in all bands but one, in agreement
with the claimed superior quality of the adopted DTM
with respect to the SRTM (refer to Section V-D).

2) The overall shape of the forest spectral signature is main-
tained (the mean statistic slightly increases irrespective of
the spectral band).

Based on Table V, in line with theoretical expectations, the
following are noted.

1) Forest samples fall in a set of six vegetation spectral
categories coincident with that of Cases 1 and 2, but
the overall occurrence of the most significant four spec-
tral categories in Cases 1, 2, and 3, namely, SVHNIR,
SVMNIR, AVHNIR, and AVMNIR (in decreasing LAI
order), is superior in Case 3 to that in Cases 1 and 2. In
other words, the within-forest class variance is reduced in
Case 3 with respect to Cases 1 and 2. This result accounts
for the finer resolution of the DTM with respect to the
SRTM, which is in line with theoretical expectations.

2) No semantic inconsistency between vegetation spectral
categories detected by SSRC and the reference forest data
set 1(a) occurs.

b) Reference data set 2(a): ROIs of forest areas from
cartography

Case 1—No TOC: Table III provides statistics generated
from the input radiometrically calibrated SPOT-4 image before
SNLTOC takes place to be used as a reference by the SNLTOC
approach with SRTM and by the SNLTOC approach with DTM.

Based on Table V and in comparison with results gathered
with reference data set 1(a) (see Case 1 in Section VII-B1a),
the following are noteworthy.

1) Six vegetation spectral categories, namely, SVVHNIR,
SVHNIR, SVMNIR, AVHNIR, AVMNIR, and
AVLNIR (sorted according to their decreasing LAI
values), covering 99.62% of the (more reliable) reference
forest data set 1(a), account for 87.38% of the (less
reliable) reference forest data set 2(a). Four additional
spectral categories, namely, Average Shrub Rangeland
(ASR) featuring High-NIR LSC (ASRHNIR), ASR
with Medium-NIR LSC (ASRMNIR), ASR with
Low-NIR LSC (ASRLNIR), and Either Wetland or
Dark Rangeland (WEDR) (sorted according to their
decreasing LAI values), overlap with reference data set
2(a) with occurrence above 0.5%. This reveals the larger
spectral dynamic of reference data set 2(a) with respect to
reference data set 1(a), which accounts for the unknown
accuracy of the former and its inferior reliability due
to a question of temporality [the former employs forest
cartography for the year 2000 as a source of reference
knowledge for RS images acquired in the year 2006
(refer to Section VI-A)].

2) No semantic inconsistency between vegetation spectral
categories detected by SSRC and the reference forest data
set 2(a) occurs. However, spectral categories ASRHNIR,
ASRMNIR, ASRLNIR, and WEDR feature medium to
low LAI values; thus, they are unlikely to belong to
forest land covers. This apparent inconsistency is further
investigated in the following.

Based on the visual photointerpretation of year 2006 ortho-
photos (see Section V-B), the following relationships between
spectral categories ASRHNIR, ASRMNIR, and ASRLNIR and
land cover classes were identified (see Fig. 13).

1) ASRHNIR. It overlaps with agricultural land, herbaceous
rangeland, or shrub and brush rangeland.
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Fig. 12. (a) IRS-P6 DTM-based SNLTOC image generated from Fig. 9(a) and (b). (b) Preliminary spectral classification map, shown in pseudocolors [same as
in Fig. 5(b)], generated by SSRC from the IRS-P6 image shown in (a).

TABLE III
SPOT-4 INPUT IMAGE. REFLECTANCE MEAN AND STANDARD DEVIATION OF REFERENCE FOREST SAMPLES IN THE 1) RAW (NON-TOC) SPOT-4 IMAGE,

2) SRTM-BASED SNLTOC SPOT-4 IMAGE, AND 3) DTM-BASED SNLTOC SPOT-4 IMAGE. (IN GRAY HIGHLIGHT) RELEVANT VALUES

TABLE IV
IRS-P6 LISS-III DATA SET. REFLECTANCE MEAN AND STANDARD DEVIATION OF REFERENCE FOREST SAMPLES IN THE 1) RAW (NON-TOC) IRS-P6

LISS-III IMAGE, 2) SRTM-BASED SNLTOC IRS-P6 LISS-III IMAGE, AND 3) DTM-BASED SNLTOC IRS-P6 LISS-III IMAGE.
(IN GRAY HIGHLIGHT) RELEVANT VALUES

2) ASRMNIR. It overlaps with open deciduous and mixed
forests (called woody savannas in the IGBP-DIS classifi-
cation scheme [11]).

3) ASRLNIR. It overlaps with permanent crops (particularly
olive groves) or shrub and brush rangeland.

These relationships confirm the effectiveness of the LAI
adopted by SSRC, but appear inconsistent with the existing
overlap between spectral categories ASRHNIR, ASRMNIR,
and ASRLNIR and the reference forest data set 2(a), as shown
in Fig. 13. Since these pixels do not satisfy the forest-class
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TABLE V
SPOT-4 INPUT IMAGE. SEMANTIC CONSISTENCY OF REFERENCE FOREST SAMPLES WITH PRELIMINARY SPECTRAL MAP INDEXES GENERATED BY

SSRC FROM 1) RAW (NON-TOC) SPOT-4 IMAGE, 2) SRTM-BASED SNLTOC SPOT-4 IMAGE, AND 3) DTM-BASED SNLTOC SPOT-4 IMAGE.
(IN GRAY HIGHLIGHT) RELEVANT VALUES

definition adopted by, for example, the IGBP-DIS classification
scheme, which considers, as forest lands, those dominated by
woody vegetation with a percent cover > 60% and height
exceeding 2 m, they were rejected by the reference forest data
set 2(a).

To summarize, as already outlined in [21], [22], and [45],
due to its effectiveness and reliability, (S)SRC can be adopted
as a source of semantic information, which is automatically
generated from RS imagery and capable of improving the (often
unknown) quality of any available ground-truth data set (e.g.,
CORINE).

Case 2—SRTM-based SNLTOC: Based on Table III, in line
with theoretical expectations, we note the following.

1) Within-forest class variance decreases in all spectral
bands after SNLTOC, and this decrease is inferior to that
with the more reliable reference data set 1(a).

2) The overall shape of the forest spectral signature is main-
tained (the mean statistic slightly increases irrespective of
the spectral band).

Based on Table V, in line with theoretical expectations, the
following observations are noted.

1) Forest samples fall in a set of ten spectral categories
coincident with that of Case 1, but the overall occurrence

of the most significant four spectral categories in both
Cases 1 and 2, namely, spectral categories SVHNIR,
AVHNIR, AVMNIR, and ASRMNIR (sorted according to
their decreasing LAI value), is superior in Case 2 to that
in Case 1. In other words, the within-forest class variance
is reduced with respect to the original no-TOC data set
(Case 1).

2) As in Case 1, based on the photointerpretation of year
2006 orthophotos, the reference forest samples overlap-
ping with spectral categories ASRHNIR, ASRMNIR, and
ASRLNIR were considered incorrect and rejected from
the forest ground truth 2(a).

3) No semantic inconsistency between the vegetation spec-
tral categories detected by SSRC and the (revised) refer-
ence forest data set 2(a) occurs.

Case 3—DTM-based SNLTOC: Based on Table III, in line
with theoretical expectations, the following are noteworthy.

1) Within-forest class variance decreases in all spectral
bands after SNLTOC. This decrease is superior to that
with SRTM (Case 2) and inferior to that assessed with
the more reliable reference data set 1(a).

2) The overall shape of the forest spectral signature is main-
tained (although the mean statistic slightly decreases in
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TABLE VI
IRS-P6 LISS-III DATA SET. SEMANTIC CONSISTENCY OF REFERENCE FOREST SAMPLES WITH PRELIMINARY SPECTRAL MAP INDEXES

GENERATED BY SSRC FROM THE 1) RAW (NON-TOC) IRS-P6 LISS-III IMAGE, 2) SRTM-BASED SNLTOC IRS-P6 LISS-III IMAGE,
AND 3) DTM-BASED SNLTOC IRS-P6 LISS-III IMAGE. (IN GRAY HIGHLIGHT) RELEVANT VALUES

Fig. 13. (In real colors) Orthophoto acquired in the year 2006 overlapped with
(in yellow) spectral categories ASRHNIR, ASRMNIR, and ASRLNIR of the
SSRC map generated from the SRTM-based SNLTOC SPOT-4 image. These
two spectral categories clearly overlap with agricultural fields, pastures, and
other types of nonforest land.

two out of four spectral bands and slightly increases in
the remaining two bands).

Based on Table V, in line with theoretical expectations, we
notice the following.

1) Forest samples fall in a set of ten spectral categories
coincident with that of Cases 1 and 2, but the overall oc-
currence of the most significant four spectral categories in

Cases 1, 2, and 3, namely, SVHNIR, AVHNIR, AVMNIR,
and ASRMNIR (sorted according to their decreasing LAI
value), is superior in Case 3 to that in Cases 1 and 2. In
other words, the within-forest class variance is reduced
in Case 3 with respect to Cases 1 and 2. This should
account for the finer resolution of DTM with respect
to SRTM.

2) As in Case 1, based on the photointerpretation of year
2006 orthophotos, the reference forest samples overlap-
ping with spectral categories ASRHNIR, ASRMNIR, and
ASRLNIR were considered incorrect and rejected from
the forest ground truth 2(a).

3) No semantic inconsistency between vegetation spectral
categories detected by SSRC and the (revised) reference
forest data set 2(a) occurs.

2) IRS-P6 Image Data Set: To make Tables IV and VI
more meaningful, their quantitative results are com-
mented next.

a) Reference data set 1(b): ROIs of forest areas from
orthophotos and ground surveys

Case 1—No TOC: Table IV provides statistics generated
from the input radiometrically calibrated IRS-P6 image be-
fore SNLTOC takes place to be used as a reference by the
SNLTOC approach with SRTM and by the SNLTOC approach
with DTM.

Authorized licensed use limited to: CNR ISSIA. Downloaded on January 21, 2010 at 05:56 from IEEE Xplore.  Restrictions apply. 



BARALDI et al.: OPERATIONAL TWO-STAGE STRATIFIED TOPOGRAPHIC CORRECTION OF SPACEBORNE MS IMAGERY 139

Based on Table VI, in line with theoretical expectations, the
following are observed.

1) Six vegetation spectral categories, namely, SVVHNIR,
SVHNIR, SVMNIR, AVHNIR, AVMNIR, and AVLNIR
(sorted according to their decreasing LAI values), feature
a degree of overlap with the reference forest data set 1(b)
superior to 0.5% and, overall, cover 99.63% of the forest
ground truth. These spectral types are in common with
the SPOT-4 image Case 1 (refer to Section VII-B1a).

2) No semantic inconsistency between vegetation spectral
categories detected by SSRC and the reference forest
data set occurs, which confirms the SSRC reliability
and robustness to changes in the input data set, in line
with [45].

Case 2—SRTM-based SNLTOC: Based on Table IV, in par-
tial agreement with theoretical expectations, the following are
noticed.

1) Within-forest class variance decreases in only two of four
spectral bands after SNLTOC.

2) The overall shape of the forest spectral signature is main-
tained (the mean statistic slightly increases irrespective of
the spectral band).

Based on Table VI, observations analogous to those driven
from reference data set 1(a) in the SRTM-based SNLTOC
SPOT-4 image Case 2 reported in Section VII-B1a hold here.

Case 3—DTM-based SNLTOC: Based on Table IV, in
partial agreement with theoretical expectations, we note the
following.

1) Within-forest class variance decreases in only three out
of four spectral bands after SNLTOC, and this decrease is
superior to that with SRTM.

2) The overall shape of the forest spectral signature is main-
tained after SNLTOC (although the mean statistic slightly
increases in three out of four spectral bands and slightly
decreases in the fourth spectral band).

Based on Table VI, observations analogous to those driven
by reference data set 1(a) in the DTM-based SNLTOC SPOT-4
image Case 3 reported in Section VII-B1a hold here.

b) Reference data set 2(b): ROIs of forest areas from
cartography

Case 1—No TOC: Table IV provides statistics generated
from the input radiometrically calibrated IRS-P6 image before
SNLTOC takes place to be used as a reference by the SNLTOC
approach with SRTM and by the SNLTOC approach with DTM.

Based on Table VI, observations analogous to those driven
by reference data set 2(a) in the no-TOC SPOT-4 image Case 1
reported in Section VII-B1b hold here.

Case 2—SRTM-based SNLTOC: Based on Table IV, in par-
tial agreement with theoretical expectations, we notice the
following.

1) Within-forest class variance decreases in two out of four
spectral bands, and this decrease is inferior to that with
the more reliable reference data set 1(b).

2) The overall shape of the forest spectral signature is main-
tained (the mean statistic slightly decreases irrespective
of the spectral band).

Based on Table VI, we observe the following, in agreement
with theoretical expectations.

1) Forest samples fall in a set of spectral categories coin-
cident with that of Case 1. After SNLTOC, the spectral
category SVHNIR gains occurrence although the overall
occurrence of the most significant four spectral categories
in both Cases 1 and 2, namely, SVVHNIR, SVHNIR,
AVHNIR, and AVMNIR (sorted according to their de-
creasing LAI value), remains unchanged. This means
that the spectral spread of class forest is reduced after
SNLTOC.

2) No semantic inconsistency between vegetation spectral
categories detected by SSRC and the reference forest data
set 2(b) occurs.

Case 3—DTM-based SNLTOC: Based on Table IV, in par-
tial agreement with theoretical expectations, the following are
noted.

1) Within-forest class variance decreases in all spectral
bands after SNLTOC. This decrease is superior to that
with SRTM (Case 2), but it is not always inferior to that
with the more reliable reference data set 1(b).

2) The overall shape of the forest spectral signature is main-
tained (the mean statistic slightly decreases irrespective
of the spectral band).

Based on Table VI, we observe the following, in agreement
with theoretical expectations.

1) After SNLTOC, the spectral category SVHNIR gains
occurrence although the overall occurrence of the most
significant four spectral categories in Cases 1, 2, and 3,
namely, SVVHNIR, SVHNIR, AVHNIR, and AVMNIR
(sorted according to their decreasing LAI value), remains
unchanged. This means that the spectral spread of class
forest is reduced in Case 3 with respect to Cases 1 and 2.

2) No semantic inconsistency between vegetation spectral
categories detected by SSRC and the reference forest data
set 2(b) occurs.

3) Discussion of Results: The quantitative SNLTOC results
shown in Tables III–VI require the availability of an indepen-
dent reference (ground truth, e.g., forest) data set. Absolute
values of quality indexes generated from Tables III–VI are not
significant. Rather, their relative values are important for com-
paring alternative SNLTOC solutions. Overall, the agreement of
these relative values with theoretical expectations is impressive.
Tables III–VI prove the following. First, the proposed auto-
matic two-stage SNLTOC system is effective in reducing the
within-(forest) class variance while no significant distortion in
pixel-based spectral signatures is introduced. This effectiveness
decreases monotonically with the spatial resolution of the DEM
(i.e., effectiveness increases as the spatial resolution of the
DEM becomes finer). Second, the first-stage automatic SSRC
module is effective and robust to changes in the input data set;
thus, it can be adopted as the core of an automatic two-stage
SNLTOC system.
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Fig. 14. (a) Landsat 7 ETM+ image of Siberia (path: 033, row: 033, acquisi-
tion date: September 14, 2000), shown in false colors (R: band ETM5, G: band
ETM4, and B: band ETM1), with 30-m resolution and calibrated into TOA
reflectance. (b) Two-stage SNLTOC of (a), based on the SRTM. (Top right in
the image) Maximum mountain height: 2230 m. (Bottom right in the image)
Flat height: 460 m.

C. Qualitative SNLTOC Results in a High Mountainous Site

The capability of the proposed automatic two-stage
SNLTOC system to deal with RS images of high-altitude
regions (featuring elevation, for example, > 1500 m), with
sparse vegetation and bare soil, where rock and snow cover
dominate the landscape, is investigated qualitatively (since no
independent ground-truth data set is available, which is often
the case in RS image mapping problems) in a Landsat 7 ETM+
image of Siberia (path: 033, row: 033, acquisition date: 2000-
14-09) calibrated into TOARFT values (see Section III-A). In
this test site, according to the available 90-m-resolution SRTM,
the maximum mountainous height is 2230 m with a flat terrain
height of 460 m.

To deal with Landsat imagery, the proposed two-stage
SNLTOC system adopts, as its preliminary classification first
stage, the automatic LSRC module (refer to Section IV-A2) in
place of the SSRC system adopted in Section VII-B. The LSRC
standard coarse output map features 17 spectral categories, i.e.,
C = 17 (refer to Section IV-A2); thus, the total number of input
image strata is S = 2 (horizontal areas + occluded areas) +
17 (spectral categories) ∗ 2 (slopes facing the sun + slopes
facing away from the sun) = 36, thus NLR = C = 17 (also
refer to Section VII).

The radiometrically calibrated input image and the SNLTOC
output image can be visually compared in Fig. 14(a) and (b). A
visual assessment of these two images shows that the SNLTOC
transformation provides an effective compensation for changes
in the solar incident angle. This qualitative conclusion is con-
firmed by experimental evidence. Several ROIs belonging to
classes bare soil, rangeland, woodland, and snow are identified
across Fig. 14(a) by an expert photointerpreter. These ROIs
overlap with slopes facing the sun and facing away from the sun
according to the given DEM (refer to Section IV-A1). Spectral
variance is diminished after SNLTOC in all selected ROIs. The
overall shape of spectral signatures generated from the selected
ROIs is well preserved after SNLTOC, which means that, in
practice, a pixel belonging to a given class, for example, snow,
looks like snow after SNLTOC [refer to Fig. 14(a) and (b)].
Finally, small but genuine image details appear well preserved
after SNLTOC (although some artifacts are introduced due to
the presence of spurious pits in the DEM). This merit is due to
LSRC whose semantic partition of the Landsat image is pixel

Fig. 15. (a) Forest/nonforest binary classification map generated from
the IRS-P6 LISS-III image shown in Fig. 9(a) by SAM implemented in
ENVI. Maximum angle threshold (in radians) = 0.1. Forest sample data set
cardinality = 21 999. Overall accuracy (OA) = 20 820/21 999 = 94.64%.
(b) Example of combination of the forest map generated by SAM, shown
in (a), with the mutually exclusive and totally exhaustive classification map,
automatically generated by SSRC, shown in Fig. 9(b). The land cover class
forest shown in (a) is shown in a bright green pseudocolor. (c) Continuous
intelligent SVI: Second-derivative greenness index computed by SSRC from
Fig. 9(a) masked by a binary vegetation mask extracted from the SSRC map
shown in Fig. 9(b).

based (therefore intrinsically able to detect small but genuine
image details), but effective and reliable, namely, unaffected
by the typical salt-and-pepper classification noise effect char-
acterizing ordinary pixel-based classifiers (such as maximum
likelihood, neural networks, etc.) [72].

To conclude, this experiment shows that, in a high-altitude re-
gion (featuring maximum mountainous height equal to 2230 m
with a flat terrain height of 460 m), the following are true:
1) The proposed automatic two-stage SNLTOC system is
effective in reducing within-class variance while no signifi-
cant distortion in pixel-based spectral signatures is introduced,
and 2) the automatic LSRC module is effective and eligible
for adoption as the core of an automatic two-stage SNLTOC
system.

D. Supervised Classification in Series With SNLTOC

In [21]–[23], and [45], it was clearly stated that an oper-
ational automatic SRC system is preliminary and not at all
alternative to traditional algorithms capable of learning from
either unlabeled (unsupervised) or labeled (supervised) data.

To highlight this fundamental concept in an operational
framework, this section compares output products generated
from the testing IRS-P6 satellite image draped over the DTM
(refer to Section VII-B8) by the following: 1) SSRC (refer
to Section IV-A2); 2) a two-stage SNLTOC system incor-
porating SSRC (refer to Section IV); and 3) a standard su-
pervised data-learning classifier, for example, SAM (refer to
Section III-B1c), which is well known for its relative insen-
sitiveness to illumination and albedo effects [57], [58] (for
a theoretical comparison between SAM and SRC, refer to
Appendix I).

The reliable ground-truth knowledge base represented by the
reference data set 1(b), consisting of 21 999 ground-truth forest
samples distributed across the IRS-P6 satellite image (refer to
Section VI-A), was selected for quantitative SNLTOC quality
assessment (refer to Section VI-D).

In RS common practice, the forest-class reference data set
1(b) can be employed by SAM to solve a dichotomous (one-
class) forest–nonforest classification problem. For example,
Fig. 15(a) shows the binary forest map generated by SAM,
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implemented in the ENVI software toolbox with a maximum
angle threshold in radians equal to 0.1 (for outlier detection),
from the IRS-P6 image shown in Fig. 9(a). In this one-class
classification problem, computation time is equivalent to a few
seconds with an OA probability pOA ± δ = (20 820/21 999 =
94.64%)± (22) = 0.0%.

Let us consider an alternative RS application scenario where,
in addition (and not as an alternative) to SAM, an operational
automatic two-stage SNLTOC system incorporating SSRC in
its first stage (refer to Section IV) is made available to end
users together with the DTM of the input IRS-P6 image. In this
innovative operational frame, the same (identical) ground-truth
forest data set 1(b) employed previously to generate Fig. 15(a)
can be profitably exploited as follows.

1) A preliminary spectral map can be automatically gener-
ated by SSRC from Fig. 9(a) in a few minutes of compu-
tation time (< 5 min when SSRC is implemented in the
C programming language) on a desktop computer pro-
vided with a Dual Core Pentium processor [21]–[23].
As shown in Fig. 9(b), this output product, per se,
can be employed to refine the semantic quality of the
available ground-truth forest data set 1(b) (analogously
to the ground-truth sample refinement conducted in
Section VII-B8).

2) An automatic two-stage SNLTOC system can gener-
ate a topographically normalized MS image, shown in
Fig. 12(a), from the input DTM, the preliminary SSRC
map shown in Fig. 9(b), and the IRS-P6 image shown in
Fig. 9(a) in a few minutes of computation time (< 10 min
when SNLTOC is implemented in the IDL programming
language).

3) If useful, the SNLTOC image shown in Fig. 12(a) can be
automatically reclassified by SSRC, e.g., see Fig. 12(b).

4) At this stage, the supervised information represented
by the ground-truth forest data set 1(b) can come into
play. The same (identical) SAM implementation ex-
ploiting the same (identical) ground-truth forest data
set 1(b) previously adopted to generate Fig. 15(a) can
now be employed to map the SNLTOC image shown
in Fig. 12(a). The binary classification map generated
by SAM from the SNLTOC image shown in Fig. 12(a)
features pOA ± δ = (21 011/21 999 = 95.51%)± (22) =
0.0%. This value is (slightly) superior to the pOA ±
δ value = (20 820/21 999 = 94.64%) ± 0.0% estimated
in Fig. 15(a), as mentioned earlier in this paper. This
is one more evidence of the expected benefits of MS
image topographic normalization before classification
acknowledged in existing literature, e.g., classification
pOA values improved around 4%, namely, from 79%
to 83%, in [34] and around 6%, namely, from 82% to
88%, in [36] after NLTOC and SNLTOC (also refer to
Section VI-D).

5) Aside from improving the classification map generated by
SAM in series with SNLTOC, the mutually exclusive and
totally exhaustive classification map generated by SSRC
at no cost (in terms of user supervision for parameter
selection and collection of ground-truth samples), shown

in Fig. 9(b), can be employed to replace pixels unclas-
sified by SAM in Fig. 15(a), as shown in Fig. 15(b).
In other words, Fig. 15(b) can replace Fig. 15(a) at no
additional cost.

In operational terms, another important difference between
SAM and (S)SRC is that, unlike the former, the latter generates
several value-added products suitable for RS applications dif-
ferent from classification, including estimation of either canopy
biophysical structure variables (e.g., LAI) or canopy biochem-
ical properties (e.g., FAPAR) from a continuous spectral VI
(SVI) [60]. Any traditional SVI, such as the well-known NDVI
[19], is computed as an algebraic combination of pixel com-
ponents from different wavelength bands to produce a scalar
value. An SVI should be very sensitive to target vegetation
factors (such as vegetation structure and the state of vege-
tation cover in terms of leaf water content, leaf chlorophyll
content, age, mineral deficiencies, etc.) while being insensi-
tive to other factors affecting spectral reflectance such as soil
(background) properties in addition to solar/viewing geometry
and atmospheric conditions [19]. In the case of (S)SRC, an
intelligent SVI generated from Fig. 9(a) is shown in Fig. 15(c).
It consists of a novel second-derivative greenness index, which
is proposed in [21], [22] masked by a binary vegetation
mask extracted from the preliminary (S)SRC map shown in
Fig. 9(b). As a result, the intelligent SVI responds zero to
nonvegetation surface types, which is not the case of any tradi-
tional SVI.

VIII. SUMMARY AND CONCLUSION

The near-real-time availability of a preliminary spectral
classification map automatically generated from MS imagery
by SRC paves the way to the design and implementation of
operational automatic RS-IUSs as potential components of
operational GEOSS and GMES instantiations.

In this paper, the degree of novelty of SRC is exploited to
provide an operational solution to the well-known RS image
TOC problem traditionally considered an unsolvable circular
dilemma: While image classification benefits from prelimi-
nary TOC, the latter requires a priori knowledge of surface
roughness which is land cover class specific. The proposed
TOC solution consists of an operational automatic two-stage
SNLTOC system comprising, in cascade, a novel automatic
RS image stratification first stage and a second-stage ordinary
SNLTOC equation (16) selected from existing literature and
incorporating the stratified or layered approach.

The innovative automatic MS image stratification first stage
is twofold. First, given a DEM of the input MS image
and the sun’s azimuth and zenith angles, the pixel-based in-
cident angle γi(n) ∈ [0◦, 180◦], n = 1, . . . , N , is computed.
Next, the incident angle domain is partitioned into four strata
as a pixel-based (context-insensitive) function of the solar
zenith angle. These four DEM-driven slices are identified as
follows:

1) self-shadows, i.e., occluded areas belonging to shadow
casters (to be masked out in the second-stage SNLTOC
method);
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2) horizontal surfaces (to be masked out in the second-stage
SNLTOC method);

3) slopes facing the sun;
4) slopes facing away from the sun.

Second, symbolic (semantic) strata are automatically generated
by SRC from the MS image radiometrically calibrated into
TOARFT ⊇ ρT values.

The advantages of the operational automated two-stage
SNLTOC system applied to nonhorizontal nonoccluded sur-
faces, either facing the sun or facing away from the sun,
and belonging to the same symbolic layer (spectral category)
provided by SRC are expected to be the following: 1) Com-
putation time is optimized by ignoring pixels belonging to
the aforementioned surface types 1) or 2), and 2) within-
stratum variance should be reduced while pixel-based spec-
tral patterns (shapes) are expected to be well preserved, i.e.,
no spectral distortion should be introduced by topographic
normalization.

Up to 19 experiments were conducted in collaboration with
an independent institutional partner to validate the novel oper-
ational automated two-stage SNLTOC system. Collected quan-
titative results are quite consistent with theoretical expectations
and allow to reach the following conclusions.

1) In terms of operational performance measurement, the
automatic SRC first stage is considered effective, com-
putationally efficient, and robust to changes in the input
data set acquired across time, space, and optical imaging
sensors. Collected quantitative results are quite consistent
with theoretical expectations, i.e., the theoretical frame-
work of SRC appears sound, and in line with results
collected in previous works [21]–[23], [45]. Therefore,
SRC is, per se, considered eligible for use in oper-
ational satellite-based measurement systems providing
potential components to the GEOSS and GMES system
instantiations.

2) Applied to nonhorizontal nonoccluded surfaces, either
facing the sun or away from the sun, and belonging to
the same symbolic layer provided by the first-stage SRC,
the automatic two-stage SNLTOC system features the
following advantages: 1) Its ease of use is unsurpassed;
2) computation time is optimized (by ignoring pixels
in horizontal surfaces or occluded surfaces belonging to
shadow casters); 3) within-stratum variance is reduced
while pixel-based spectral patterns (shapes) are well
preserved, i.e., no spectral distortion is introduced by
topographic normalization; and 4) it is robust to changes
in the input data set acquired across time, space, and
sensors. To summarize, the proposed two-stage SNLTOC
system satisfies, as a whole, the set of system quality
requirements, reviewed in Section I, to be considered
eligible for use in an operational flow of RS data and land
cover information.

As a secondary result, the RS image recovery from the ESA
IMAGE2006 online archive experienced in this work proves
that, to date, in spite of their 10- to 20-year membership in
the CEOS, European institutions such as the ESA, DLR, and

EC-JRC, involved with ongoing international projects focused
on spaceborne multisource multitemporal image mosaicking
and mapping at continental scale, either underestimate or ig-
nore in practice 1) the problem of transforming DNs into
a community-agreed radiometric scale to enhance interimage
comparability across time, space, and sensors as required by
the QA4EO initiative in the framework of the GEOSS and
GMES programs and 2) the well-known principle that data
management, including data sharing and redundancy (duplica-
tion), is often more critical than data collection in guaranteeing
the integrity (i.e., accuracy and completeness) of a database
[39, p. 16].

Future developments of this paper will be the following.

1) Integration of a shadow-casting algorithm into the DEM-
driven stratification phase (refer to Section IV-A1).

2) Implementation of an ambient occlusion algorithm for
modeling indirect illumination in shadow (occluded)
areas (refer to Section IV-A1).

3) Integration of spatial relationships into the two-stage
SNLTOC system to detect slopes facing the sun and
facing away from the sun that are adjacent to one another
and belong to the same semantic layer (e.g., vegetation).
Thus, local area estimation of SNLTOC regression pa-
rameters can be based on convergence of topographic
(e.g., slopes facing the sun and facing away from the sun),
semantic (e.g., vegetation), and spatial (e.g., adjacency)
evidence.

APPENDIX I
SRC COMPARED TO SAM

It is noteworthy that there are at least four structural differ-
ences between SAM and SRC which make these two pixel-
based vector data mapping approaches not at all alternative, but
complementary in operational terms.

1) SRC maps each pixel onto a discrete and finite set
of indexes based on both the pixel-based reflectance
pattern (shape) and the data vector magnitude, while
SAM pursues spectral pattern matching exclusively.
This allows SRC to discriminate between, for example,
a spectral category [color-based semiconcept (refer to
Section IV-A2)] named vegetation in shadow areas
[which can be spectrally indistinguishable from conif-
erous forest (see Fig. 3)] from spectral categories such
as strong/average/weak vegetation in sun-exposed areas
(where fuzzy sets strong/average/weak vegetations de-
pend on both the LAI and the intensity of sunlight).
In particular, in Fig. 3, the spectral category shadowed
vegetation is not linearly scaled from the spectral cate-
gories strong/average/weak vegetation. Rather, the latter
spectral types mainly differ in brightness (magnitude),
i.e., they are approximately linearly scaled versions of
one another analogously to dark- and light-toned soils
(see [81, p. 276]). In this example, the discrimination
capability of SAM is inferior to SRC’s since the former
would consider spectral categories strong/average/weak
vegetation as indistinguishable.
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2) SRC is prior knowledge based, i.e., it is nonadaptive
to data, and is capable of providing a totally exhaus-
tive and mutually exclusive classification of the input
RS image without requiring any user supervision (see
Section IV-A2). On the contrary, SAM is supervised
(labeled) data driven, i.e., it requires the acquisi-
tion of ground-truth data across the study area for
training.

3) SRC requires no user-defined parameter while SAM re-
quires one user-defined parameter, namely, the maximum
angle threshold (in radians) to consider pixels further
away than the specified maximum angle threshold not
classified (outliers).

4) SRC provides a classification map consisting of spec-
tral semiconcepts [e.g., vegetation (see Section IV-A2)]
less informative than land cover concepts (e.g., forest)
provided by SAM, which counterbalances the superior
degree of automation of the former.

APPENDIX II
SRC COMPARED TO UNSUPERVISED

DATA-CLUSTERING ALGORITHMS

In classical philosophy, the general notion of inference
(learning) comprises two types of learning mechanisms known
as “induction [i.e., progressing from particular cases (e.g., train-
ing data) to general (e.g., estimated dependence or model)],”
therefore called bottom–up, fine to coarse, data driven, or
learning by example, and “deduction [i.e., progressing from
general (e.g., model) to particular cases (e.g., output values)],”
therefore called top–down, coarse to fine, model driven, or
learning by rule [72]. In particular, “induction amounts to
forming generalizations from particular true facts. This is an
inherently difficult (ill-posed) problem and its solution requires
a priori knowledge in addition to data” [72, p. 39].

When compared to well-known inductive unsupervised (un-
labeled) data-learning algorithms, such as ISODATA and
k-means typically employed in unlabeled data-clustering prob-
lems, the fully automated prior knowledge-based SRC map-
ping system is more successful in providing a preliminary
understanding (mapping) of an MS image. This is due to
the fact that the latter accounts for a dictionary of reference
spectra in TOARFT values (see Fig. 3) representing its prior
knowledge of the (3-D) world depicted in a spaceborne MS
(2-D) image. The drawbacks of the former approach are as
follows.

1) Since the goal of clustering is to group the data at hand
rather than to provide an accurate characterization of
unobserved (future) samples generated from the same
probability distribution, the task of clustering may fall
outside the framework of predictive (inductive) learning.
In spite of this, clustering analysis often employs un-
supervised data-learning techniques originally developed
for vector quantization (such as the k-means unsuper-
vised data-learning algorithm which belongs to the fam-
ily of the crisp competitive minimum-distance-to-means
algorithms [73], [74]) which is a predictive learning
problem [72].

2) Unlabeled data clustering is an inherently ill-posed data
mapping problem, whereas the spectral pattern matching
performed by SRC is well posed. In fact, the goal of
clustering is to separate a finite unlabeled data set at
hand into a finite and discrete set of “natural” hidden
data structures on the basis of an often subjectively
chosen measure of similarity, i.e., chosen subjectively
based on its ability to create “interesting” clusters [72],
[75]–[78]. Thus, the subjective (ill-posed) nature of the
nonpredictive clustering problem precludes an absolute
judgement as to the relative effectiveness of all clustering
techniques [78]. In spite of this, the inherent ill-posedness
of unlabeled data-clustering problems is not clearly stated
in existing literature where, as a consequence, dozens
of papers proposing alternative clustering algorithms are
published every year (perhaps in search of a “final” best
clustering algorithm which cannot exist) [79].

3) Crisp (hard) competitive minimum-distance-to-means al-
gorithms, such as k-means data clustering, try to min-
imize a sum-of-squares error function. To reduce the
risk of being trapped in a local minimum of the er-
ror function, soft-to-hard rather than hard competitive
clustering algorithms have been conceived [73], [74].
In addition, it is well known that either crisp or fuzzy
k-means data-clustering algorithms cannot perform well
with nonconvex types of data, i.e., they are effective if
and only if data clusters are hyperspherical [80]. To over-
come this problem, a k-means unsupervised data-learning
algorithm capable of defining automatically the number
of clusters splits a nonconvex data cluster, for example,
a data cluster shaped like a banana, into several hyper-
spheres. Thus, these hyperspheres should be linked to
map the banana-like data cluster. To perform nonconvex
unlabeled data mapping, topologically preserving data-
clustering algorithms have been developed [75]–[78].

4) Any clustering algorithm provides unlabeled data with
a subsymbolic (asemantic) label (e.g., cluster 1, clus-
ter 2, etc.), whereas SRC, which is prior knowledge
based, provides unknown pixels with a label equivalent
to a color-based semiconcept featuring a semantic mean-
ing (e.g., vegetation, either water or shadow, etc.) (see
Section IV-A2).

5) In terms of ease of use, every data-clustering algorithm
requires at least one free parameter, to be either user
defined or fixed by the application developer based on
heuristics, to make the inherently ill-posed unlabeled
data-clustering problem better posed. For example, it is
paradoxical that the well-known k-means vector quan-
tizer typically employed for unlabeled data clustering
requires the user to predefine the number of clusters
hidden in the data.

6) In terms of computation time, unlabeled data clustering is
iterative while SRC is a one-pass mapping algorithm.

7) In terms of effectiveness and robustness to changes in
the input data set, a qualitative (visual) assessment of
the SRC maps shown in [45] should be sufficient to
support the superiority of SRC versus k-means unlabeled
data clustering among RS scientists and practitioners at
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first glance. Typically, RS images mapped by pixel-based
clustering algorithms are affected by a well-known salt-
and-pepper classification noise effect which is absent in
the SRC maps. This is due to the fact that SRC, which
is also pixel-based, is successful in modeling the within-
class spectral variance from prior spectral knowledge
consisting of endmember collection spectra.
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