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Operational Performance of an Automatic
Preliminary Spectral Rule-Based Decision-Tree

Classifier of Spaceborne Very High
Resolution Optical Images

Andrea Baraldi, Tom Wassenaar, and Simon Kay

Abstract—In the last 20 years, the number of spaceborne very
high resolution (VHR) optical imaging sensors and the use of
satellite VHR optical images have continued to increase both
in terms of quantity and quality of data. This has driven the
need for automating quantitative analysis of spaceborne VHR
optical imagery. Unfortunately, existing remote sensing image
understanding systems (RS-IUSs) score poorly in operational
contexts. In recent years, to overcome operational drawbacks
of existing RS-IUSs, an original two-stage stratified hierarchical
RS-IUS architecture has been proposed by Shackelford and Davis.
More recently, an operational automatic pixel-based near-real-
time four-band IKONOS-like spectral rule-based decision-tree
classifier (ISRC) has been downscaled from an original seven-band
Landsat-like SRC (LSRC). The following is true for ISRC: 1) It
is suitable for mapping spaceborne VHR optical imagery ra-
diometrically calibrated into top-of-atmosphere or surface re-
flectance values, and 2) it is eligible for use as the pixel-based
preliminary classification first stage of a Shackelford and Davis
two-stage stratified hierarchical RS-IUS architecture. Given the
ISRC “full degree” of automation, which cannot be surpassed,
and ISRC computation time, which is near real time, this paper
provides a quantitative assessment of ISRC accuracy and robust-
ness to changes in the input data set consisting of 14 multisource
spaceborne images of agricultural landscapes selected across the
European Union. The collected experimental results show that,
first, in a dichotomous vegetation/nonvegetation classification of
four synthesized VHR images at regional scale, ISRC, in com-
parison with LSRC, provides a vegetation detection accuracy
ranging from 76% to 97%, rising to about 99% if pixels fea-
turing a low leaf area index are not considered in the com-
parison. Second, in the generation of a binary vegetation mask
from ten panchromatic-sharpened QuickBird-2 and IKONOS-2
images, the operational performance measurement of ISRC is
superior to that of an ordinary normalized difference vegetation
index thresholding technique. Finally, the second-stage automatic
stratified texture-based separation of low-texture annual cropland
or herbaceous range land (land cover class AC/HR) from high-
texture forest or woodland (land cover class F/W) is performed
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in the discrete, finite, and symbolic ISRC map domain in place of
the ordinary continuous varying, subsymbolic, and multichannel
texture feature domain. To conclude, this paper demonstrates
that the automatic ISRC is eligible for use in operational VHR
satellite-based measurement systems such as those envisaged un-
der the ongoing Global Earth Observation System of Systems
(GEOSS) and Global Monitoring for the Environment and Secu-
rity (GMES) international programs.

Index Terms—Image classification, image understanding system
(IUS), inductive and deductive inference, prior spectral knowl-
edge, radiometric calibration, texture analysis.

I. INTRODUCTION

THE POTENTIAL of Earth observation (EO) from space
for the monitoring of the Earth’s environment and for the

detection of its temporal variations at local, regional, continen-
tal, and global geographic extents is well known by user com-
munities involved with urban growth assessment and planning,
intelligence/surveillance applications for national security and
defense purposes, ecosystem management, watershed protec-
tion, water balance calculations, risk management, and global
change [1].

The expected impact of remote sensing (RS) imagery upon
the general public has increased after the recent announcement
by the Group on EOs (GEO) that scientists and decision makers
around the world will soon have unrestricted access at no charge
to the Landsat archive, which is the world’s most extensive
collection of continuously acquired RS spaceborne imagery [2].
This news followed the decision by the China–Brazil Earth
Resources Satellite to distribute its images free of charge start-
ing from 2007. In turn, the European Union (EU) announced
a free access data policy for the Sentinel-2/-3 satellites whose
launch is scheduled starting from 2012.

While cost-free access to large-scale low-spatial-resolution
(low SR or LR; above 40 m) and medium-SR (MR; from 40
to 15 m) spaceborne image databases is becoming a reality, the
demand for high-SR (HR; between 15 and 5 m) and very-high-
SR (VHR; below 5 m) satellite images has continued to increase
in terms of both quantity and quality of data. For example, the
U.S. Government spent $56 million in 1991 and $200 million in
2003 for the purchase of VHR satellite images [3]. This increas-
ing request for VHR spaceborne imagery has boosted the rapid
growth of the commercial VHR satellite industry. For example,
by 2012, current HR and VHR spaceborne optical imaging
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sensors such as GeoEye-1, QuickBird-2 (QB2), IKONOS-2
(IK2), OrbView-3, KOMPSAT-2, RapidEye, FORMOSAT-2,
and ALOS AVNIR-2 will be joined by planned VHR space-
borne imaging missions such as PLEIADES-1/-2, WorldView-
2, and Astrium SPOT-6/-7.

These multiple drivers make urgent the need to develop
operational satellite-based measurement systems that are suit-
able for automating the quantitative analysis of large-scale
spaceborne multisource multiresolution image databases. This
ambitious goal is envisaged under ongoing international pro-
grams such as the following:

1) The Global EO System of Systems (GEOSS), conceived
by GEO [4], [5], which requires harmonization and inter-
operability of EO data and derived information products
generated from a variety of sources at all scales—global,
regional, and local;

2) The Global Monitoring for the Environment and Security
(GMES), which is an initiative led by the EU in part-
nership with the European Space Agency, whose aim is
to guarantee the sustainability of integrated operational
services for EU security and environmental monitoring
based on EO data from multiple sources (satellite, air-
borne, and in situ) and synergistic data products [6], [7].

Well known in existing literature as (2-D) object-based image
analysis (OBIA) [8], the two-stage segment-based RS image
understanding system (RS-IUS) architecture is currently con-
sidered as the state of the art in spaceborne image analysis
[9]–[11]. In spite of the increasing popularity of commercial
two-stage segment-based RS-IUSs, the automatic or semiau-
tomatic transformation of large-scale spaceborne LR to VHR
image databases into information still remains far more prob-
lematic than might be reasonably expected [12], [13]. This
is tantamount to saying that existing RS-IUSs score poorly
in operational performance encompassing the following [14]:
1) ease of use (degree of automation); 2) effectiveness (e.g.,
classification accuracy); 3) efficiency (e.g., computation time
and memory occupation); 4) economy (costs); 5) robustness to
changes in the input data set; 6) robustness to changes in the
input parameters; 7) maintainability/scalability/reusability to
keep up with users’ changing needs; and 8) timeliness (defined
as the time span between data acquisition and product delivery
to the end user; it increases monotonically with manpower,
e.g., required to collect scene-specific training samples).

A measurement of the operational performance of existing
RS-IUSs scores low due to a combination of factors. In primis,
the increasing rate of collection of spaceborne EO data of
enhanced spatial, spectral, and temporal resolution outpaces
the capabilities of both manual inspection and semiautomatic
inductive-labeled (supervised) data learning algorithms [15].
This means that, to date, the cost, timeliness, quality, and
availability of adequate reference (training/testing) data sets
derived from field sites, existing maps, and tabular data can
be considered the most limiting factors on inductive-labeled
(supervised) RS data product generation and validation [1].

In addition, (3-D) object recognition is increasingly diffi-
cult in (2-D) imagery featuring the following: 1) finer SR,
i.e., enhanced spatial (contextual) information and 2) coarser

spectral resolution, i.e., less discriminative color (noncontextual
chromatic and achromatic [16]) properties. The result is that
the complexity of (3-D) object detection in EO optical imagery
has increased monotonically during the last 20 years, while
the transition from early LR and MR (e.g., seven-band 30-m
Landsat sensor series) to recent HR and VHR (e.g., four-band
4-m-resolution IKONOS) spaceborne imaging sensors has been
accomplished. For example, in spaceborne HR and VHR op-
tical imagery, geometric morphological and texture properties
together with spatial topological (e.g., adjacency and inclusion)
and nontopological (e.g., distance and orientation) relationships
become especially important for the recognition of visible man-
made objects such as buildings, roads, and agricultural fields
[17]–[21], [35], [39], [47].

To date, the operational drawbacks of existing RS-IUSs are
well recognized by significant sections of RS literature [8],
[13], [17], [22]. For example, starting from the four levels of
understanding of an information processing device proposed by
Marr, namely, the level of computational theory (architecture),
knowledge/information representation, algorithms, and
hardware and code implementations, Marr states that the
lynchpin of success in attempting to solve the computer vision
problem is addressing the computational theory rather than
algorithms or implementations. In line with this intuition by
Marr, i.e., starting from the customary distinction between a
model and the algorithm used to identify it [23], [24], one of the
present authors identified an original hybrid two-stage stratified
hierarchical RS-IUS architecture in several RS-IUS imple-
mentations proposed by Shackelford and Davis in recent years
[19]–[21]. More recently [22], [25], an operational automatic
pixel-based near-real-time four-band IKONOS-like spectral
rule-based decision-tree classifier (ISRC) has been downscaled
from an original seven-band Landsat-like SRC (LSRC) [26],
[27]. The following is true for ISRC: 1) It is “fully automated,”
i.e., it requires neither user-defined parameters nor reference
data samples to run [28]; 2) it is suitable for mapping four-band
spaceborne VHR imagery consisting of three visible bands and
one near-infra-red (NIR) channel, required to be radiometrically
calibrated into top-of-atmosphere (TOA) reflectance or sur-
face reflectance values; and 3) it is eligible for use as the pixel-
based preliminary classification first stage of a Shackelford and
Davis two-stage stratified hierarchical RS-IUS architecture.

Due to its spectral resolution that is inferior to the seven-
band LSRC, the four-band ISRC is theoretically expected to be
less effective than LSRC in the separation of vegetation from
bare soils due to the loss of the Landsat-like medium-IR (MIR)
channels [22] and in the separation of snow from clouds and
light-toned bare soils due to the loss of the MIR and thermal IR
(TIR) channels [22], [29].

Given the ISRC “full degree” of automation, which cannot be
surpassed, and ISRC computation time, which is near real time
(e.g., a standard desktop computer requires 2–5 min to map
a space image with LSRC and its downscaled versions such
as ISRC [22], [25]), the objective of this paper is to provide
an operational performance measurement of the following:
1) ISRC accuracy and robustness to changes in the input data
set acquired across time, space, and sensors at continental scale
and 2) the effectiveness of the two-stage stratified hierarchical
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RS-IUS model employing ISRC as its preliminary classifi-
cation first stage. To achieve these objectives, a testing data
set was selected, comprising 14 spaceborne multisource real
or appropriate synthetic four-band images depicting a variety
of agricultural landscapes met across the EU in the spring
season (from early April to late June). Consequently, this paper
provides a so-called stage 1 validation of ISRC accuracy in the
target spring period and a so-called stage 2 validation of ISRC
accuracy over a significant range of geographic conditions and
imaging sensors [1, p. 43].

The rest of this paper is organized as follows. Previous works
related to VHR image understanding are reviewed in Section II.
Section III describes the study areas and testing images. In
Section IV, the ISRC experimental session is presented and dis-
cussed. The summary and conclusion are reported in Section V.

II. RELATED WORKS

Marr considered a computer vision system as an example
of an information processing device to be understood at the
following four levels of analysis [23].

1) Computational theory: It identifies the primary objectives
of the artificial vision system and presents an artificial
vision system model (architecture) required to address
the complexity of the vision task in terms of the fol-
lowing [14]: input and output data flows, control flows,
and the hierarchical sequence of data processing steps.
Marr stressed that the lynchpin of success in attempting
to solve the computer vision problem is to address the
computational theory rather than algorithms or imple-
mentations [23], [24]. In other words, if the vision device
architecture is inadequate, even sophisticated algorithms
can produce low-quality outputs. On the contrary, im-
provement in the vision system architecture may achieve
twice the benefit with half the effort (which is an adap-
tation of the original words by Wang: see this text in the
succeeding discussion).

2) Knowledge/information representation [23], [24], [30]:
In Wang’s words, “good computer information process-
ing depends upon a good representation method that
is well-suited to the nature of the information to be
processed. However, this point is not always given the de-
served attention in developing new processing techniques
and improving the processing quality and efficiency.
Quite often, efforts are mainly made on algorithms. If
knowledge representation is poor, even sophisticated al-
gorithms can produce inferior outputs. On the contrary,
improvement in representation might achieve twice the
benefit with half the effort” [30].

3) Algorithm design to manipulate information representa-
tions, namely, to transform the structure of the data, to
transform the information contained in the data, or to
generate the new information from the data [14], [23],
[24], [31]. Structured system design can be identified as
“everything but code” [14].

4) Implementation to turn what was produced during the
design into hardware and code [14].

In terms of computational theory, any imaging sensor
projects a (3-D) scene onto a (2-D) image. Thus, the main role

of a biological or artificial visual system is to back-project the
information in the image domain to that in the scene domain. In
greater detail, the goal of a visual system is to provide plausible
(multiple) symbolic description(s) of the scene depicted in
an image by finding associations between subsymbolic (2-D)
image features with symbolic (3-D) objects in the scene (e.g.,
buildings and roads) [17], [32]. Subsymbolic (2-D) image fea-
tures are either points or regions or, vice versa, region bound-
aries, i.e., edges provided with no semantic meaning [17]. In
literature, (2-D) image regions are also called segments, (2-D)
objects, patches, parcels, or blobs [33]–[35]. There is a well-
known information gap between symbolic information in the
(3-D) scene and subsymbolic information in the (2-D) image
(e.g., due to dimensionality reduction and occlusion phenom-
ena). This is called the intrinsic insufficiency of image features
[17]. It means that the problem of image understanding is in-
herently ill posed and consequently very difficult to solve [17].

Based on the aforementioned customary distinction between
a model and its implementation [14], [23], [24], [31], this
section compares two alternative RS-IUS models, namely, the
two-stage segment-based RS-IUS architecture, currently con-
sidered the state of the art in commercial RS image analysis
software toolboxes [9]–[11], and the Shackelford and Davis
two-stage stratified hierarchical RS-IUS architecture recently
presented in the RS literature [19]–[21]. Next, this section
revises the original operational automatic seven-band LSRC
and its downscaled four-band ISRC version. The latter is eli-
gible for use as the pixel-based preliminary classification first
stage of an operational two-stage stratified hierarchical RS-IUS
implementation that is suitable for mapping spaceborne VHR
optical imagery [22], [25].

A. RS-IUS Architectures

1) Two-Stage Segment-Based RS-IUS Architecture: Known
in existing literature as OBIA [8], the two-stage segment-
based RS-IUS architecture has recently gained a noteworthy
popularity in commercial RS image analysis software toolboxes
[9]. Main functional properties [9] and well-known limitations
[8], [13], [17], [22] of the two-stage segment-based RS-IUS
model are summarized in the succeeding discussion.

a) First-stage unlabeled data-driven (bottom-up) inher-
ently ill-posed driven-without-knowledge segmentation:

1) Although acknowledged by a reasonable portion of the
existing literature [8], [17], [36], [37], the inherent ill-
posedness of image segmentation/edge detection, the lat-
ter being the dual problem of the former, is often forgotten
by a large segment of the RS community. This may
explain why, although no “best” segmentation/edge de-
tection approach exists, literally dozens of “novel” (sup-
posedly better!) segmentation/edge detection algorithms
are published each year [12]. Due to its inherent ill-
posedness, the problem of image segmentation is very
difficult to solve. In RS common practice, this implies the
following.
a) Any segmentation algorithm is affected by the so-

called artificial insufficiency of image segments.
This is tantamount to saying that, in real image
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segmentation problems (other than toy problems), it is
inevitable that erroneous segments are detected while
genuine segments are omitted [17, p. 18]. The concept
of artificial insufficiency of image segments is directly
linked to the well-known uncertainty principle; ac-
cording to it, for any contextual (neighborhood) prop-
erty, we cannot simultaneously measure that property
while obtaining accurate localization [13], [38].

b) To make the ill-posed driven-without-knowledge seg-
mentation problem better posed, segmentation algo-
rithms require system parameters to be user defined
based on heuristic criteria [11]. As a consequence,
segmentation algorithms are the following.
i) Poorly posed semiautomatic rather than well-posed

automatic, where the latter is representing the best
case in operational terms with respect to ease of use.

ii) Not robust to changes in the input data set.
Typically, a driven-without-knowledge segmentation
algorithm requires a novel set of user-defined param-
eters per input scene.

iii) Difficult to use. User-defined parameters are not
provided with a clear unequivocal physical meaning
and/or a known range of variation. In addition, param-
eter values are selected based on empirical criteria.

c) To summarize, due to their intrinsic ill-posedness,
RS image segmentation algorithms score low in op-
erational performance in terms of the following:
1) degree of automation (ease of use); 2) accuracy; and
3) robustness to changes in the input data set.

2) Any driven-without-knowledge segmentation algorithm
employs as input subsymbolic (unlabeled and asemantic)
pixels and it provides, as output, subsymbolic informa-
tional primitives featuring one single spatial type, namely,
subsymbolic (2-D) regions (segments). Locational, pho-
tometric, geometric, and shape properties of image seg-
ments and their spatial relationships can be described in a
segment description table [17], [39].

3) In RS common practice, an ill-posed driven-without-
knowledge segmentation first stage is often implemented
as a multiscale (hierarchical) iterative segmentation
algorithm [9]. As the output, a hierarchical segmentation
algorithm generates multiscale segmentation solutions in
the hope that the target image will appear correctly seg-
mented at some scale. Unfortunately, quantitative multi-
scale assessment of segmentation quality indices requires
ground truth data at each scale that are impossible or
impractical to obtain in RS common practice [13]. There-
fore, the “best” segmentation map must be selected by
the user on an a posteriori basis from the available set of
multiscale segmentation solutions according to heuristic,
subjective, and/or qualitative criteria that are analogous
to those employed in the selection of prior segmentation
parameters. To conclude, exploitation of a hierarchical
segmentation algorithm does not make the driven-
without-knowledge segmentation first stage easier to
use. In addition, hierarchical segmentation algorithms
are computationally intensive and require large memory
occupation.

b) Second-stage segment-based classification modules:
1) They can be implemented either top-down (model

driven), such as deductive decision-tree classifiers ex-
clusively based on prior knowledge of the (3-D) world,
or bottom-up (data driven), such as inductive labeled-
data (supervised-data) learning classifiers (e.g., artificial
neural networks) [15], [40], [41] or inductive unlabeled-
data (unsupervised-data) learning distributed systems
(e.g., unlabeled data clustering algorithms) [15]. In prac-
tice, under the guise of “flexibility,” two-stage segment-
based RS-IUSs provide RS experts and practitioners with
overly complicated machine learning options to choose
from based on heuristic criteria. This is tantamount to
saying that two-stage segment-based RS-IUSs are diffi-
cult to use and require expert users [8].

2) According to Section I, the current rate of the collection
of RS data outpaces the manual capability for gathering
ground truth data. In many RS data application problems,
the costs, quality, and availability of adequate training
labeled (reference) samples are the most limiting factors
on the exploitation of inductive labeled-data (supervised-
data) learning algorithms. This means that the universal
problem of interfacing numerical (quantitative) computa-
tion with symbolic (qualitative) computation remains dif-
ficult to solvewith two-stagesegment-basedRS-IUSs[17].

3) Due to poor knowledge/information representation of
image features, consisting of intrinsically unreliable sub-
symbolic regions exclusively, employed as input by the
second-stage segment-based classification modules, the
two-stage segment-based RS-IUSs lack flexibility and
reasoning capability (which increases with the accumu-
lation of evidence). For example, the computational effi-
ciency of commercial two-stage segment-based RS-IUSs,
such as [9], becomes extremely low when image infor-
mation should be dealt with at pixel rather than segment
level, e.g., when a simple spectral decision rule should
be applied pixelwise, i.e., when dealing with segments
consisting of a single pixel.

4) Second-stage supervised classification modules provide
the unlabeled data-driven segmentation first stage with
no feedback mechanism to recover from the artificial
insufficiency of image regions.

To conclude, there is still a lack of consensus and research
on the conceptual foundation of OBIA, i.e., on the relationship
between inherently ill-posed subsymbolic (asemantic) (2-D)
image segments (regions) and symbolic (semantic) (3-D) land-
scape objects (e.g., forest, agricultural field, etc.) [8], [13], [22].

2) Two-Stage Stratified Hierarchical RS-IUS Architecture:
In recent years, Shackelford and Davis have presented several
implementations of an RS-IUS that is suitable for mapping
1-m-resolution panchromatic (PAN)-sharpened multispectral
(MS) IKONOS imagery of urban areas (see Fig. 1) [19]–
[21]. Based on the customary distinction between a model
and the algorithm used to identify it made by computational
theory [14], [23], [24], [31], one of the present authors re-
vealed the presence of a novel two-stage stratified hierarchical
RS-IUS architecture in the original Shackelford and Davis
RS-IUS implementations [22], [25], [27], [42]. The main
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Fig. 1. Two-stage stratified hierarchical RS-IUS implementation proposed by Shackelford and Davis [19]–[21]. As the output, the application-independent pixel-
based preliminary classification first stage provides simultaneously symbolic pixels in symbolic segments (defined as connected sets of labeled pixels featuring
the same label) in symbolic strata (defined as image-wide sets of labeled pixels featuring the same label). All provided with a semantic meaning which is well-
understood by a user. The second stage consists of stratified land cover class-specific context-sensitive feature extractors and fuzzy rule-based classifiers.

functional properties of the two-stage stratified hierarchical
RS-IUS architecture and the main limitation of the Shackelford
and Davis RS-IUS implementations are summarized in the
succeeding discussion (see Fig. 1).

a) Preliminary pixel-based model-driven (top-down)
classification first stage:

1) A preliminary pixel-based model-driven (top-down) clas-
sification first stage provides a primal sketch or prelim-
inary map in the Marr sense [23]. A primal sketch is
theoretically defined by Marr as the (2-D) image infor-
mation describing the “geometrical distribution and orga-
nization of” either color or “intensity changes” (edges)
(refer to [23, p. 37]). To underline the customary distinc-
tion between a model and the algorithm used to identify
it [14], [23], [24], [31], it is worth mentioning that the
primal sketch is computed by Marr in two computation
steps that have nothing to do with the pixel-based model-
driven classifier adopted by Shackelford and Davis. In
particular, the Marr preliminary map detection first and
second steps are the following [23].
a) Marr’s first step: either color-, intensity-, or texture-

based edges are detected using context-sensitive
Laplacian filters at different scales.

b) Marr’s second step: domain-independent general-
purpose (e.g., Gestalt) grouping methods pursue an
edge-preserving aggregation (segmentation) of pixels
into perceptually “homogeneous” (2-D) objects
(termed “blobs, edge segments, and groups”).

2) In the Shackelford and Davis RS-IUS implementations,
the preliminary pixel-based model-driven (top-down)
classification first stage is implemented as a supervised
pixel-based plug-in (i.e., noniterative and one pass) max-
imum likelihood (ML) classifier. Like any plug-in ML
classifier, it maps each pixel onto a discrete and finite

set of semantic (symbolic) labels. However, unlike tradi-
tional ML classification of RS data where semantic labels
identify target land cover classes, in the Shackelford
and Davis ML implementation, the labels identify the
land cover class sets [19], [20], i.e., “combine” sets of
primitive land cover classes. In greater detail, each land
cover class set may comprise the following: 1) a single
land cover class when its spectral overlap with the other
land cover classes belonging to the classification scheme
is negligible (e.g., ‘barren land’, refer to Fig. 1) [43]
or 2) two or more land cover classes whose interclass
spectral overlap is statistically significant (e.g., ‘either
water or shadow’, refer to Fig. 1). To summarize, in the
Shackelford and Davis ML implementation, the interset
degree of spectral overlap is negligible, while the degree
of intraset spectral overlap is statistically relevant. This is
tantamount to saying that the land cover class sets are mu-
tually exclusive. As a consequence, the first-stage pixel-
based plug-in ML classifier implemented by Shackelford
and Davis is well posed, i.e., crisp, unequivocal, and re-
liable. This means that the primary cause of the artificial
insufficiency of image features (i.e., points and regions or,
vice versa, edges) in two-stage RS-IUS instantiations can
be removed by replacing an intrinsically ill-posed unre-
liable segmentation first stage with a well-posed pixel-
based model-driven preliminary classifier [17].1

1This substitution would turn into RS common practice the popular statement
ascribed to Archimedes, the famous inventor, mathematician, and physicist of
ancient Syracuse, Sicily (287 BC - 212 BC), who is said to have remarked about
the lever: Give me a place to stand on, and I will move the Earth. This statement
is consistent with the biblical teaching of the parable of the two builders, where
a wise man is described as building his house on the rock, rather than on sand
(Matthew 7:24–27). By analogy, a well-posed preliminary spectral-based per-
pixel classifier would be the rock to stand on to build operational RS-IUSs.
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3) Given the structural content of urban scenes depicted in
spaceborne VHR imagery, the following five class sets
are identified by Shackelford and Davis (see Fig. 1):
1) ‘either grass or tree’; 2) ‘either road or building or im-
pervious surface’; 3) ‘either water or shadow’; 4) ‘barren
land’; and 5) ‘others’ (outliers, e.g., clouds). In line with
the Congalton requirements, this classification scheme is
mutually exclusive and totally exhaustive [43, p. 12].

4) In [22], [25], [27], and [42], land cover class sets detected
as output by the pixel-based preliminary classification
first stage are called spectral categories, spectral types,
spectral layers, spectral strata, or spectral-based semi-
concepts. A spectral-based semiconcept is a semantic
conjecture (e.g., ‘vegetation’ as ‘either grass or tree’)
based solely on the per-pixel (noncontextual) color (spec-
tral, i.e., chromatic and achromatic [16]) properties.

5) The semantic stratification provided by the prelimi-
nary classification first stage acts as a focus of visual
attention[32], [33], [44]: It identifies places of interest in
the image that should be processed with higher accuracy
(and increasing computation time) at the second stage
[24]. In other words, semantic stratification identifies
symbolic candidate areas of the image (e.g., stratum
‘vegetation’) with a high probability of a target (2-D)
region type (e.g., a forest region) being present [17].

6) It is noteworthy that, while (3-D) land cover classes (e.g.,
forest) are provided with a high-level semantic meaning
but are difficult to detect automatically in (2-D) images,
the following is true for spectral-based semiconcepts
(e.g., ‘vegetation’): 1) They can be detected automatically
in MS imagery exclusively based on prior spectral knowl-
edge [22], [26], [27], and 2) they are provided with a se-
mantic meaning that is not superior (i.e., equal or inferior)
to that of the target (3-D) land cover classes but superior
to zero of the traditional subsymbolic image information
primitives, such as subsymbolic regions and unlabeled
data clusters [15]. Therefore, spectral-based semiconcepts
are eligible for filling in the well-known information gap
existing between symbolic information in the (3-D) scene
and subsymbolic information in the (2-D) image [17].

7) As the output, a preliminary pixel-based model-driven
classification first stage provides symbolic information
primitives featuring three spatial types, namely, symbolic
pixels in symbolic segments (defined as connected sets
of labeled pixels featuring the same label) in symbolic
strata (defined as image-wide sets of labeled pixels fea-
turing the same label). These three spatial types are not
alternative but coexist and can be selected according to
specific needs of the second-stage battery of application-
specific satellite-based measurement systems (refer to
Section II-A2b).

8) From the computational point of view, since it is pixel
based and prior model driven, the first-stage preliminary
classifier is context insensitive and one pass (nonitera-
tive). Therefore, it is computationally efficient.

9) Since the first-stage preliminary classifier is pixel based,
it works at the sensor SR. In practice, it is sensor resolu-
tion independent.

b) Second-stage hierarchy of stratified (3-D) object
model-specific classification modules for spatial reasoning:

1) The battery of stratified hierarchical class-specific classi-
fication modules incorporates the “stratified” or “layered”
approach that is typical of decision trees [19]–[21], [45].
This is tantamount to saying that this hierarchy enforces
the well-known divide-and-conquer (dividi et impera)
problem-solving approach [45].

2) The idea of stratification is well known in statistics. For
example, in stratified sampling, the sampling frame is
divided into nonoverlapping groups or strata, e.g., geo-
graphical areas. A sample is taken from each stratum, and
when this sample is a simple random sample, it is referred
to as stratified random sampling. A possible disadvantage
of stratification is that identifying the appropriate strata
may be difficult. The advantage is that stratification
will always achieve greater precision provided that the
strata have been chosen so that members of the same
stratum are as similar as possible in respect of the
characteristic of interest [46]. For example, any given ill-
posed segmentation algorithm, typically applied image-
wide on a “dumb” (driven without knowledge) basis (as
in two-stage segment-based RS-IUSs), achieves greater
precision (because better conditioned) when it is run
separately on mutually exclusive image strata where the
image segmentation subproblem becomes easier to solve.
This principle is exploited in Fig. 1, where a second-
stage better-posed stratified segmentation algorithm is run
to detect shape properties of (2-D) regions eligible for
assignment to man-made (3-D) objects, such as buildings,
roads, and agricultural fields, whose geometric attributes,
morphological properties, and spatial relationships are
especially important for their recognition.

3) The battery of stratified hierarchical land cover class-
specific classification modules comprises the following
(see Fig. 1).
a) Stratified context-sensitive (e.g., texture, geometric,

morphological, etc.) (2-D) image feature extraction
modules. Contextual information is computationally
demanding to extract. To increase computational
efficiency of neighboring information extraction, the
strategy is twofold.
i) Since color information is dealt with by the first-

stage spectral-based preliminary classifier providing,
as output, semantic strata (i.e., full information is
extracted from color data by the first-stage pixel-
based preliminary classifier), geometric, morpholog-
ical, and texture information can be generated at a
(stratified) second stage from a one-band brightness
(intensity and achromatic) image generated as a
linear combination of MS channels [39]. Thus, in
second-stage stratified contextual feature extraction
modules, a one-band brightness image can replace,
as input, the MS image.

ii) In Fig. 1, contextual information is selectively com-
puted on a stratified land-cover class-specific basis if
and only if this contextual information is required
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by the control knowledge guiding the reasoning
processes [17]. In other words, only if considered
useful is contextual information computed selec-
tively (e.g., texture is selected for forest detection,
while shape properties are adopted for building
identification) within image areas (symbolic strata,
e.g., ‘either bare soil or built up’) that are candi-
dates for the presence of (2-D) regions belonging
to a target (3-D) land cover class (e.g., house). It is
noteworthy that, to date, the aforementioned spatial
reasoning built on driven-by-knowledge hierarchical
stratified selection of contextual information is pro-
vided with a relevant degree of novelty. For example,
in recent RS literature, dozens of inductive-labeled
(supervised) data learning classification black boxes
(like artificial neural networks) employ, as in-
put, a driven-without-knowledge (i.e., “blind” and
unconditional) flat (i.e., nonhierarchical) combi-
nation of pixel-based (i.e., chromatic and achro-
matic) information with contextual properties at all
pixels [76]–[79].

b) Stratified land cover class-specific fuzzy rule-based
classification modules, namely, semantic or concept
nets based on prior knowledge of the world, called
the world model, consisting of (3-D) object models
[17], [18], [47]. In semantic nets, nodes represent
concepts, i.e., classes of (3-D) objects in the world,
while edges represent relations between nodes. Typ-
ical interobject relations are PART-OF, A-KIND-OF,
topological spatial relations (e.g., adjacency and inclu-
sion) [17], [18], temporal transitions [47], etc. [24]. In
these (3-D) object model-specific classification mod-
ules, a convergence-of-evidence decision mechanism
is enforced [17], [39]. Accumulation of the evidence
decreases the total amount of effort spent in the search
for image interpretation solutions and increases the
reliability of the image analysis [17].

4) At the second stage, symbolic knowledge/information
representation comprises the following: symbolic pixels
in symbolic segments in symbolic strata, semantic nets,
and (3-D) object models belonging to the world model.
Symbolic knowledge representation makes the RS-IUS
easy to interact with by an application developer or expert
photointerpreter who is naturally familiar with symbolic
reasoning.

To summarize, in a Shackelford and Davis two-stage strat-
ified hierarchical RS-IUS model, semantic stratification pro-
vided by the preliminary spectral-based classification first stage
guarantees, at the second stage, a seamless (automatic) interface
between numerical (quantitative) computation of contextual
image features and symbolic (qualitative) computation. The
development of such an interface is an open problem that is
difficult to solve with existing commercial RS-IUSs [9], [11].

The main drawback of the two-stage stratified hierarchical
RS-IUS implementations proposed by Shackelford and Davis
is their need for supervised training data at every hierarchical
stage [19]–[21].

TABLE I
OPTICAL SPECTRUM AND ATMOSPHERIC WINDOWS [29, p. 34]

To reduce to zero the need for supervised training data of
the plug-in ML classifier implemented by Shackelford and
Davis as the preliminary spectral classification first stage, the
fully automated ISRC system can be adopted instead (refer to
Section II-B in the following).

B. Seven-Band LSRC and Its Downscaled Four-Band
ISRC Version

In [22], ISRC was proposed as a downscaled implementation
of the original LSRC system presented in [26] and [27]. ISRC
and LSRC are summarized in the following to make this paper
self-contained.

Based exclusively on spectral prior knowledge, the oper-
ational automatic LSRC system is a one-pass (noniterative)
classifier that is not adaptive to input data and that requires nei-
ther user-defined parameters nor training data samples to run.
Therefore, it is called “fully automated” [28]. The LSRC base
of spectral knowledge is acquired offline, i.e., before the MS
image analysis takes place. It consists of a reference dictionary
of endmember spectra in TOA reflectance (TOARF) values
or surface reflectance ρ values, with the latter being an ideal
(atmospheric noise free) case of the former, i.e., TOARF ⊇ ρ
[22], [27], [42]. This means the following.

1) LSRC may benefit from an inherently ill-posed at-
mospheric correction preprocessing stage, where user
supervision becomes necessary to make the atmospheric
correction problem better posed, but it does not require
this. This increases the degree of automation of LSRC.
On the contrary, ill-posed atmospheric correction pre-
processing is considered mandatory by alternative model-
driven RS image classification approaches whose prior
knowledge base consists of reference surface reflectance
spectra exclusively, such as the atmospheric correction
for satellite imagery (ATCOR3) [48].

2) LSRC is in line with the Quality Assurance Framework
for EO (QA4EO) initiative, led by the Committee of
EOs Working Group on Calibration and Validation in the
context of the GEOSS program [49], where an appro-
priate coordinated program of calibration and validation
(Cal/Val) activities throughout all stages of a spaceborne
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TABLE II
SPECTRAL RESOLUTION OF THe LANDSAT-4/-5 TM AND LANDSAT-7 ETM+ SENSORS

IN COMPARISON WITH SPACEBORNE HR AND VHR OPTICAL IMAGING SENSORS

TABLE III
TESTING RS IMAGE DESCRIPTION TABLE. QB2: QUICKBIRD-2. IK2: IKONOS-2. TM5: LANDSAT-5 TM

mission, from sensor build to end of life, is considered
mandatory [49].

As the input, LSRC requires a seven-band Landsat-like im-
age, comprised of a visible blue (B), a visible green (G), a
visible red (R), a NIR, two MIRs (MIR1 and MIR2), and a
TIR channel in agreement with Tables I and II, radiometrically
calibrated into TOARF or ρ values [22], [42], which makes this
input data set well behaved and well understood [50]. These
conditions are considered necessary, although not sufficient,
requirements for input data to allow automation of a data
processing system [22], [42].

As the output, LSRC generates a preliminary classification
map consisting of 46 spectral categories belonging to six parent
spectral categories (supercategories), which are listed in the

following (according to their order of detection and to be
compared with spectral categories detected by the plug-in ML
preliminary classification first stage adopted by Shackelford
and Davis, refer to Section II-A2 earlier): 1) ‘cloud’ (CL);
2) ‘either snow or ice’ (SN); 3) ‘either water or shadow’
(WASH); 4) ‘vegetation’ (V); 5) ‘either bare soil or built-up’
(BB); and 6) ‘outliers’ [26], [27].

It is noteworthy that the aforementioned spectral-based semi-
concepts are consistent with the initial dichotomous layers
of well-known hierarchical RS data classification taxonomies
such as the Coordination of Information on the Environment
(CORINE) [51], the U.S. Geological Survey (USGS) classifica-
tion hierarchy [52], and the Food and Agriculture Organization
of the United Nations (FAO) Land Cover Classification System
(LCCS) [53], [54].
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Starting from [26], where enough information is provided to
the reader for the LSRC implementation to be reproduced, the
downscaled four-band ISRC system is generated by removing
the excess (MIR1, MIR2, and TIR) spectral channels from
the seven-band LSRC rule set while enforcing equivalences
between the remaining Landsat-4/-5 Thematic Mapper (TM)
and Landsat-7 Enhanced TM Plus (ETM+) bands (identified
as “master” channels) with the VHR channels (identified as
“slave” channels) [22] (refer to Table II). Worthy of note is that
the approximation of the target Landsat band-specific sensitiv-
ity curve with the slave VHR sensor channels must fall within
the band-specific range of spectral change assigned by LSRC
to each spectral category, i.e., this spectral sensitivity curve
approximation must fall below the within-spectral category
variance. In theoretical terms, the replacement of, for example,
a Landsat-7 band 1 (ETM1) image (whose spectral domain
is 0.45–0.52 μm) with an (down-sampled) image of the same
surface area acquired by an IKONOS band 1 sensor (whose
spectral domain is 0.445–0.516 μm) should leave the LSRC
output map unaffected (refer to Table II).

Due to the ISRC loss in spectral resolution with respect to
LSRC’s, the following is true.

1) The number of spectral types detected by ISRC in
comparison with LSRC reduces from 46 to 25, which
is approximately equal to a 45% loss [22]. The ISRC
set of parent spectral categories becomes the following:
1) ‘either snow or ice or cloud or bright bare soil or
built up’ (SN_CL_BBB); 2) ‘either water or shadow’
(WASH); 3) ‘vegetation’ (V); 4) ‘either bare soil or built
up’ (BB); and 5) ‘outliers’.

2) Based on existing literature, ISRC is expected to be
less effective than LSRC in the separation of vegetation
from bare soil due to the loss of the Landsat MIR1
and MIR2 channels (refer to Table II) [22] and in the
separation of snow from clouds and light-toned bare soils
due to the loss of the MIR and TIR channels (refer
to Table II) [22], [29]. In [25], to remove classification
differences due to changes in radiometric calibration and
SR of input sensors, ISRC and LSRC were compared in
the classification of, respectively, an artificial (synthetic)
four-band IKONOS-like image and its real seven-band
Landsat-7 ETM+ master image. In that paper, the ISRC
loss in classification accuracy in comparison with LSRC’s
was estimated at about 10%. In the same paper, the
ISRC loss of accuracy was about 10% in the generation
of a dichotomous vegetation/nonvegetation classification
map. However, if spectral categories featuring sparse veg-
etation were not considered in this comparison, the ISRC
capability of detecting vegetation was 99% consistent
with that of LSRC, which is a result far better than what
is theoretically expected [22], [25].

According to [25], its operational properties, namely, map-
ping accuracy, computational efficiency, degree of automation,
and robustness to changes in the input data set, make the ISRC
eligible for use as the preliminary pixel-based classification
first stage in an operational two-stage stratified hierarchical

Fig. 2. Geographic footprints of the testing images identified by names of
the testing sites and symbols, namely, 1) black square for (six) QB2 imagery,
2) gray square with black cross for (four) IK2 imagery, and 3) rectangle outline
for (four) Landsat-5 TM (LTM) images. At the camp site, one QB2, one IK2,
and one LTM images are available (refer to Table III).

RS-IUS instantiation that is suitable for mapping spaceborne
VHR optical imagery [22], [25].

III. STUDY AREAS AND TESTING IMAGE SET

The primary objective of this paper is the assessment of
the ISRC accuracy and robustness to changes in the input
data set acquired across time, space, and sensors at continen-
tal scale, with special emphasis on the detection of vegeta-
tion types (refer to Section I). According to the experimental
session validity criteria proposed by Prechelt [55], at least
two real and standard/appropriate (e.g., synthetic) data sets
must be adopted to demonstrate the potential utility of an
algorithm.

To reach the aforementioned paper’s objective in agreement
with the Prechelt experimental session validity criteria [55], a
testing image set was collected according to the following con-
straints. 1) It is representative of the whole range of soil types
encountered across the EU agricultural landscapes according to
the European Soil Database v2.0 defined in agreement with the
FAO/UNESCO classification system [56], [57]. These selected
soil types exclude, for example, arid regions, mountainous ar-
eas, and urban areas. 2) It comprises both synthesized and real-
world RS imagery. The former data set allows a comparison
of the ISRC against the LSRC as a function of the change in
spectral resolution, while radiometric calibration and SR do
not change in the comparison. 3) It features an observation
timing that is limited to the spring season, ranging from early
April to late June, to deal with RS images dominated by the
presence of green vegetation. 4) It avoids extreme off-nadir so-
lar geometry. 5) Whenever possible, it adopts PAN-sharpening
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TABLE IV
TEST SITES DEPICTED IN VHR IMAGES AND THEIR SOIL PROPERTIES TAKEN FROM THE EUROPEAN SOIL

DATABASE v2.0 IN AGREEMENT WITH THE FAO/UNESCO CLASSIFICATION SYSTEM [56], [57]

to make SR finer, and thus, it reduces the presence of
“mixed” pixels.

To satisfy the aforementioned constraints, 14 testing images
were selected and preprocessed as described in the follow-
ing. They comprise four radiometrically calibrated synthesized
VHR-like images and ten radiometrically calibrated multi-
source real-world VHR images described in Table III. Their
geographic footprints are shown in Fig. 2.

The four synthetic four-band IKONOS-like images shown in
Fig. 2 represent the Mediterranean, Atlantic, and Central Euro-
pean condition of agricultural landscapes. They were generated
from four “master” seven-band 30-m-resolution Landsat-5 TM
scenes, radiometrically calibrated into TOARF values, whose
channels TM1–TM4 provide the required IKONOS-like B, G,
R, and NIR channels (refer to Table II).

The ten VHR images of agricultural landscapes shown in
Fig. 2 comprise six 2.44-m-resolution QB2 images and four
4-m-resolution IK2 images. According to the European Soil
Database v2.0 defined in agreement with the FAO/UNESCO
classification system [56], [57], these VHR images cover the
entire range of very weak, weak, moderate, and strong soil
developments found across the EU, they have a surface mineral
texture ranging from fine to coarse, and they exhibit a range of
parent material mineralogical compositions that are typical of
EU agricultural landscapes. These comments are summarized
in Table IV.

Preprocessing of the selected QB2 and IK2 images was as
follows. 1) Every testing image, provided with its radiometric
calibration metadata file, was radiometrically calibrated into
TOA radiance and, next, TOARF values [42]. 2) Four subsets,
500 × 500 pixels in size, were extracted from each VHR image
to capture the diversity of that scene, contained a substan-
tial portion of both vegetation and nonvegetation cover types,
and included a significant portion of nonagricultural cover
types in the vegetation part. 3) Each subset was independently
PAN-sharpened at, respectively, 0.61-m resolution for QB2
and 1-m resolution for IKONOS imagery to generate an up-
scaled subimage of 2000 × 2000 pixels in size by means of
the Gram–Schmidt PAN-sharpening algorithm implemented in
the Environment for Visualizing Images commercial software
toolbox licensed by ITT Industries, Inc. [58]. 4) Although

the Gram–Schmidt algorithm supposedly preserves the spectral
integrity of the original MS data, each PAN-sharpened image
subset was compared with its original subimage. If a significant
(linear) spectral distortion was found in the comparison, then
a dark-object subtraction technique, typically used to remove
the additive atmospheric scattering (haze) effects [59], was
applied to the PAN-sharpened image subset. Only eight of
40 PAN-sharpened image subsets required a dark-object sub-
traction. Examples of a 0.61-m-resolution PAN-sharpened QB2
image and its ISRC map are shown in Figs. 3–5.

For each of the four subimages, 2000 × 2000 pixels in
size, extracted from each of the ten testing VHR images,
300 reference pixels were randomly selected, i.e., 1200 ref-
erence samples were selected overall for each VHR testing
image. Visually inspected by an expert photointerpreter, these
reference pixels were mapped into the following three classes:
vegetation, nonvegetation, and mixed pixels (see Table V,
where the presence of mixed pixels ranges from 1% to 21%
at subset level and from 2 to 12% at image level). High shares
of mixed pixels are, to a large extent, due to emerging annual
crops in early spring imagery.

IV. EXPERIMENTAL RESULTS

Rather mild algorithm benchmarking rules found in com-
puter science literature are the following [55]: At least two real
and standard/appropriate data sets must be adopted to demon-
strate the potential utility of an algorithm (refer to Section III
earlier), the proposed algorithm must be compared against at
least one existing technique, and at least one fifth of the total
paper length should be devoted to evaluation.

According to [22], LSRC (respectively, ISRC) maps each
pixel of a radiometrically calibrated seven-band Landsat-like
(respectively, four-band IKONOS-like) image into a set of 46
(respectively, 25) spectral categories (refer to Section II-B).
Among these spectral categories, 14 (respectively, 13) spectral
categories belong to “green vegetation” types, i.e., they are un-
ambiguously identified as containing photosynthetically active
vegetation.

From a theoretical point of view, due to the loss of the MIR
channels, the downscaled four-band ISRC is less reliable than
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Fig. 3. (a) QuickBird-2 image of Campania, Italy (acquisition date: June 13, 2004, 09:58 GMT), radiometrically calibrated into TOARF values, PAN-sharpened
from 2.44 to 0.61 m resolution and depicted in false colors (R: band 3, G: band 4, B: band 1). (b) ISRC output map depicted in pseudocolors and generated from
the MS image shown in (a). The adopted pseudocolors are the following: green tones for vegetation and rangeland, brown and gray color shades for barren land
and built-up areas, blue tones for water types, white tones for clouds and snow, and red tones for unknowns.

Fig. 4. (a) Zoomed image extracted from Fig. 3(a), radiometrically calibrated into TOARF values, PAN-sharpened from 2.44 to 0.61 m resolution and depicted
in false colors (R: band 3, G: band 4, B: band 1). (b) Zoomed ISRC output map depicted in pseudocolors, extracted from Fig. 3(b) and overlapping with Fig. 4(a).
Adopted pseudocolors are the same as those in Fig. 3(b).

the original seven-band LSRC in the detection of vegetation
(see Section II-B) [22]. Fortunately, early experiments revealed
an ISRC vegetation mapping accuracy superior to what is
theoretically expected [25].

In this experimental section, the ISRC capability of mapping
vegetation types is quantitatively assessed at the European con-
tinental scale to check the validity of preliminary conclusions
gathered at local spatial extensions and reported in [25].

To reach this experimental objective and to fulfill the al-
gorithm assessment criteria listed earlier, the following four
experiments were conducted.

1) The first experiment quantitatively assesses the expected
loss in spectral discrimination capability affecting the
downscaled ISRC system in comparison with the original
LSRC due to the inferior spectral resolution of the for-
mer irrespective of intersensor differences in radiometric
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Fig. 5. (a) Zoomed image extracted from Fig. 3(a), radiometrically calibrated into TOARF values, PAN-sharpened from 2.44 to 0.61m resolution and depicted
in false colors (R: band 3, G: band 4, B: band 1). (b) Zoomed ISRC output map depicted in pseudocolors, extracted from Fig. 3(b) and overlapping with Fig. 5(a).
Adopted pseudocolors are the same as those in Fig. 3(b).

calibration and SR (see Section III). To reach this goal,
in line with [25], the ISRC is compared against the
LSRC in the automatic generation of a binary vegetation
mask extracted from, respectively, four synthesized
IKONOS-like images (refer to Section III) and their four
master Landsat-5 TM images (refer to Table III and
Fig. 2).

2) The classification accuracy of the binary vegetation mask
automatically generated by ISRC is estimated, employ-
ing, as input, 40 subsets of ten real-world PAN-sharpened
QB2 and IK2 images (refer to Tables III and IV and
Fig. 2). Each subset is provided with a reference data set
of 300 samples (refer to Section III and Table V).

3) A traditional empirical scene-by-scene normalized dif-
ference vegetation index (NDVI) thresholding ap-
proach is compared against the fully automated ISRC in
the detection of a dichotomous vegetation/nonvegetation
mask across the 40 PAN-sharpened VHR image sub-
sets that are 2000 × 2000 pixels in size (refer to
Section III).

4) In an automatic two-stage stratified hierarchical RS-IUS
instantiation employing ISRC as its preliminary clas-
sification first stage (refer to Section II), the second-
stage stratified texture properties are extracted from the
symbolic discrete ISRC map domain in place of the
ordinary subsymbolic continuous varying MS image fea-
ture domain to separate low-texture annual cropland
or herbaceous rangeland (identified as class AC/HR)
from high-texture forest or woodland (identified as
class F/W).

In this experimental session, the classification accuracy was
assessed by means of the well-known classification overall ac-
curacy (OA) probability that is provided with its error tolerance
pOA ∈ [0, 1] ± δ, with 0 < δ < pOA ≤ 1 [75], in agreement
with the QA4EO guidelines [49].

TABLE V
TESTING VHR IMAGES. CARDINALITY OF RANDOMLY SELECTED

GROUND TRUTH PIXELS BELONGING TO CLASS VEGETATION,
NONVEGETATION, OR MIXED PIXELS

In line with the USGS classification system constraints, in
this paper, the target pOA ∈ [0, 1] is fixed at 0.85, whereas the
per-class classification accuracies should be about equal [52]
and never below 70% [60].

Any pOA estimate is a random variable (sample statistic) with
a confidence interval (error tolerance) ±δ associated with it.
In other words, pOA is a function of the specific testing data
set used for its estimation [61]. It is easy to prove that, for a
given pOA ± δ value pair, a recommended cardinality of the
testing data set Mtest can be estimated. In practice, based on the
assumption that reference samples are independent and iden-
tically distributed (i.i.d.; this assumption is typically violated
in image classification problems due to spatial autocorrelation
between neighboring reference pixels), for a given reference
testing sample set size Mtest and an estimated classification
accuracy probability pOA at a desired confidence level (e.g., if
confidence level = 95%, then the critical value is 1.96), the half
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TABLE VI
COMPARISON OF ISRC WITH LSRC IN A DICHOTOMOUS VEGETATION/NONVEGETATION CLASSIFICATION PROBLEM. REFERENCE CLASSIFICATION

MAPS ARE GENERATED BY LSRC FROM FOUR RADIOMETRICALLY CALIBRATED LANDSAT-5 TM MASTER IMAGES. TESTING CLASSIFICATION

MAPS ARE GENERATED BY ISRC FROM FOUR ARTIFICIAL 4-BAND IKONOS-LIKE SLAVE IMAGES SYNTHESIZED FROM THE 7-BAND

LANDSAT-5 TM MASTER IMAGES. OVERALL CLASSIFICATION ACCURACY PROBABILITY COMPUTED IMAGE-WIDE = pOA (%).
ERROR TOLERANCE AT A CONFIDENCE LEVEL OF 95% = ±δ(%) = (1).

TABLE VII
COMPARISON OF ISRC WITH LSRC IN A DICHOTOMOUS VEGETATION/NONVEGEATATION CLASSIFICATION PROBLEM. SELECTION OF SPECTRAL

CATEGORIES DETECTED BY LSRC (EMPLOYED AS A REFERENCE) AND ISRC THAT OVERLAP WITH A LARGE PORTION

(SHARE) OF THE ISRC VEGETATION OMISSION ERRORS REPORTED IN TABLE VI

width δ of an error tolerance that is equal to ±δ becomes [43],
[62], [63]

δ =

√
(1.96)2 · pOA · (1 − pOA)

Mtest
. (1)

According to (1), in a dichotomous vegetation/nonvegetation
classification problem, if the target pOA = 0.85 (see this
text earlier) with Mtest = 1200 (refer to Section III) and if
confidence level = 95%, then δ = (1) = 2%.

For each cth class simultaneously involved in the classifi-
cation process, with c = 1, . . . , C, it is possible to prove that
(refer to [43, p. 294])

δc =

√
χ2

(1,1−α/C) · pOA,c · (1 − pOA,c)

mc
, c = 1, . . . , C

(2)

where α is the desired level of significance, i.e., the risk that the
actual error is larger than δc (e.g., α = 0.03), 1 − α/C is the
level of confidence, and χ2

(1,1−α/C) is the upper (1 − (α/C)) ∗
100th percentile of the chi-square distribution with one
degree of freedom. For example, if α = 0.03 and C = 3, then
the level of confidence is (1 − 0.03/3) = 0.99 and χ2

(1,0.99) =
6.63. In this case, if pOA,c = 0.70 (see this text earlier), mc =
300 (refer to Section III), and confidence level = 95%, then
δc = (2) = 6.8%.

A. Quantitative Assessment of ISRC Accuracy

Experiments 1)–4) that are described in the introduction of
Section IV are discussed in the following.

1) Synthesized IKONOS-Like Images at Regional Scale: To
remove the differences in sensor calibration and SR, ISRC is
compared against LSRC in the automatic generation of a binary
vegetation mask from, respectively, four synthesized IKONOS-

like slave images and their four Landsat-5 TM master images
(refer to Table III).

In these four experiments, column 4 of Table VI shows that,
when compared to LSRC, ISRC provides a binary vegetation
mask whose pOA value ranges from 76% to 97%. Columns 6
and 7 of Table VI reveal that the vegetation mapping difference
between the reference LSRC and the testing ISRC is mainly due
to omission errors (type I errors [13]). Table VII investigates the
degree of semantic shift of the ISRC vegetation omission errors
reported in Table VI from the LSRC reference. In particular,
Table VII shows that the ISRC vegetation omission errors
reported in Table VI are mainly due to pixels whose reference
LSRC spectral types feature a low leaf area index (LAI),
such as spectral categories ‘weak rangeland’ (WR) and ‘either
wetland or dark rangeland’ (WEDR). These low LAI value-
pixels are erroneously mapped by ISRC onto nonvegetated
spectral types such as “non flat” (NF) bare soil or built-up
(BB) [e.g., ‘strong bare soil or built-up non flat’ (SBBNF)
and ‘average bare soil or built-up non flat’ (ABBNF)]. To
summarize, Tables VI and VII together show that, when the
seven-band LSRC is adopted as a reference, the downscaled
four-band ISRC mislabels either “mixed pixels” with a sparse
vegetation cover or pixels featuring a full vegetation cover
but a low chlorophyll content. It is noteworthy that, if pixels
labeled by the LSRC as featuring sparse vegetation cover or
a low LAI value (e.g., belonging to spectral types WR and
WEDR) are ignored in this comparison, then, according to
Tables VI and VII, the degree of match between the reference
LSRC and the testing ISRC binary vegetation maps exceeds
98.5%, which is perfectly in line with the 99% degree of match
reported in [25] in a similar experiment conducted at local scale
(refer to Section II-B).

Column 7 in Table VI shows that the ISRC binary vegetation
mask commission errors are always below 6% and that, in
general, they appear negligible in terms of occurrence. The
semantic shift associated with the ISRC vegetation commission
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TABLE VIII
COMPARISON OF ISRC WITH LSRC IN A DICHOTOMOUS VEGETATION/NONVEGETATION CLASSIFICATION PROBLEM. SELECTION OF SPECTRAL

CATEGORIES DETECTED BY LSRC (EMPLOYED AS A REFERENCE) AND ISRC THAT OVERLAP WITH A LARGE PORTION (SHARE)
OF THE ISRC VEGETATION COMMISSION ERRORS REPORTED IN TABLE VI

errors reported in Table VI is investigated in Table VIII. It
reveals that, first, mixed pixels labeled as ‘outliers’ (unknown,
UN) by the reference LSRC can be mapped by ISRC onto
vegetation spectral types. The frequency of these pixels in the
testing images appears extremely low; thus, their impact on the
LSRC and ISRC vegetation mapping difference is negligible.
Second, a large portion of the reference LSRC spectral category
‘thin cloud over vegetation’ (TNCLV) is identified by ISRC
as vegetation. Although this is a semantic shift between ISRC
and LSRC mappings, it cannot be considered as a vegetation
overestimation of ISRC with respect to LSRC.

To summarize, Tables VI–VIII show first that, in four synthe-
sized VHR images at regional scale, ISRC maintains the LSRC
capability of detecting vegetation types (whose LAI ranges
from low to high) from 76% to 97%, which rises to about
99% if the pixels with sparse vegetation cover (low LAI) are
not considered in the comparison. Second, in comparison with
LSRC, ISRC is affected by an omission error (ranging from
1% to 17%) when the canopy is sparse or when the chlorophyll
content is low, while its commission error tends to be always
small (< 6%). These conclusions are perfectly in line with
the theoretical expectations. Although forgotten in RS common
practice, it is well known in existing literature that the NDVI
(equivalent to a first derivative of the spectral signature between
the visible and NIR portions of the electromagnetic spectrum),
which is also, but not exclusively, employed by the ISRC
decision rules, is ineffective when the vegetation canopy is too
dense or too sparse [64, p. 250]. In addition, the aforementioned
conclusions holding at regional scale generalize preliminary
observations collected at local scale in [25], where the ISRC
capability of detecting vegetation was 99%, which is consistent
with that of the LSRC when the spectral categories featuring
sparse vegetation were omitted from the classification compar-
ison (refer to Section II-B).

In RS common practice, this paper demonstrates that the
binary vegetation masks provided by LSRC and ISRC feature
different semantic meanings. While the LSRC vegetation mask
separates pixels containing no vegetation at all from pixels
containing any degree of green vegetation ranging from low
to high, the ISRC vegetation mask separates pixels containing
either a large or medium amount of green vegetation from
pixels containing either no or little chlorophyllous biomass.

2) PAN-Sharpened IK2 and QB2 Images at Local Scale:
The classification accuracy of the binary vegetation mask gen-
erated by the fully automated ISRC was estimated across the
40 PAN-sharpened VHR image subsets, 2000 × 2000 pixels
in size (refer to Tables III and IV and Fig. 2). For each image

subset, the reference data set comprises 300 randomly selected
pixels assigned to class vegetation, nonvegetation, or mixed
pixels (refer to Section III and Table V).

At a visual assessment, the overall quality of the preliminary
classification maps generated as output by ISRC from the four
PAN-sharpened 1-m-resolution IK2 and the six PAN-sharpened
0.62-m-resolution QB2 images selected for testing appears
very satisfactory (see Figs. 3–5). It is noteworthy that, unlike
traditional pixel-based classifier such as ML and neural network
classifiers [15], the automatic pixel-based model-driven ISRC
appears affected by no salt-and-pepper classification noise ef-
fect. This is due to the ISRC capacity of modeling within-
spectral category variance [22], [25].

The accuracy of a classification map is expected to increase
when the SR becomes finer, i.e., when the number of mixed
pixels decreases [65]. This means that the mapping accuracy of
the ISRC binary vegetation masks generated in this section at
an SR below or equal to 1 m is expected to be not inferior to
that estimated in Section IV-A1, dealing with 30-m-resolution
ISRC binary vegetation masks.

Table IX provides the ISRC binary vegetation mask pOA es-
timate per site and the average binary vegetation/nonvegetation
pOA value computed across the 40 ISRC binary vegetation
masks (i.e., without considering reference mixed pixels), which
is equal to 98.21%, with an average error tolerance equal to
±0.79%. This outcome is in line with previous results gath-
ered with synthetic IKONOS-like images in Section IV-A1.
Columns 4 and 5 of Table IX show that, at subset level, for both
vegetation and nonvegetation reference data sets, the share (%)
values of correctly labeled pixels are in all cases, but one, equal
to or above 88%. The only exception, which is a nonvegetation
reference data set whose correctly mapped percentage value is
equal to 70.6%, occurs with one subset in site HERV. A visual
inspection of this image subset revealed that random nonvegeta-
tion reference samples were located on the edges of small cirrus
clouds overlying a uniformly vegetated area. These pixels were
labeled as nonvegetation (namely, cloud) by an expert pho-
tointerpreter, but the strong signal of the underlying vegetation
is detected through thin clouds by ISRC, which assigns these
pixels with spectral category label ‘vegetation’ (also refer to a
similar circumstance that occurred in Section IV-A1). Although
this is a semantic shift from reference samples, it cannot be
considered a vegetation overestimation error by ISRC.

Columns 6 and 7 of Table IX reveal that the population of
the reference mixed pixels is mapped by ISRC into spectral
categories vegetation or nonvegetation according to proportions
that vary with site characteristics. This observation supports



3496 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 9, SEPTEMBER 2010

TABLE IX
PAN-SHARPENED VHR TESTING IMAGES. ISRC BINARY VEGETATION MASK OA PROBABILITY PER SITE=pOA (IN PERCENT). ERROR TOLERANCE AT

A CONFIDENCE LEVEL OF 95% = ±δ (%) = (1). THE AVERAGE pOA VALUE COMPUTED ACROSS THE 40 ISRC
BINARY VEGETATION MASKS AT SUBSET LEVEL IS EQUAL TO 98.21% ± 0.79%

the conclusion of Section IV-A1; according to it, the ISRC
binary vegetation mask locates pixels featuring either a large or
medium amount of green vegetation, while pixels containing
either no or little chlorophyllous biomass (like mixed pixels
generated from a mixture of vegetation with nonvegetation
surface types) are masked out. It is noteworthy that, across
columns 6 and 7 of Table IX, the only circumstance where ISRC
mapping of mixed pixels is clearly unbalanced in favor of the
vegetation class occurs at the TUAM site. A visual inspection of
this testing image revealed that reference mixed pixels belong
to a peat bog. Since a peat bog is a heavily organic soil where
regenerating weeds may grow, it is intrinsically “fuzzy” to map.
To summarize, this special case does not question the conclu-
sion which states that ISRC appears unbiased when mapping
mixed pixels into classes vegetation and nonvegetation.

3) Comparison of the ISRC Vegetation Mask With an
NDVI-Based Vegetation Mask: Ordinary empirical scene-by-
scene NDVI thresholding was compared against the fully
automated ISRC in the detection of a dichotomous vegeta-
tion/nonvegetation mask across the 40 PAN-sharpened VHR
image subsets. It is noteworthy that NDVI is computed from in-
put MS imagery that is radiometrically calibrated into TOARF
values, as recommended in [64, p. 271]. By a trial-and-
error strategy, an empirical NDVI threshold was selected to
be equal to 0.36 to maximize the average binary vegeta-
tion/nonvegetation pOA value computed across the 40 binary
vegetation masks. This maximum average pOA value is equal
to 97.68%, with an average error tolerance of ±0.89% at a
confidence level that is equal to 95% (refer to Table X). It
is slightly lower than the average pOA value provided by the
automatic ISRC in Table IX, which is equal to 98.21% ±
0.79%. The comparison of Table X with Table IX reveals that,
at subset level, the binary vegetation mask pOA values of the
NDVI thresholding approach are slightly, but not significantly,
less accurate than those generated by ISRC. This overall simi-
larity is not entirely surprising since, to detect vegetation, both
approaches rely heavily (in the case of ISRC) or exclusively (in

the case of the NDVI thresholding technique) upon the same
two-of-four spectral bands, namely, the visible R and the NIR
channel, whereas visible B and visible G bands, which are
highly correlated with band R, are neglected.

In spite of the aforementioned accuracy similarities be-
tween the ISRC and the NDVI thresholding approach, the
latter has several operational disadvantages in comparison with
ISRC. These operational disadvantages are summarized in the
following.

1) The NDVI thresholding approach is applied on a scene-
by-scene basis, i.e., it is empirically driven by data, while
ISRC is automatic. Robustness of the NDVI threshold-
ing approach to changes in the input data set remains
unknown.

2) The NDVI thresholding approach is unable to cope with
areas where the vegetation spectral reflectance model
may not be ordinary, e.g., due to indirect illumination
such as vegetation in shadow areas [66], [67].

3) The NDVI thresholding approach is affected by well-
known commission errors, e.g., cirrus clouds and some
types of bright bare soils may feature high NDVI values.
In existing literature, it is well known that the NDVI
alone, by measuring the contrast between channels NIR
and R, is unable, per se, to guarantee a robust (i.e.,
reliable and image-independent) discrimination between
vegetation and nonvegetation surface types [26], [64].
Unfortunately, this evidence is often forgotten in RS
common practice [3].

An alternative NDVI thresholding approach would be to
establish the NDVI threshold on the basis of the (empirical)
square root relation between NDVI and the vegetation cover
fraction, as proposed by [68] and adopted by [24] and [44].
According to the square root relation [68], an NDVI threshold
value is selected to represent a (green) vegetation cover fraction
of only 25%. In our experiments, when this alternative NDVI
threshold was applied, vegetation mapping accuracy values
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TABLE X
PAN-SHARPENED VHR TESTING IMAGES. THE SELECTED NDVI (THRESHOLD=0.36) MAXIMIZES THE AVERAGE VEGETATION pOA VALUE COMPUTED

ACROSS THE 40 BINARY VEGETATION MASKS AT SUBSET LEVEL, WHICH IS EQUAL TO 97.68%, WITH AN ERROR TOLERANCE

AT A CONFIDENCE LEVEL OF 95% = ±δ (%) = (1) = ±0.89%

were less accurate than those shown in Table X (e.g., in the
HEAN site, the vegetated pixel detection accuracy decreased
from 99.7% by ISRC in Table IX to 97.6% by ordinary
NDVI thresholding in Table X and to 90.8% by the second
NDVI thresholding technique). In particular, the average pOA

value, which is equal to 98.21% in Table IX and 97.68% in
Table X, decreases to 94.8% by the second NDVI thresholding
technique. This result suggests that the (empirical) square root
relation between the NDVI and the vegetation cover fraction
does not hold in our experiments.

B. Second-Stage Stratified Context-Based Classification of
Woodland and HR

A two-stage stratified hierarchical RS-IUS employing ISRC
as its pixel-based preliminary classification first stage (see
Section II) was instantiated to distinguish low-texture class
AC/HR from high-texture class F/W in the symbolic, discrete,
and finite preliminary classification map domain in place of
the ordinary subsymbolic continuous varying image feature
domain. In the RS literature, dozens of works separate vege-
tation types based on a nonstratified (unconditional and driven
without knowledge) texture analysis in the MS image domain
with varying degrees of success (e.g., refer to [69]). In contrast
with these traditional texture detection approaches, Shackelford
and Davis presented two-stage stratified hierarchical RS-IUS
implementations whose second stage employs a stratified tex-
ture analyzer [19], [20]. However, neither the former nor the
latter approaches are based on texture analysis in the (symbolic,
discrete, and finite) preliminary classification map domain in
place of the traditional (subsymbolic, continuous, color chro-
matic, or achromatic [16]) signal domain.

It is noteworthy that neither a formal definition nor a class-
specific texture model based on invariant image properties
holds for a textured land cover class such as “woodland,” which
encompasses many vegetation types featuring varying texture
elements (textons), orientations, and periods [69]. To overcome

this limitation, a multiscale texture-sensitive model-driven (top-
down and learning by rule) second-stage F/W class-specific
classification module can employ, as input, the symbolic and
discrete preliminary ISRC map domain in place of the ordinary
image feature space. In particular, the center of a multiscale
local window is moved across the binary vegetation mask that is
automatically detected by ISRC. For each window position cen-
tered on the binary vegetation mask, the distribution (first-order
histogram) of the preliminary ISRC map labels, masked by the
vegetation mask, is collected. This vegetation mask-conditional
label distribution is expected to increase its complexity (number
of bins with occurrence above zero, which is equivalent to a
measure of entropy) monotonically with vegetation texture. In
fact, the number of ISRC spectral categories that are capable of
mapping the low-texture AC/HR class is expected to be inferior
to the number of discrete spectral categories that are capable of
mapping the high-texture F/W class.

To investigate this hypothesis, a stratified set of approxi-
mately nine randomly sampled reference pixels was selected
in each of the four image subsets per testing site (refer to
Section III) per class F/W and class AC/HR as follows. First,
an image stratum is computed as the intersection between
the binary vegetation mask generated from the VHR image
subset at hand and the buffer zone image consisting of pixels
located at least 15 m from the border of the image subset
(to avoid boundary effects across a moving window centered
on pixels belonging to the image stratum). Second, random
samples are selected within the image stratum and at least 40 m
from each other (to reduce reference sample autocorrelation).
Finally, stratified random samples are manually labeled by an
expert photointerpreter as belonging to either class AC/HR or
F/W. Thus, approximately 350 ground truth pixels per class
F/W (namely, 369 reference pixels) and class AC/HR (namely,
317 reference pixels) were selected overall across the ten VHR
image testing sites (refer to Table XI).

Spectral category index first-order distributions, masked by
the binary vegetation mask, were assessed at multiple scales
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TABLE XI
LAND COVER CLASS-CONDITIONAL PRELIMINARY SPECTRAL CATEGORY INDEX DISTRIBUTIONS WITHIN 15-m-RADIUS NEIGHBORHOODS CENTERED

ON THE BINARY VEGETATION MASK. TARGET LAND COVER CLASSES ARE THE FOLLOWING: 1) AC/HC AND 2) F/W. THE FREQUENCY OF A GIVEN

SPECTRAL CATEGORY, IN RANGE [0, 1], IS EXPRESSED AS A FRACTION OF THE TOTAL SAMPLE SIZE. THE “MEAN OCCURRENCE PER LOCAL WINDOW”
PRESENTS THE AVERAGE SHARE OF THE AREA OF THE 15-m-RADIUS CIRCLE OCCUPIED BY EACH SPECTRAL CATEGORY, AND “STD” PROVIDES THE

STANDARD DEVIATION OF THIS ESTIMATE. NSC IS THE NUMBER OF SPECTRAL CATEGORIES. SDI IS THE SHANNON DIVERSITY INDEX

Fig. 6. Distribution of the NSC detected within 6- and 15-m-radius neigh-
borhood overlapping with vegetation spectral categories detected by IRSC per
class: 1) AC/HR and 2) F/W.

to provide an effective decomposition of the scene [16], [70]–
[72], and according to the uncertainty principle (refer to
Section II-A), they guarantee the best tradeoff between accu-
rate boundary localization and the size (activation domain and
receptive field) of the local window used to compute contextual
features [13], [73]. By a trial-and-error strategy, it was observed
that a neighborhood radius beyond 15 m did not enhance the
collected texture information. Thus, two near dyadic circles
featuring a radius of, respectively, 6 and 15 m were selected (see
Fig. 6). The small circle with a 6-m radius provides the mini-
mum representative sample size, and it was considered to be
equivalent to the texture period of the low-texture class AC/HR,
whereas a neighborhood with a 15-m radius was selected
as a representative of the texture period of the high-texture
class F/W.

Table XI presents the average frequency values computed
across the ten testing sites of the 13 ISRC vegetation spectral
categories falling within a moving window with a 15-m radius
and centered on every reference sample belonging to classes
AC/HR and F/W. It is noteworthy that 6 of the 13 vegetation
spectral categories never occur in class AC/HR. This observa-
tion holds true also for the 6-m-radius neighborhood statistics.
For more than half of the F/W class observations, 5 of the 13
vegetation spectral indices occur, with their individual average
occurrence per local window ranging from 7% to 26%. One of
these five indices (namely, ASRVLNIR) never occurs in class
AC/HR. These considerations account for the inferior texture
content of class AC/HR with respect to class F/W, in line with
theoretical expectations (refer to this text earlier).

In the last two columns on the right of Table XI, vegetation-
masked first-order label distributions are parameterized by
alternative “diversity” (entropy) indicators, such as the Shannon
diversity index (SDI) [74] and the simple number of spectral
categories (NSC), whose cardinality is above zero. The latter
performs better than the former in terms of sensitivity to the
target texture phenomenon.

Fig. 6 shows the frequency distributions of NSC for the two
window radii and the two target land cover classes AC/HR and
F/W. Moving from 6- to 15-m radius, the maximum of the
F/W class-conditional NSC distribution increases from NSC =
4 to 5, while the maximum for class AC/HR remains equal to
NSC = 2. At a 15-m radius, the following is true: 1) If NSC
≥ 4, then 3% of the F/W samples are omitted; 2) if NSC > 4,
then only 3% of the AC/HR samples are detected; and 3) if
NSC = 4, less than 9% of the F/W and AC/HR samples are
selected. In the latter case, it is observed that vegetation spectral
labels SVVHNIR or SVHNIR (equivalent to large LAI values)
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appear in 23 of the 35 observations for class AC/HR and 3 of
the 26 observations for class F/W.

Starting from these observations, Table XII presents the
pseudocode of a second-stage stratified context-sensitive hier-
archical rule-based classifier to be employed in series with the
first-stage ISRC. This two-stage classifier separates vegetation
land cover classes F/W and AC/HR based on texture properties
computed in a symbolic discrete preliminary spectral classifica-
tion map domain rather than in an ordinary continuous varying
texture feature space. In ten VHR images acquired at European
scale, this two-stage stratified hierarchical RS-IUS is accurate
(featuring per class omission and commission errors ≤ 6%) and
computationally efficient (near real time).

V. SUMMARY AND CONCLUSION

In recent years, the number of VHR spaceborne platforms
and the demand for VHR commercial satellite imagery have
continued to increase in terms of both quantity and quality
of data. This has driven the need for automating quantitative
analysis of VHR imagery. Unfortunately, existing two-stage
segment-based RS-IUSs, currently considered as the state of the
art in spaceborne VHR image processing software toolboxes,
score poorly in terms of operational performance.

Downscaled from an original seven-band LSRC system, the
automatic near-real-time four-band ISRC has recently been pre-
sented as the pixel-based preliminary classification first stage
of a two-stage stratified hierarchical RS-IUS instantiation that
is suitable for mapping VHR imagery and that is an alternative
to traditional two-stage segment-based RS-IUSs.

The consequences of the ISRC loss in spectral resolution
with respect to LSRC’s are twofold: 1) The number of spectral
types detected by ISRC in comparison with LSRC reduces
from 46 to 25, which is approximately equal to a 45% loss
[22], and 2) the following is expected from the ISRC: a) it
features low sensitivity in the spectral discrimination of non-
vegetation pixels (featuring LAI values that are approximately
equal to zero) from pixels featuring a mixed (sparse) and/or
weak green vegetation presence (featuring low LAI values),
and b) it can be affected by a spectral overlap between classes
cloud, snow, and light-toned bare soil. In [25], a preliminary
quantitative assessment of the ISRC vegetation mapping capa-
bility at local scale showed a degree of consistency with the
LSRC output map, which is far superior to what is theoretically
expected.

This paper provides a so-called stage 1 validation of the ISRC
vegetation/nonvegetation mapping capability in terms of time
sampling, limited to the spring season, and a so-called stage 2
validation of the ISRC vegetation/nonvegetation map products
in terms of space sampling, extended to the European continent.
At regional scale, the selected testing data set comprises four
artificial IKONOS-like images synthesized from Landsat-5 TM
images and, at local scale, ten multisource VHR IK2 and QB2
images of agricultural landscapes selected across the EU in the
spring season (from early April to late June).

ISRC is compared against LSRC in the classification of the
four selected synthetic VHR images. This comparison reveals
that the degree of consistency of the ISRC vegetation map with

LSRC’s ranges from 76% to 97%, mainly due to omission
errors caused by mixed pixels corresponding to sparse and/or
weak green vegetation (featuring low LAI values). Whereas
these pixels are mapped onto the vegetation mask by LSRC,
they are mapped onto the nonvegetation mask by ISRC. This
means that the dichotomous vegetation/nonvegetation map de-
tected by ISRC separates either strong or average vegetation
pixels from either weak or no vegetation pixels, unlike LSRC
which separates pixels featuring a degree of vegetation ranging
from low to high from nonvegetation pixels. These results are
perfectly in line with those collected at local scale in [25].

In the classification of ten real-world PAN-sharpened
VHR images, the average ISRC dichotomous vegetation/
nonvegetation detection accuracy computed across sensors and
testing sites without considering mixed pixels was estimated at
98.21%, with an average error tolerance of ±0.79%. This result
is in line with the results collected with the synthetic image set.
It is also measurably superior compared to that generated by an
ordinary scene-specific NDVI thresholding technique in terms
of degree of automation, mapping accuracy, and robustness
to changes in the input image acquired across sensor and
space.

To summarize, the aforementioned experimental results
demonstrate that, although ISRC is affected by theoretical lim-
itations in the spectral discrimination of vegetation land cover
classes with respect to the seven-band LSRC due to the loss of
the MIR and TIR channels, ISRC can be considered effective
and robust to changes in the input VHR image of agricultural
landscapes selected across the EU.

Another experiment highlights the degree of novelty of the
proposed two-stage stratified hierarchical RS-IUS architecture,
employing ISRC as its pixel-based preliminary classification
first stage that is suitable for mapping VHR imagery. In series
with ISRC, a second-stage land cover class-specific classifica-
tion module is implemented as a context-sensitive decision rule
employing, as input, the symbolic discrete and finite prelimi-
nary ISRC map in place of a traditional, subsymbolic, and con-
tinuous varying texture feature space to discriminate between
textured land cover classes, namely, low-texture AC/HR from
high-texture F/W. In this experiment, the implemented near
real-time second-stage stratified context-sensitive rule-based
classifier maintains omission and commission errors at about
3 ÷ 4% of the reference data set.

The validated ISRC output products at the European conti-
nental scale may be relevant to the following: 1) the various
levels and stages of the annual Control With RS program of
the EU Common Agricultural Policy, which is still largely
based on computer-assisted photo-interpretation techniques;
2) the automatic implementation of hierarchical RS data clas-
sification taxonomies, whose first decision level consists of a
dichotomous vegetation/nonvegetation classification map, such
as the CORINE, the USGS classification hierarchy, and the
FAO LCCS; and 3) the implementation of operational GEOSS
and GMES instantiations.

As a future development of this paper, a two-stage stratified
hierarchical RS-IUS architecture employing ISRC as its pixel-
based preliminary classification first stage will be provided with
a battery of second-stage stratified class-specific classification
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TABLE XII
PSEUDOCODE IN SERIES WITH ISRC TO SEPARATE CLASS F/W FROM CLASS AC/HR BASED

ON STRATIFIED TEXTURE PROPERTIES IN THE PRELIMINARY ISRC MAP DOMAIN

modules that are suitable for the automatic recognition of roads,
buildings, and impervious surfaces in VHR images, which is in
agreement with the original works by Shackelford and Davis.
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