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Fuzzification of a Crisp Near-Real-Time Operational
Automatic Spectral-Rule-Based Decision-Tree

Preliminary Classifier of Multisource Multispectral
Remotely Sensed Images

Andrea Baraldi

Abstract—Proposed in recent literature, a novel two-stage
stratified hierarchical hybrid remote-sensing image understand-
ing system (RS-IUS) architecture comprises the following:
1) a first-stage pixel-based application-independent top-down
(physical-model-driven and prior-knowledge-based) preliminary
classifier and 2) a second-stage battery of stratified hierarchical
context-sensitive application-dependent modules for class-specific
feature extraction and classification. The first-stage preliminary
classifier is implemented as an operational automatic near-real-
time per-pixel multisource multiresolution application-indepen-
dent spectral-rule-based decision-tree classifier (SRC). To the
best of the author’s knowledge, SRC provides the first opera-
tional example of an automatic multisensor multiresolution Earth-
observation (EO) system of systems envisaged under ongoing
international research programs such as the Global Earth Obser-
vation System of Systems (GEOSS) and the Global Monitoring for
the Environment and Security (GMES). For the sake of simplicity,
the original SRC formulation adopts crisp (hard) membership
functions unsuitable for dealing with component cover classes of
mixed pixels (class mixture). In this paper, the crisp (hierarchical)
SRC first stage of a two-stage hybrid RS-IUS is replaced by a fuzzy
(horizontal) SRC. In operational terms, a relative comparison
of the fuzzy SRC against its crisp counterpart reveals that the
former features the following: 1) the same degree of automation
which cannot be surpassed, i.e., they are both “fully automatic”;
2) a superior map information/knowledge representation where
component cover classes of mixed pixels are modeled; 3) the same
robustness to changes in the input multispectral imagery acquired
across time, space, and sensors; 4) a superior maintainability/
scalability/reusability guaranteed by an internal horizontal (flat)
modular structure independent of hierarchy; and 5) a computa-
tion time increased by 30% in a single-process single-thread im-
plementation. This computation overload would reduce to zero in
a single-process multithread implementation. In line with theory,
the conclusion of this work is that the operational qualities of the
fuzzy and crisp SRCs differ, but both SRCs are suitable for the
development of operational automatic near-real-time multisensor
satellite-based measurement systems such as those conceived as
a visionary goal by the ongoing GEOSS and GMES research
initiatives.
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I. INTRODUCTION

IN RECENT years, cost-free access to large-scale low-
spatial-resolution (SR) (above 40 m) and medium-SR (from

40 to 20 m) spaceborne image databases has become a reality
[1]–[3]. In parallel, the demand for high-SR (between 20 and
5 m) and very high SR (VHR, below 5 m) commercial satellite
imagery has continued to increase in terms of data quantity and
quality, which has boosted the rapid growth of the commercial
VHR satellite industry [2].

These multiple drivers make urgent the need to develop
operational satellite-based measurement systems suitable for
automating the quantitative analysis of large-scale spaceborne
multisource multiresolution image databases [1]. This ambi-
tious objective has been traditionally pursued by the remote-
sensing (RS) community involved with global land cover (LC)
and LC change programs [1, pp. 451, 452]. The same objective
is currently envisaged under ongoing international programs
such as the Global Earth Observation System of Systems
(GEOSS), conceived by the Group on Earth Observations
(GEO) [3], and the Global Monitoring for the Environment and
Security (GMES), an initiative led by the European Union in
partnership with the European Space Agency (ESA) [4].

Unfortunately, the automatic or semiautomatic transforma-
tion of huge amounts of multisource multiresolution RS im-
agery into information still remains far more problematic than
might be reasonably expected [5]. This well-known opinion by
Zamperoni may explain why, to date, the percentage of data
downloaded by stakeholders from the ESA Earth-observation
(EO) databases is estimated at about 10% or less.

If productivity in terms of quality, quantity, and value of
high-level output products generated from input EO imagery
is low, this is tantamount to saying that existing scientific and
commercial RS image understanding (classification) systems
(RS-IUSs), e.g., [6]–[8], score poorly in operational contexts.
This inference would also apply to two-stage segment-based
RS-IUSs [6], [8], which have recently gained widespread pop-
ularity and whose conceptual foundation is well known in
literature as (2-D) object-based image analysis [9].
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Fig. 1. Novel hybrid two-stage stratified hierarchical RS-IUS architecture. This data flow diagram shows processing blocks as rectangles and sensor-derived data
products as circles [26]. In this example, a SPOT-5 MS image is adopted as input. The panchromatic image can be generated from the MS image. The MS image
is input to the preliminary classification first stage and, if useful, to the second-stage class-specific classification modules. The panchromatic image is exclusively
employed as input to second-stage stratified class-specific context-sensitive classification modules, where color information is dealt with by stratification. For
example, stratified texture detection is computed in the panchromatic image domain, which reduces computation time.

Fig. 2. Preliminary classification map legend adopted by SRC. Pseudocolors associated with spectral categories are gathered based on their spectral end-member
(e.g., bare soil or built-up) or parent spectral category (e.g., “high” LAI vegetation). The pseudocolor of a spectral category is chosen as to mimic natural colors of
pixels belonging to that spectral category.

To outperform existing scientific and commercial image
mapping systems, there is a new trend in both computer vision
[10] and RS literature [11], [12]. This trend is focused on
the development of hybrid models for retrieving subsymbolic
continuous variables [e.g., leaf area index (LAI)] and symbolic
categorical discrete variables (e.g., LC composition) from opti-
cal multispectral (MS) imagery. By definition, hybrid models
combine both statistical (bottom-up, fine-to-coarse, driven-
without-knowledge, and inductive-learning-by-example) and
physical (top-down, coarse-to-fine, prior-knowledge-based, and
deductive-learning-by-rule) models to take advantage of the
unique features of each and overcome their shortcomings
[10]–[12].

Novel achievements in the development of an operational
automatic near-real-time hybrid RS-IUS accomplished by the
author of this work were recently published in RS literature
[13]–[19]. These new developments encompass the four levels

of analysis of an information processing device, namely:
1) computational theory (architecture); 2) knowledge/
information representation; 3) algorithm design; and 4) imple-
mentation [19], [20]. Accounting for the customary distinction
between a model and the algorithm used to identify it [20],
an original two-stage stratified hierarchical hybrid RS-IUS
architecture (see Fig. 1) was identified starting from several
RS-IUS implementations proposed by Shackelford and Davis
in recent years [21], [22]. This novel RS-IUS architecture
comprises the following [13]–[19].

1) A radiometric calibration preprocessing stage, where dig-
ital numbers are transformed into top-of-atmosphere re-
flectance (TOARF) or surface reflectance (ρ) values, with
TOARF ⊇ ρ. This is considered a necessary, although
not sufficient, condition for input EO imagery to be
understood automatically.
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Fig. 3. (a) Four-band GMES-IMAGE2006 Coverage 1 mosaic, consisting of approximately 2000 four-band IRS-1C/-1D/-P6 LISS-III, SPOT-4 HRVIR, and
SPOT-5 HRG images, mostly acquired during the year 2006, depicted in false colors: (Red) Band 4 (short-wave infrared), (green) Band 3 (NIR), and (blue) Band 1
(visible green). Downscaled SR: 25 m. (b) Preliminary classification map automatically generated by SSRC from the mosaic shown in (a). Output spectral
categories are depicted in pseudocolors. Map legend is shown in Fig. 2. This result was achieved at the European Commission-Joint Research Center in October
2008 and published in [13] and [16]. To the best of the author’s knowledge, this is the first example of such a high-level product automatically generated at
continental scale at both the European Commission-Joint Research Center facility and elsewhere.

Fig. 4. (a) (Left) Web-enabled Landsat Data Project (http://landsat.usgs.gov/WELD.php). This is a joint NASA and USGS project providing seamless consistent
mosaics of fused Landsat-7 ETM+ and MODIS data radiometrically calibrated into TOARF and surface reflectance. These mosaics are made freely available
to the user community. Each consists of 663 fixed location tiles. SR: 30 m. Area coverage: Continental U.S. and Alaska. Period coverage: Seven years. Product
time coverage: Weekly, monthly, seasonal, and annual composites. (b) (Right) Preliminary classification map automatically generated by LSRC from the 2008
annual Web-enabled Landsat Data mosaic shown in (a). Output spectral categories are depicted in pseudocolors. Map legend is shown in Fig. 2. LSRC was run by
L. Boschetti (University of Maryland) and Junchang Ju and D. Roy (University of South Dakota) in October 2010. To the best of the author’s knowledge, this is
the first example of such a high-level product automatically generated at continental scale at both the NASA and USGS.

2) A first-stage application-independent per-pixel (noncon-
textual) top-down (prior-knowledge-based) preliminary
classifier in the Marr sense [20].

3) A second-stage battery of stratified hierarchical context-
sensitive application-dependent modules for class-
specific feature extraction and classification.

The first-stage pixel-based preliminary classifier was de-
signed and implemented as an original operational auto-
matic near-real-time per-pixel multisource multiresolution
application-independent spectral-rule-based decision-tree clas-
sifier (SRC). In [13]–[19], the coauthors worked independently

of the present author to provide an SRC with an independent
scientific scrutiny for validation over a wide range of spatial
conditions, time periods, optical imaging sensors, and geo-
graphic extents ranging from local to regional and continental
scales, e.g., see Figs. 2–4.

To the best of the author’s knowledge, no unifying au-
tomatic multisensor multiresolution RS image classification
cross-platform alternative to SRC can be found in existing
literature. For this reason, this work adopts SRC as a benchmark
(reference) classifier and tries to answer the following question:
How can the reference SRC first stage of a two-stage hybrid
RS-IUS be improved in operational contexts?
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To answer this question, it is noteworthy that, for the sake
of simplicity, i.e., to reduce its number of free parameters,
the original SRC decision-tree formulation adopts crisp (hard)
membership functions (MFs) in combination with a hierarchi-
cal modular structure to generate as output a sorted set of so-
called spectral categories (equivalent to leaves of the decision
tree) [14], [15]. In terms of machine learning [23], the crisp
SRC decision tree belongs to the family of nonadaptive binary
decision trees. In general, nonadaptive decision trees are, first,
prespecified, where intuition, domain expertise, and evidence
from data are combined by a human expert in an ad hoc
process to come up with a final mapping of data [23, p. 391],
and second, inherently sensitive to changes in hierarchy
[23, p. 157].

The well-known conceptual foundation of fuzzy logic [24]
appears as a valuable tool capable of improving the oper-
ational quality indicators (QIs) (refer to Section II-C) of a
crisp SRC decision tree. In particular, the replacement of a
crisp SRC with a fuzzy SRC as the first stage of a two-stage
stratified hierarchical hybrid RS-IUS is expected to achieve
the following operational advantages based on theoretical
considerations.

1) Provide the first-stage preliminary classification output
map (known as primal sketch in the Marr sense [20])
with a superior information/knowledge representation
[25], where component cover classes of mixed pixels
(class mixture) are modeled (to be properly dealt with at
the second stage of the proposed two-stage hybrid RS-
IUS architecture). In the words of Wang, “if knowledge
representation is poor, even sophisticated algorithms can
produce inferior outputs. On the contrary, improvement
in representation might achieve twice the benefit with half
the effort.”

2) Transform the crisp (hierarchical) SRC decision-tree
structure into a fuzzy horizontal (flat) SRC system de-
sign independent of hierarchy [23, pp. 157, 390]. In
operational terms, a crisp-to-fuzzy SRC design trans-
formation means that the fuzzy SRC software features
enhanced maintainability/scalability/reusability (refer to
Section II-C) [26], [27].

To counterbalance the expected advantages 1) and 2) afore-
mentioned, it is noteworthy that a sequential (single-process
single-thread) implementation of the inherently parallel fuzzy
SRC is expected to be computationally more intensive than
a sequential implementation of the inherently sequential crisp
SRC decision tree (where every pixel-based MS data vector
activates a single leaf of the decision tree). Fortunately, the
computational overload of the fuzzy SRC versus the crisp SRC
would reduce to zero if parallel computation (single-process
multithread) is adopted instead.

Based on these theoretical considerations, the objective of
this work is to replace the crisp pixel-based preliminary SRC
(hierarchical) decision-tree first stage of a two-stage stratified
hierarchical hybrid RS-IUS instantiation (see Fig. 1) with a
fuzzy (horizontal) SRC.

To better pose the fuzzy SRC system development project
and, at the same time, make it more ambitious, this work adopts

additional system requirements. In particular, the fuzzy SRC
system is required not to lose any of the operational qualities
of the crisp SRC decision tree. Since the crisp SRC performs
“well” in operational contexts [13]–[19], then, in addition to
modeling class mixture, which is its added value, the fuzzy SRC
is required to perform like the crisp SRC in terms of degree of
automation, accuracy, robustness, and scalability.

These project requirements provide a set of necessary con-
ditions for validation of the fuzzy SRC. They also mean that,
in this work, no absolute accuracy measure of the fuzzy SRC
is mandatory. Rather, a relative performance assessment of the
fuzzy SRC in comparison with the crisp SRC, employed as
a benchmark classifier, is necessary. The interested reader is
referred to existing literature for validation of the crisp SRC
in the mapping of RS images acquired across time, space, and
sensors [13]–[19].

The rest of this paper is organized as follows. In Section II,
basic concepts and definitions employed in this work are made
explicit. SRC-specific concepts and SRC-related works are
reviewed in Section III. In Section IV, the fuzzy SRC system
implementation strategy is sketched. An experimental session
is selected in Section V. Experimental results are discussed in
Section VI. Conclusions are reported in Section VII.

II. BASIC CONCEPTS AND DEFINITIONS

In Section I, the goal of this work is defined as the trans-
formation of an operational automatic nonadaptive (predefined)
crisp binary SRC (hierarchical) decision tree into a nonadaptive
fuzzy (horizontal) SRC capable of losing none of the opera-
tional qualities of the former.

In general, basic concepts and definitions adopted in this
work are not community-agreed and/or tend to be ignored in
RS common practice. In this section, they are made explicit to
reduce their potential degree of ambiguity and thus contribute
to making this paper self-contained.

A. S- and Z-MFs

In the traditional field of artificial intelligence [23], systems
of fuzzy IF–THEN rules consist of a set of simultaneous
univariate premises (conditions on scalar input variables) and
an output consequence (action), e.g., IF (temperature is low)
AND (pressure is high) THEN (ignition value is 0.7). Linguistic
terms specifying input and output values are fuzzy sets (FSs)
with MFs. FSs in the antecedent (IF) part are called input FSs,
and FSs in the consequent (THEN) part of fuzzy rules are
called output FSs. By definition [14], an FSL is an ordered
pair FSL(xn) = {(xn, μL(xn))|μL(xn) ∈ [0, 1], xn ∈ �, n ∈
{1, N}}, where N is the sample set size and μL(xn) is an
MF associated with a linguistic label L (e.g., low, medium, and
high). An MF maps the scalar input space of real numbers � to
the bounded nonnegative real membership space [0, 1]. In this
case, the IF–THEN rule is termed fuzzy. In practice, an FSL is
a class-specific and linguistic label L-specific set of value pairs,
(xn, μL(xn)), possessing a continuum of membership grades,
i.e., there is no sharp boundary among xn elements that belong
to this class and those that do not [24]. If the membership space
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consists of only two discrete values, equivalent to zero and one,
then the IF–THEN rule is not termed fuzzy but is hard or crisp.

Typical examples of fuzzy MFs are the 1-D Gaussian MFs
and the S- and Z-MFs. A typical implementation of a fuzzy
S-function is the following [28]:

μL,S(xn)

= S (xn; a, b, c : a < (b = (a+ c)/2) < c)

=

⎧⎪⎨
⎪⎩

0, xn≤a
2 {(xn − a)/(c− a)}2 , a<xn≤b, c>a
1− 2 {(xn − c)/(c− a)}2 , b<xn≤c, c>a
1, xn>c.

(1)

This S-function is controlled by the two free parameters a and c.
The derived variable b = (a+ c)/2 denotes the crossover point,
where μL,S(b) = 0.5. The bandwidth parameter Δb of the
S-function is defined as 0 < Δb = b− a = c− b. The Z-
function is derived from the S-function as follows:

μL,Z(xn) =Z(xn; a, b, c)

= 1− S (xn; a, b, c : a<b=(a+ c)/2<c) . (2)

In the crisp instantiation of the S- and Z-functions, param-
eters a and c of (1) and (2) tend to coincide, i.e., a → b =
[(a+ c)/2] = Th → c, then Δb → 0. In this case, the crisp
version of (1) becomes μL,S(xn) = S(xn;Th) = {(0 if xn ≤
Th) OR (1 if xn > Th)}.

B. Absolute Radiometric Calibration Into TOARF Values

As reported in Section I, SRC requires as input an MS image
radiometrically calibrated into TOARF or surface reflectance
(ρ) values, the latter being an ideal (atmospheric noise-free)
case of the former, i.e., TOARF ⊇ ρ [13]–[19]. This allows
SRC to consider the inherently ill-posed atmospheric correc-
tion preprocessing of an input MS image optional rather than
compulsory. It also means that SRC must employ as input MS
imagery provided with radiometric calibration metadata files.

Table I reports on the relationship existing between com-
mercial RS-IUSs and the radiometric calibration constraint
considered mandatory by the international Quality Assurance
Framework for EO (QA4EO) [38] delivered by the Working
Group on Calibration and Validation of the Committee of Earth
Observations (CEOS), the space arm of GEO [3]. Table I
shows that, first, no existing commercial RS-IUS software,
except for the ERDAS ATCOR3 software module [7], requires
radiometric calibration preprocessing. In recent papers, the
present author highlighted the fact that by making RS data well
behaved and well understood, radiometric calibration not only
ensures the harmonization and interoperability of multisource
observational data according to the QA4EO guidelines [38]
but is also a necessary, although insufficient, condition for
automating the quantitative analysis of EO data [13]–[19]. This
necessary condition for automatic EO data interpretation agrees
with common sense, summarized by the expression “garbage
in, garbage out.” In the terminology of machine learning and

TABLE I
EXISTING COMMERCIAL RS-IUSs AND THEIR DEGREE OF MATCH WITH

THE INTERNATIONAL QA4EO GUIDELINES

computer vision, the radiometric calibration constraint aug-
ments the degree of prior knowledge of an RS-IUS required
to complement the intrinsic insufficiency (ill-posedness) of
(2-D) image features, i.e., radiometric calibration makes the
inherently ill-posed computer vision problem better posed.

To summarize, in disagreement with the QA4EO guidelines,
most existing scientific and commercial RS-IUSs, such as those
listed in Table I, do not require RS images to be radiometrically
calibrated and validated. As a consequence, according to the
aforementioned necessary condition for automating the quan-
titative analysis of EO data, these RS-IUSs are semiautomatic
and/or site specific (since one scene may represent, for example,
apples, while any other scene, even if contiguous or overlap-
ping, may represent, for example, oranges) (refer to Table I).
Second, Table I shows that, unlike SRC, the ERDAS ATCOR3
requires as input an MS image radiometrically calibrated into
surface reflectance ρ values exclusively. This implies that the
ERDAS ATCOR3 software considers mandatory the inher-
ently ill-posed and difficult-to-solve MS image atmospheric
correction preprocessing stage which requires user intervention
to make it better posed [7]. Thus, unlike SRC, the ERDAS
ATCOR3 satisfies the necessary condition for automating the
quantitative analysis of EO data, but is insufficient to provide an
RS image classification problem with an automatic workflow
requiring no empirical parameter to be user defined based on
heuristic criteria.
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C. Operational QIs of an RS-IUS

In operational contexts, an RS-IUS is defined as a low
performer if at least one among several operational QIs1 scores
low. Typical operational qualities of an RS-IUS encompass the
following [26], [27].

1) Degree of automation. For example, a data processing
system is automatic when it requires no user-defined
parameter to run; therefore, its user-friendliness cannot
be surpassed. When a data processing system requires
neither user-defined parameters nor reference data sam-
ples to run, then it is termed “fully automatic” [35].
Section II-B reports that radiometric calibration is a nec-
essary, although insufficient, condition for automating the
quantitative analysis of EO data [13]–[19].

2) Effectiveness, e.g., classification accuracy.
3) Efficiency, e.g., computation time, memory

occupation, etc.
4) Economy (costs). For example, open-source solutions are

welcome to reduce costs of software licenses.
5) Robustness to changes in the input data set, e.g., changes

due to noise in the data.
6) Robustness to changes in input parameters, if any.
7) Maintainability/scalability/reusability to keep up with

changes in users’ needs and sensor properties.
8) Timeliness, defined as the time span between data acqui-

sition and product delivery to the end user. It increases
monotonically with manpower, e.g., the manpower re-
quired to collect site-specific training samples.

The aforementioned list of operational QIs is neither irrel-
evant nor obvious. For example, a low score in operational
QIs may explain why the literally hundreds of so-called novel
low-level (subsymbolic) and high-level (symbolic) image pro-
cessing algorithms presented each year in scientific literature
typically have a negligible impact on commercial RS image
processing software [5]. This conjecture is consistent with the
fact that most works published in RS literature assess and
compare spaceborne image classification algorithms in terms
of mapping accuracy exclusively, which corresponds to the
sole operational performance indicator 2) listed earlier. More-
over, these classification accuracy estimates are rarely provided
with a degree of uncertainty in measurement [as a negative
example not to be imitated (see [36])]. This violates well-
known laws of sample statistics [29], [30], [37], together with

1Any evaluation measure is inherently noninjective [17]. For example, in
classification-map accuracy assessment and comparison, different classification
maps may produce the same confusion matrix while different confusion matri-
ces may generate the same confusion matrix accuracy measure, such as the
overall accuracy (OA). These observations suggest that no single universally
acceptable measure of quality, but instead a variety of quality indices, should
be employed in practice [29], [30]. To date, this general conclusion is neither
obvious nor community-agreed. For example, in computer vision and RS, this
conclusion implies that when a test image and a reference (original) image
pair is given, common attempts to identify a unique (universal) reliable image
quality index, such as the relative dimensionless global error ERGAS proposed
in [31], the universal image quality index Q [32], the global image quality
measure Q4 [33], and the quality index with no reference QNR [34], are
inherently undermined as contradictions in terms.

common sense envisaged under the international guidelines of
the QA4EO. In particular, the QA4EO guidelines require that
every sensor-derived data product, generated across a satellite-
based measurement system’s processing chain, be provided
with metrological/statistically based QIs featuring a degree of
uncertainty in measurement [38].

To summarize, the operational quality assessment of many
RS-IUSs presented in literature does not satisfy the interna-
tional QA4EO recommendations. In practice, operational qual-
ities of published RS-IUSs remain largely unknown. Based on
the evidence that these RS-IUSs have had a negligible impact
on commercial and scientific RS image processing software
toolboxes, the conclusion is that these RS-IUSs are expected
to score poorly in operational contexts.

D. Crisp Classification Accuracy Measures and
Confidence Interval

Section II-C mentions that, in violation of common sense and
sample statistics envisaged under the GEO-CEOS international
QA4EO guidelines, most works published in RS literature
assess and compare alternative spaceborne image classification
algorithms exclusively in terms of mapping accuracy provided
with no confidence interval.

According to sample statistics, it is well known that any
classification OA probability estimate pOA ∈ [0, 1] is a random
variable (sample statistic) with a confidence interval (error
tolerance) ±δ associated with it, where 0 < δ < pOA ≤ 1 [29],
[30], [37]. In other words, pOA ± δ is a function of the specific
test data set used for its estimation and vice versa [37]. For
example, given a target classification accuracy probability pOA

and a test sample set size Mtest comprising independent and
identically distributed reference samples (in RS common prac-
tice, this hypothesis is often violated due to spatial autocorrela-
tion between neighboring pixels selected as reference samples),
the half width δ of the error tolerance ±δ at a desired confidence
level (e.g., if confidence level = 95%, then the critical value is
1.96) can be computed as follows [29], [37], [39]:

δ =

√
(1.96)2 · pOA · (1− pOA)

Mtest
. (3)

For each cth class simultaneously involved in the classification
process, with c = 1, . . . , C, where C is the total number of
classes, it is possible to prove that (refer to [42, p. 294])

δc =

√
χ2
(1,1−α/C) · pOA,c · (1− pOA,c)

mtest,c
, c = 1, . . . , C

(4)

where α is the desired level of significance, i.e., the risk that the
actual error is larger than δc (e.g., α = 0.07), (1− α/C) is the
level of confidence, and χ2

(1,1−α/C) is the upper (1− α/C) ∗
100th percentile of the chi-square distribution with 1 DOF. For
example, if α = 0.04 and C = 4, then the level of confidence is
(1− 0.04/4) = 0.99, and then, χ2

(1,0.99) = 6.63.
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Starting from (4), the class-specific training data set cardi-
nality, mtest,c, with c = 1, . . . , C, required for target δc, pOA,c,
and α parameters becomes

mtest,c =
χ2
(1,1−α/C) · pOA,c · (1− pOA,c)

δ2c
,

c = 1, . . . , C. (5)

Typical values of classification accuracy and confidence in-
terval are employed as a benchmark by the RS community.
The target OA pOA ∈ [0, 1]± δ = (3) is fixed at 0.85 ± 2%,
in agreement with the U.S. Geological Survey (USGS) classifi-
cation system constraints [40]. The class-specific classification
accuracies pOA,c ∈ [0, 1]± δc = (4), c = 1, . . . , C, should be
about equal to, and never below, 70% [31], whereas a reason-
able reference standard for δc is about 5%.

In this paper (see Section V-D), the test data set consists of
reference samples belonging to four target spectral categories
(equivalent to LC class sets; refer to Section III below and [15]),
namely, “either woody vegetation or cropland or grassland,”
“rangeland,” “either bare soil or built-up,” and “water”;
thus, C = 4 (refer to Section V-D). Since C = 4, if α = 0.04,
then (1− α/C) = 0.99, and χ2

(1,0.99) = 6.63 (refer to previous
discussion). If δc is set equal to 5% and the target pOA,c = 85%,
then the required cardinality of class-specific reference samples
becomes mtest,c = (5) ≈ 340, c = 1, . . . , 4.

E. Fuzzy Classification Accuracy Measures

One additional advantage of using “soft” classifiers, as op-
posed to “hard” ones, is that the former provide the possibility
of using many measures for accuracy assessment of a classifi-
cation beyond the standard pOA ∈ [0, 1] and confusion matrix
[29], [39]. A number of approaches are available, e.g., fuzzy
operators [41], fuzzy distances and the Shannon entropy [42],
the index of fuzziness [43], the fuzzy OA (FOA) [44], several
measures of fuzzy similarity [45], and the fuzzy error matrix,
which is a generalization of the standard confusion matrix and
provides several indicators of classification accuracy such as
the FOA and, for each category, the producer’s accuracy and
the user’s accuracy [44].

In this paper, the fuzzy output of the proposed fuzzy SRC is
not evaluated by any of the fuzzy accuracy measures mentioned
above before “hardening” occurs. The reason is that no pixel-
based ground-truth contribution of each category in the selected
set of test images was available (see Section V-D). As a matter
of fact, class mixture information would be very tedious, expen-
sive, and difficult to acquire based on field sites, existing maps,
and tabular data; indeed, class mixture ground truth is almost
never available in practice.

Considering that this paper is focused on a relative as-
sessment of the fuzzy SRC in comparison to the crisp SRC
rather than on an absolute validation of the former (refer
to Section I), the absence of a reference data set providing
ground-truth contributions to mixed pixels can be overcome by
the comparison of the reference crisp SRC output map with
the “hardened” (defuzzified) version of the fuzzy SRC output
map, where “multiple winners” (see Section IV-F) are resolved
(defuzzified), i.e., they are assigned to one of the best matching
spectral categories.

III. SRC-SPECIFIC CONCEPTS AND SRC-RELATED

WORKS IN RS IMAGE CLASSIFICATION

As stated in Section I, this work aims at improving the
operational QIs of the first automatic multisensor multireso-
lution hybrid RS-IUS proposed in [13]–[19]. A well-known
book on the development of hybrid RS-IUS is, for example,
[11]. In RS journals, aside from classic publications such as
[25], [46], and [47], few recent papers deal with the machine
learning algorithms of potential interest to this work, such as
the following.

1) Adaptive decision trees, such as the well-known clas-
sification and regression binary decision-tree algorithm
CART, taken from machine learning [23].

2) Nonadaptive decision trees, like SRC [13]–[19].
3) Adaptive fuzzy-rule-based systems [48], which require a

reference data set which is typically scene specific, ex-
pensive, tedious, and difficult or impossible to collect [1].

4) Nonadaptive fuzzy-rule-based systems [21], [22], [49],
[50], whose tuning is accomplished by a human expert
relying on his/her intuition, domain expertise, and evi-
dence from data observation [23]. For example, in [50],
FSs employed in fuzzy rules model the size and contrast
of image structures investigated via the multiscale differ-
ential morphological profile [51].

5) Semantic nets, either directed or nonoriented, either
cyclic or acyclic, consisting of nodes (representing con-
cepts, i.e., classes of objects in the world) linked by
edges (representing relations, e.g., PART-OF, A-KIND-
OF, spatial relations, temporal transitions, etc.) between
nodes [11], [52]–[54].

Semantic nets deal with the attentive vision phase [55]–
[58]; as a consequence, they cope with the artificial and in-
trinsic insufficiency of (2-D) image informational primitives
extracted by preattentional vision2 [11], [15]–[17]. In other
words, in semantic nets, there is no attempt to reduce the part of
ill-posedness of the computer vision problem due to the artifi-
cial insufficiency of image primitives (rather, this reduction is

2The main role of a biological or artificial visual system is to backproject
the information in the (2-D) image domain to that in the (3-D) scene domain
[11]. In greater detail, the goal of a visual system is to provide plausible
(multiple) symbolic description(s) of the scene depicted in an image by finding
associations between subsymbolic (2-D) image features with symbolic (3-D)
objects (concepts) in the scene (e.g., a building, a road, etc.). Subsymbolic (2-D)
image features are either points or regions or, vice versa, region boundaries, i.e.,
edges, provided with no semantic meaning. In literature, (2-D) image regions
are also called segments, (2-D) objects, patches, parcels, or blobs.

There is a well-known information gap between symbolic information in
the (3-D) scene and subsymbolic information in the (2-D) image (e.g., due
to dimensionality reduction and occlusion phenomena). This is called the
intrinsic insufficiency of image features. It means that the problem of image
understanding is inherently ill-posed and, consequently, very difficult to solve
[11], [15].

In functional terms, biological vision combines preattentive (low-level)
visual perception with an attentive (high-level) vision mechanism [55]–[57].

1) Preattentive (low-level) vision extracts picture primitives based on
general-purpose image processing criteria independent of the scene under
analysis. It acts in parallel on the entire image as a rapid (< 50 ms) scanning
system to detect variations in simple visual properties. It is known that the
human visual system employs at least four spatial scales of analysis [58].

2) Attentive (high-level) vision operates as a careful scanning system
employing a focus of attention mechanism. Scene subsets, corresponding to
a narrow aperture of attention, are looked at in sequence and each step is
examined quickly (20–80 ms).
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exactly the objective of the SRC first stage in a two-stage hybrid
RS-IUS [15]–[17]). To date, semantic nets lack flexibility and
scalability, i.e., they are unsuitable for commercial RS image
processing software toolboxes and remain limited to scientific
applications.

About SRC, it is noteworthy that, although it belongs to
the class of nonadaptive decision trees (see earlier discussion),
it was not conceived as a stand-alone classifier; rather, SRC
is to be employed as the first stage of a two-stage stratified
hierarchical hybrid RS-IUS. As stated in Section I, the degree
of novelty of a two-stage stratified hierarchical hybrid RS-
IUS provided with a first-stage operational automatic SRC
decision tree [13]–[19] (see Fig. 1) encompasses the four levels
of analysis of an RS-IUS [19], [20]. Original SRC-specific
concepts, definitions, and properties to be recalled in the design
Section IV and experiment Section V are summarized hereafter.

The core definition introduced by SRC is that of spectral-
based semiconcept or spectral category or LC class set or
spectral end member [15]. A spectral category is equivalent to a
semantic conjecture based exclusively on spectral (i.e., chro-
matic and achromatic) properties. Spectral properties are inher-
ently noncontextual, i.e., pixel based. For example, one pixel is
red like a brick no matter what the colors of its neighboring pix-
els are. From a spaceborne MS image employed as input, SRC
automatically generates as output a preliminary map or primal
sketch in the Marr sense (refer to Section I) [20]. A preliminary
SRC map consists of six spectral supercategories (spectral end
members), namely: 1) “clouds” (CL); 2) “either snow or ice”
(SN); 3) “either water or shadow” (WASH); 4) “vegetation”
(V), equivalent to “either woody vegetation or cropland or
grassland or (shrub and brush) rangeland”; 5) “either bare soil
or built-up” (BB); and 6) “outliers.”3 Spectral supercategories
are mutually exclusive and totally exhaustive, in line with the
Congalton definition of a classification scheme [29]. Spectral
supercategories can split into several subcategories [14]. In the
words of Di Gregorio and Jansen [60], although it generates a
large number of spectral subcategories, SRC consists of a small
number of classification modules of spectral supercategories.

SRC is an operational automatic system of systems, in line
with the visionary goal of a GEOSS [3]. It comprises a master
seven-band Landsat-like SRC (LSRC) [14] plus five down-
scaled LSRC subsystems whose spectral resolution overlaps
with, but is inferior to, Landsat’s [15]. These downscaled
LSRC subsystems are identified as follows: 1) the four-band
SPOT-like SRC (SSRC); 2) the four-band Advanced Very
High Resolution Radiometer (AVHRR)-like SRC (AVSRC);
3) the five-band ENVISAT Advanced Along-Track Scanning
Radiometer-like SRC (AASRC); 4) the four-band IKONOS-
like SRC (ISRC); and 5) the three-band Disaster Monitoring
Constellation-like SRC (DSRC). As input, SRC requires a
radiometrically calibrated MS image acquired by almost any of
the ongoing or future planned satellite optical missions (refer to
Table II).

3The adopted LC nomenclature is based on the USGS classification hierarchy
[59], the Coordination of Information on the Environment, the Food and
Agriculture Organization of the United Nations (FAO) Land Cover Classifica-
tion System [60], and the International Geosphere–Biosphere Programme LC
units [49].

For a complete discussion of these subjects, the interested
reader is referred to [13]–[19].

IV. PROPOSED CRISP-TO-FUZZY SRC
SYSTEM ADAPTATION

Starting from the problem and opportunity recognition pro-
posed in Section I, namely, the fuzzification of the original SRC
system of systems presented in [14] and [15], the goal of this
paper can be reformulated in mathematical terms.

A. Fuzzy SRC MF

The original SRC, employed as a reference (see Section I),
adopts crisp S- and Z-functions parameterized by a crisp
threshold Th ∈ �+

0 found in [14, Tab. III] (see Section II-A).
These crisp MFs should be replaced by fuzzy S- and Z-MFs,
namely, (4) and (5), respectively, controlled by the parameter
pair a < c, such that a = f1(Th) < b = [(a+ c)/2] = Th ∈
�+

0 < c = f2(Th), with f1(·) 	= f2(·), where b = Th is the
crossover point such that μL,S(Th) = 0.5, with bandwidth 0 <
Δb = b− a = c− b (see Section II-A). Obviously, if the fuzzy
S- and Z-function bandwidth Δb → 0, i.e., if a → b = Th → c,
then the fuzzy and the crisp SRC are expected to perform in the
same way. This simple observation provides a useful criterion
in validating the fuzzy SRC implementation against theory.

B. Fuzzy SRC Data Coding

The bounded nonnegative real membership space [0, 1] is
byte coded, i.e., it is discretized into range {0, 255} to reduce
dynamic/hard-disk memory occupation of membership values
whose discretization error is 1/255 = 0.4%.

C. Fuzzy SRC Operators

In [14, Tab. VII], where a hierarchy of logical expressions
generates a set of Boolean spectral categories, the Boolean-
AND operator is replaced by the fuzzy-AND (minimum), the
Boolean-OR operator is replaced by the fuzzy-OR (maximum),
and the unary Boolean-NOT(x) operator of the Boolean vari-
able x ∈ {0, 1} is replaced by operator (255-X), with byte-
coded membership value X ∈ {0, 255}. For more details about
information combination operators, refer to [66].

D. Fuzzy SRC Software Architecture

1) In line with the Congalton definition of a classification
scheme [29], the crisp SRC decision tree provides a mutu-
ally exclusive and totally exhaustive mapping of the input
image into a discrete and finite set of spectral categories
including class “unknown” (outliers) [14], [40] (refer to
Section III). In the original (L)SRC decision tree pro-
posed in [14], mutual exclusiveness of spectral categories
is guaranteed by a combination of (crisp) MFs with their
order of presentation. The prior knowledge of this order
of presentation is embedded in the hierarchical structure
of a decision tree [23], [61]. This modular hierarchy
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TABLE II
SRC SYSTEM OF SYSTEMS: LIST OF SPACEBORNE OPTICAL IMAGING SENSORS ELIGIBLE FOR USE

of crisp MFs is flattened in a fuzzy-rule-based system
independent of hierarchy [23], called fuzzy SRC, where
first, fuzzy MFs are computed in parallel (horizontally,
with the same level of priority) and, second, membership

values are defuzzified (refer to Section I and the following
discussion).

2) In the crisp SRC implementation, input data vectors that
fall outside the (hyperdimensional) domain of activation
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of every spectral category are assigned to class “un-
known” [14]. In the fuzzy SRC instantiation, outliers are
detected when the membership value of the winning spec-
tral category falls below a system threshold parameter to
be user defined based on heuristics. Since this threshold
identifies the minimum normalized membership value
considered acceptable by the user, this threshold parame-
ter features an intuitive physical meaning. Therefore, it is
easy to select (by default, it is set equal to 0.2, i.e., pixels
whose maximum membership is below 0.2 are assigned
to class “unknown”).

3) A defuzzification stage is built (e.g., in Fig. 1, a de-
fuzzification stage is visible at the output of the second
stage of the two-stage hybrid RS-IUS). For every pixel,
the winning spectral category is the one featuring the
highest membership value (i.e., defuzzification adopts
a fuzzy OR operator). If multiple winners exist for a
given pixel, then an empirical strategy can be chosen to
select one winning category among eligible cowinners
(see following discussions).

E. Fuzzy SRC-Specific Output Products

To deal with mixed pixels featuring a class mixture, three
original output products are generated by the fuzzy SRC in
addition to those generated by the crisp SRC.

1) The first fuzzy SRC-specific output product is a con-
tinuous maximum membership (MMB) value image in
range [0, 1] discretized into byte-coded values {0, 255}.
The fuzzy membership value of pixels belonging to class
“outliers” (unknown) is conventionally set to zero in the
MMB output image.

2) The second fuzzy SRC-specific output product is an inte-
ger image, called multiple winner counter (MWC), with
MWC ≥ 1. It provides the number of winners pertaining
to any pixel such that, at the end of the classification
process, MWC ≥ 1 is image-wide; in fact, since SRC
provides a totally exhaustive mapping of the input image
(see Section III), then each pixel is mapped onto at least
one spectral category, including class “unknown.” Pixels
featuring multiple winners, such that (MWC > 1), can
be mapped onto a special binary mask to be considered
with special attention. For example, each pixel featuring
(MWC > 1) can be defuzzified, i.e., assigned to one
spectral category selected from its list of multiple win-
ners, based on arbitrary user-defined application-specific
criteria. Since symbolic spectral categories [e.g., “vege-
tation,” “clouds,” etc., (refer to Section III)] are easy to
understand by both RS experts and nonexpert users who
are naturally familiar with symbolic reasoning, empirical
defuzzification criteria for pixels featuring (MWC >
1) are easy (intuitive) to define. For example, a mixed
pixel belonging to a (3-D) LC class wetland, features
multiple winners at primal sketch, for example, spectral
categories “vegetation” and “either water or shadow”;
between these two winning spectral categories, that pixel
is arbitrarily assigned to the former by the defuzzification
strategy.

3) The third fuzzy SRC-specific output product is a bi-
nary map called mixed pixel mask (MPM) ∈ {0, 1} =
{False,True}, where False = 0 and True = 1. It iden-
tifies pixels for which the difference between the best
membership and the second best membership is smaller
than a given threshold α ∈ [0, 1] (by default, α = 0.2).
These are pixels whose second best membership value
is considered “close enough” to the winning (largest)
membership value to be considered mixed pixels. These
mixed pixels include pixels affected by multiple winners,
i.e., (MPM EQ True) ⊇ (MWC > 1) ∀ α ≥ 0. If α =
0, then relationship (MPM EQ True) == (MWC > 1)
must hold. These two relationships provide a useful de-
bugging tool in verifying the adequacy of the fuzzy SRC
implementation against theory (refer to Section V-C1).

F. Adopted Terminology

For the sake of simplicity, the following terminology is
adopted. Pixels belonging to the binary mask (MWC > 1) are
called multiple winners. Pixels belonging to the binary mask
(MPM EQ True) are identified as “mixed pixels,” such that
(MPM EQ True) ⊇ (MWC > 1).

To summarize, at the second stage of a two-stage strati-
fied hierarchical hybrid RS-IUS whose pixel-based preliminary
classification first stage is the fuzzy SRC (see Fig. 1), multiple
winners, for which condition (MWC > 1) holds, should be
handled with special attention. They represent the worst case
within the set of mixed pixels (MPM EQ True) ⊇ (MWC >
1) ∀ α ≥ 0.

V. EXPERIMENTAL SESSION DESIGN

To provide a quantitative validation of the novel fuzzy SRC,
the Prechelt test session criteria [62] are integrated with exper-
imental constraints found in [17] and [63]. These experimental
session design criteria are summarized next.

1) To test the robustness of a novel approach to changes in
the input data set, select at least two real and/or standard/
appropriate data sets. For example, a typical standard/
appropriate data set is a synthetic data set of standard
quality whose signal-to-noise ratio is known and con-
trolled by the user.

2) Based on [63], a set of RS images suitable for comparing
the performance of alternative algorithms should have the
following characteristics: 1) consistent with the aim of
testing; 2) as realistic as possible, i.e., each member of
the set should reflect a given type of images encountered
in practice; and 3) mutually uncorrelated, to reduce the
cardinality of the test data set.

3) Employ a battery of measures of success [QIs (refer to
Section II-C)] capable of dealing with the well-known
noninjective property of any quality index (refer to foot-
note 1) [17].

4) For comparison purposes, select at least one alternative
existing well-known approach as a benchmark, e.g., in
our case, the crisp SRC is employed as a reference (see
Section I).
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The aforementioned experimental session quality criteria are
satisfied as described next.

A. Selection of Competing Classifiers

The four fuzzy LSRC, SSRC, AVSRC, and ISRC subsys-
tems of the integrated fuzzy SRC system of systems (refer
to Section III) are quantitatively compared against their crisp
counterparts employed as a reference (refer to Section I). In
this comparison, the SRC subsystems AASRC and DSRC are
omitted to reduce the paper length without losing any meaning-
ful information. AASRC and DSRC differ from AVSRC and
ISRC, respectively, by a single band in the visible portion of the
electromagnetic spectrum (see Table II). However, SRC assigns
slight importance (low weight) to evidence collected from
visible bands in its multiple-criteria decision-making process
(so as not to be very sensitive to haze and atmospheric effects
[14]–[17]). This means that output maps of AASRC and DSRC
are very similar to (i.e., highly correlated with) those of AVSRC
and ISRC, respectively (typically, these map pair correlation
values are greater than 0.9 when synthetic images are employed
as input).

B. Selection of the Test Image Set

Three real-world Landsat images are selected to depict a
variety of natural and anthropogenic landscapes at different
geographic footprints and acquisition times. Next, the selected
Landsat images are radiometrically calibrated into TOARF
values [13]–[19]. Finally, to make result assessment and com-
parison easier for a domain expert, one test subimage is selected
from each radiometrically calibrated seven-band Landsat im-
age. The three test subimages are as follows: 1) a Landsat-7
Enhanced TM Plus (ETM+) subimage of the city area of
Bologna, Italy, 434 (lines) × 400 (columns) pixels in size, path:
192, row: 029, acquisition date: June 20, 2000 [see Fig. 5(a)];
2) a Landsat-7 ETM+ subimage of a seaside area in Sicily, Italy,
400 × 400 pixels in size, path: 188, row: 034, acquisition date:
September 26, 1999 (see Fig. 9); and 3) a Landsat-7 ETM+
subimage of a mountainous snow-covered area in Northern
Italy, 400 × 400 pixels in size, path: 193, row: 028, acquisition
date: September 13, 1999 (see Fig. 10).

These three radiometrically calibrated seven-band Landsat-7
ETM+ subimages are suitable for comparing the novel fuzzy
LSRC against the original crisp LSRC proposed in [14] (refer
to Section III).

To test the fuzzy SSRC, AVSRC, and ISRC subsystems
against their crisp counterparts (refer to Section V-A) [15],
synthetic sensor-specific radiometrically calibrated MS images
are generated from the three test seven-band Landsat subimages
shown in Figs. 5(a), 9, and 10. The synthetic subimages are
generated as follows.

1) SSRC requires as input a four-band (G, R, near-IR (NIR),
MIR1) SPOT-like imagery. Thus, the Landsat bands B,
MIR2, and TIR are removed from the three test Landsat
subimages (see Table II).

2) AVSRC requires as input a four-band (R, NIR, MIR1,
TIR) AVHRR-like imagery. Thus, the Landsat bands B,

G, and MIR2 are removed from the three test Landsat
subimages (see Table II).

3) ISRC requires as input a four-band (B, G, R, NIR)
IKONOS-like imagery. Thus, the Landsat bands MIR1,
MIR2, and TIR are removed from the three test Landsat
subimages (see Table II).

The proposed MS image selection/generation strategy allows
sensitivity analysis of the fuzzy LSRC, SSRC, AVSRC, and
ISRC systems [16], [19]. Differences in performance among
these classifiers are exclusively due to differences in spectral
resolution of the given set of test images (sharing the same
geographic footprint, time of acquisition, sensor calibration,
and SR).

It is noteworthy that, according to some reviewers, “the
generation of these “synthetic” images appears to be critical.
Synthetic bands are selected on the basis of their wavelength
range exclusively, while optical sensor parameters such as SR,
spectral response functions, swath width, incident angle, etc.,
are ignored. Thus, the use of synthetic images seems interesting
in regard to missing spectral information, but not in regard to
the transferability of the approach to other sensor sources.” This
skepticism is reasonable, but not justified. It is obvious to say
that synthetic and real-world images are complementary and by
no means alternative for testing [62], [63]. For example, say that
SRC is capable of detecting spectral signatures typical of red
apples, yellow bananas, and orange oranges. At a given SR, let
a picture of apples and bananas be taken. If a pixel is a mixture
of red apples and yellow bananas, then that pixel looks orange.
Since SRC is assumed to be provided with an orange object
model, it labels that mixed pixel as orange like an orange. This
pixel mapping (for example, that pixel looks like an orange) is
strictly correct, although SRC fails to provide any information
about pixel unmixing. If the same picture of apples and bananas
is taken at a finer SR capable of reducing the presence of
mixed pixels to null, then the SRC orange detector would never
fire and all image pixels would be labeled by SRC as either
red (like an apple) or yellow (like a banana). To conclude, if
the spatial/spectral resolution of an MS image varies, then the
behavior of the SRC must vary, but remain consistent with the
varying image information content.

C. Fuzzy SRC System Consistency Checks and Model
Selection Criteria

1) Consistency Checks: The following consistency checks
are scheduled to verify the adequacy of the fuzzy SRC
version against both theory and the reference crisp SRC
implementation.

1) Relationship (MPM EQ True) ⊇ (MWC > 1) holds
∀ α ≥ 0. As a special case, if α = 0, then equality
(MPM EQ True) == (MWC > 1) must hold (refer to
Section IV-E).

2) If the fuzzy S- and Z-function bandwidth parameter 0 <
Δb = b− a = c− b tends to zero, i.e., if Δb → 0, then
a → b = Th → c. In practice, if Δb → 0, then the fuzzy
SRC adopts crisp S- and Z-functions (see Section II-A).
If Δb → 0, the fuzzy SRC consistency checks can be
twofold.
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Fig. 5. (a) Zoomed image of the city of Bologna, Italy, extracted from a Landsat 7 ETM+ image (path: 192, row: 029, acquisition date: June 20, 2000),
radiometrically calibrated into TOARF values and depicted in false colors (R: band TM5 = MIR1, G: band TM4 = NIR, B: band TM1 = B). (b) Preliminary
classification map, depicted in pseudocolors, automatically generated by the crisp LSRC from the radiometrically calibrated image shown in (a). Map legend
is shown in Fig. 2. The association of symbolic spectral categories with pseudocolors found in nature allows an intuitive (qualitative, visual) assessment of the
preliminary classification map accuracy in comparison with the input image depicted in false colors, as shown in (a). (c) Preliminary classification map, depicted
in pseudocolors, generated by the fuzzy LSRC from the radiometrically calibrated image shown in (a), with bandwidth Δb = 0. Map legend is shown in Fig. 2.
Multiple winners, i.e., pixels featuring (MWC > 1), are depicted in black. They are due to the fact that the hierarchical structure of the crisp (L)SRC has been
replaced by a flat modular organization of the fuzzy SRC. In line with theory, the fuzzy LSRC with Δb = 0 looks the same as (b) aside from the multiple winners
depicted in black. (d) Preliminary classification map, depicted in pseudocolors, generated by the fuzzy LSRC from the radiometrically calibrated image shown in
(a), with b = Th and bandwidth Δb = b− a = c− b = 5. Map legend is shown in Fig. 2. Multiple winners, i.e., pixels featuring (MWC > 1), are depicted
in black. In (d), the occurrence of black labels is inferior to that in (c), but pseudocolors appear shifted from those visible in (b), although no major semantic shift
occurs. For example, comparing (b) with (d) reveals an intensity reduction of green pseudocolors in the latter. This corresponds to a reduction of the LAI associated
with spectral categories belonging to the same spectral supercategory “vegetation.” (e) Preliminary classification map, depicted in pseudocolors, generated by the
fuzzy LSRC from the radiometrically calibrated image shown in (a), with b = Th and full bandwidth ΔB = c− a = 0.10× Th. Map legend is shown in Fig. 2.
Multiple winners, i.e., pixels featuring (MWC > 1), are depicted in black. The occurrence of black labels is inferior to (better than) that in (d), and pseudocolors
are the same as those visible in (b). (f) Continuous MMB image, with MMB values in range [0, 1] transformed into {0, 255}. MMB values are depicted in gray
tones ranging from black, corresponding to (MMB == 0), to white, corresponding to (MMB == 255). (g) Discrete MWC image, with MWC values ≥ 1.
Multiple winners, i.e., pixels featuring (MWC > 1), are depicted in gray tones; otherwise, if (MWC == 1), pixels are depicted in black. For curiosity, in this
image, max(MWC) = 5. (h) Binary MPM map with α = 0.2, where mixed pixels include multiple winners, i.e., (MPM EQ True) ⊇ (MWC > 1) ∀ α ≥ 0.
If (MPM EQ True), then pixels are depicted in white; otherwise, they are black. It is interesting to note that, in line with theoretical expectations, mixed pixels
largely correspond to boundary pixels, i.e., pixels lying across (2-D) object boundaries.
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a) In the special case of Δb → 0, it must hold true that
the classification maps generated by the crisp SRC
and the fuzzy SRC look the same (see Section I)
aside from multiple winners identified by the fuzzy
SRC, where (MWC > 1) (refer to Section IV-F). To
replicate the crisp SRC output map with the fuzzy
SRC where Δb → 0, then multiple winners must be
defuzzified (hardened) in line with the order of presen-
tation of the sorted set of spectral categories adopted
by the crisp SRC [14]–[17].

b) The fuzzy MMB output image must become equal
to 255 image-wide, except where pixels are assigned
to spectral category “outliers,” corresponding to the
conventional MMB value equal to zero (refer to
Section IV-E).

2) Fuzzy SRC System QIs: The purpose of SRC fuzzifi-
cation is to keep the novel fuzzy SRC consistent with its
benchmark, the crisp SRC, unless mixed pixels are detected by
the former (refer to Section IV-E), which is its added value (see
Section I). To achieve this objective, the following fuzzy SRC
system QIs should be optimized simultaneously.

1) To maximize interspectral category separability, the num-
ber of multiple winners, where (MWC > 1) (refer to
Section IV-E), should be minimized image-wide. By
paradoxical reasoning, if the number of multiple winners
is maximized, i.e., becomes equal to image size, which
means that every pixel is a “multiple winner,” then the
discrimination capability of the classifier reduces to zero.

2) To maximize interspectral category separability, the num-
ber of mixed pixels, where (MPM EQ True) (refer to
Section IV-E), should be minimized image-wide, refer
to point 1). It is noteworthy that the goal of minimizing
the number of mixed pixels is less relevant than the
minimization of multiple winners representing the “worst
case,” such that (MWC > 1) ⊆ (MPM EQ True) ( refer
to Section IV-F).

3) Semantic differences between the crisp (master) and the
fuzzy (slave) SRC map should be minimized in terms of
the following.
a) Major semantic differences, also called semantic

shifts. For example, if the same pixel is labeled as
“vegetation” in one preliminary classification map
and, for example, “either bare soil or built-up” in
the other map (refer to Section III), this semantic
difference is relevant and must be straightened out,
i.e., either one of the two classification maps is wrong
or both are wrong.

b) Minor semantic differences, i.e., changes in subcate-
gories belonging to the same spectral supercategory
(refer to Section III). For example, if the same pixel
is labeled as “strong vegetation” in one preliminary
classification map and labeled as “average vegetation”
in the other map [14], there is no semantic shift, but a
minor semantic difference to be straightened out, i.e.,
either one of the two classification maps is wrong or
both are wrong.

It is noteworthy that the introduction of semantic-based QIs,
such as those proposed in the aforementioned points 3a) and
3b), in combination with traditional metrological/statistically

based QIs, related to subsymbolic continuous variables, such
as QIs in points 1) and 2), is one of the advantages introduced
by the proposed two-stage stratified hierarchical hybrid RS-IUS
architecture comprising a pixel-based preliminary classification
first stage [13]–[19].

D. Selection of the Reference Data Set

The following four spectral categories [where spectral cat-
egory means LC class set (refer to Section III and [15]–
[17])] are selected: 1) “either woody vegetation or cropland
or grassland,” identified as “vegetation” (V); 2) (shrub and
brush) “rangeland” (R); 3) “either bare soil or built-up” (BB);
and 4) “water” (W). According to Section II-D, the required
cardinality of reference samples per target spectral category is
set equal to mtest,c = 350, c = 1, . . . , C, where C = 4.

To begin with, reference samples are selected for the test
image shown in Fig. 5(a) (refer to Section VI-A1b). They
consist of “pure” pixels manually selected in the test image
by the author, who acts as domain expert. In other words,
in the selection of the reference data set, boundary pixels in
transitional areas are avoided, which is a typical choice in
machine learning applications to RS data classification. These
reference samples are validated on a VHR spaceborne image
provided by a commercial 3-D Earth viewer [e.g., Google Earth
(see Fig. 11)].

It is noteworthy that, in Fig. 5(a), only 50 pure pixels be-
longing to class W are identified manually image-wide. Thus,
for class W, if (4) is applied where mc = 50 and pOA,c = 85%,
then δc = 13%.

Since Mtest = 350× 3 + 50 = 1100 and the target overall
classification accuracy probability pOA = 85% at a confidence
level = 95%, then the half width δ of the error tolerance ±δ be-
comes δ = (1) = sqrt(((1.96)2 × 0.85× 0.15)/1100) = 2%.

VI. DISCUSSION OF EXPERIMENTAL RESULTS

The four fuzzy LSRC, SSRC, AVSRC, and ISRC subsys-
tems of the integrated fuzzy SRC system of systems (refer
to Section III) are quantitatively compared against their crisp
counterparts (refer to Section V-A) in three classification ex-
periments. In these experiments, the test data set consists of the
Landsat image shown in Fig. 5(a), 9, and 10, respectively (refer
to Section V-B).

A. Crisp to Fuzzy LSRC Transformation

1) First Test Image: City Area of Bologna, Italy: The fuzzy
LSRC is compared against the crisp LSRC when the seven-
band Landsat image shown in Fig. 5(a) is employed as input.
Generated from Fig. 5(a), the crisp LSRC map, shown in
Fig. 5(b), represents the reference (master) map.

a) Optimization of the bandwidth parameter Δb by the
domain expert based on evidence from data:

1) Δb → 0
The first consistency check proposed in Section V-C1

is tested when the bandwidth parameter Δb → 0 and
the input image is that shown in Fig. 5(a). In line with
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expectations, the fuzzy LSRC map, shown in Fig. 5(c),
coincides with Fig. 5(b) aside from multiple winners, i.e.,
pixels where (MWC > 1), depicted in black in Fig. 5(c).

2) Nonadaptive Δb > 0
When a nonzero bandwidth parameter Δb > 0 is fixed

image-wide, e.g., Δb = 5, such that parameters b = Th,
a = Th− 5, and c = Th+ 5 in (1) and (2), then the
fuzzy LSRC (slave) map becomes the one shown in
Fig. 5(d). In Fig. 5(d), the occurrence of multiple winners,
depicted in black, featuring (MWC > 1), decreases [im-
proves (refer to Section V-C2)] with respect to that in
Fig. 5(c). However, the comparison of Fig. 5(d) with
Fig. 5(b) reveals an undesirable reduction of intensity of
green pseudocolors in the slave map with respect to the
master map. This corresponds to minor semantic shifts
among subcategories belonging to spectral supercategory
“vegetation” (see Section III). Fortunately, no major se-
mantic shift (refer to Section V-C2) appears to occur in
Fig. 5(d) with respect to Fig. 5(b).

3) Adaptive Δb = f(Th) > 0
In place of a bandwidth parameter Δb fixed image-

wide, a bandwidth Δb value adaptive to the crisp thresh-
old value b = Th is tested. The simplest kind of adaptive
bandwidth Δb value is computed as a fixed percentage
P (%, with P > 0) of the crisp Th value. Percentage P
values ranging from 10% to 150% of the Th value, in
10% steps, are tested for the so-called full bandwidth pa-
rameter ΔB. This is defined as ΔB = 2×Δb = c− b+
b− a = c− a, with a < b = Th < c, such that ΔB >
0. Therefore, by definition, if ΔB = P × Th, then a =
[(1− 0.5× P )× Th] and c = [(1 + 0.5× P )× Th].

In Fig. 5(e), where ΔB = 0.10× Th, the occurrence of
multiple winners, where (MWC > 1), is inferior to (better
than) the number of multiple winners in Fig. 5(d). In addition,
no semantic shift occurs in comparison with Fig. 5(b).

When ΔB = 1.30× Th, the occurrence of pixels featuring
(MWC > 1) is inferior to (better than) that in Fig. 5(e) and no
semantic shift occurs in comparison with Fig. 5(b). In practice,
this fuzzy LSRC output map appears almost indistinguishable
from Fig. 5(b); thus, it is not shown in this paper.

The conclusion of the aforementioned experiments 1)–3) is
that the choice ΔB = 1.30× Th is preferred to ΔB = 0.10×
Th. In the case of ΔB = 1.30× Th, the three fuzzy SRC-
specific output products, namely, MMB, MWC, and MPM
(refer to Section IV-E), are those shown in Figs. 5(f)–(h).
In line with theory, Figs. 5(g) and (h) satisfy the constraint
(MPM EQ True) ⊇ (MWC > 1), with α = 0.2 (refer to
Section V-C1). In addition, it is interesting to note that, in
line with theoretical expectations, mixed pixels where (MPM
EQ True), shown in Fig. 5(h), largely correspond to boundary
pixels, i.e., pixels lying across (2-D) object boundaries.

According to Section V-C2, multiple winners should be
minimized with the highest priority while mixed pixels should
be minimized with lower priority. Fig. 6 shows curves of the
image-wide numbers of multiple winners, where (MWC >
1), and mixed pixels, where (MPM EQ True) ⊇ (MWC >
1), ∀ α ≥ 0 (refer to Section IV-F), as functions of the

Fig. 6. Fuzzy LSRC. Multiple winners, where (MWC > 1), and mixed
pixels, where (MPM EQ True), versus fuzzy membership full bandwidth values,
where ΔB = c− a = P × Th, with P ranging from 0% to 150% with 10%
steps while Th is fixed according to [14, Tab. III]. Input seven-band Landsat
image shown in Fig. 5(a). The number of multiple winners is minimized
when ΔB = 1.3× Th while the number of mixed pixels is minimized when
ΔB = 0.4× Th.

TABLE III
CONFUSION MATRIX OF BOTH THE CRISP SRC AND THE “HARDENED”

FUZZY SRC WHEN THE TEST IMAGE IS THAT SHOWN IN FIG. 5(a)

varying percentage P ranging from 10% to 150% in 10%
steps, such that ΔB = P × Th (see earlier discussion). In
line with Section V-C1, Fig. 6 shows that relationship
(MPM EQ True) ⊇ (MWC > 1), with α = 0.2, holds true
∀ P ∈ {0, 0.1, . . . , 1.5}. Fig. 6 also shows that the number
of pixels featuring (MWC > 1) is minimized when ΔB =
1.30× Th while the number of pixels featuring (MPM EQ
True) is minimized when ΔB = 0.40× Th. According to
Section V-C2, the former minimization criterion overcomes the
latter. To conclude, ΔB = 1.30× Th is the favorite choice in
this first experiment where the fuzzy LSRC is input with the
seven-band Landsat image shown in Fig. 5(a).

b) Classification accuracy: Table III shows the confu-
sion matrix holding for both the crisp and the fuzzy LSRC
with respect to the four-class reference data set selected in
Section V-D. The OA probability estimate pOA = 100%± 2%
is neither surprising nor very significant. It means that, in
line with theoretical expectations and results found in previous
papers [13]–[19], the crisp and fuzzy LSRCs are both accu-
rate in the recognition of spectral signatures of pure pixels
belonging to different spectral categories (not to be confused
with traditional LC classes [15]–[17]). Similar considerations
hold for the crisp and fuzzy SRCs applied across the selected
test images and sensors [LSRC, SSRC, AVSRC, and ISRC
(refer to Section V-A)]. Therefore, these additional sample error
matrices are not reported in the rest of this paper.

To investigate image-wide differences between the crisp and
fuzzy LSRCs, Table IV shows the error matrix of the hardened
fuzzy LSRC map [where multiple winners are defuzzified (refer
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TABLE IV
CONFUSION MATRIX OF THE “HARDENED” FUZZY SRC MAP WITH RESPECT TO THE CRISP SRC MAP EMPLOYED AS THE GROUND TRUTH WHEN THE

TEST IMAGE IS THAT SHOWN IN FIG. 5(a). THE MOST RELEVANT SEMANTIC TRANSITIONS ARE HIGHLIGHTED IN LIGHT AND DARK GRAY

Fig. 7. Two regions of interest. Min, max, mean, and mean ± Stdev curves are depicted (taken from ENVI). x-axis: Spectral band index (TM1 = 1, . . . ,TM5 =
5,TM7 = 6). Y-axis: TOARF values in [0, 1] rescaled into {0, 255}.

to Section V-C1)] in comparison with the crisp LSRC map
employed as ground truth. In this image-wide error matrix,
the spectral categories are as follows: 1) “either woody veg-
etation or cropland or grassland,” identified as “vegetation”
(V); 2) (shrub and brush) “rangeland” (R); 3) “weak range-
land” (WR); 4) “either bare soil or built-up” (BB); 5) “either
water or shadow” (WASH); 6) “clouds” (CL); 7) “thin clouds”
(TNCL); and 8) “either snow or ice” (SN) [14]. According to
Section V-C2, semantic differences between the crisp and hard-
ened fuzzy SRC map should be as few as possible.

Table IV reveals that, in this experiment, the most frequent
semantic transitions occur between crisp R into the hardened
fuzzy BB, identified as (crR ⇒ fzBB), and crisp WR into the
hardened fuzzy BB, identified as (crWR ⇒ fzBB). The first
case, where (crR ⇒ fzBB), is examined as follows: Two sets of
isolated pixels scattered throughout the test image are selected
such that (crR ⇒ fzBB) in the first set and (crR ⇒ fzR) in the
second set. It is found that all these reference pixels belong to
the set of multiple winners, which means that these pixels are
among those difficult to label. Spectral signatures in TOARF
values of the two sets (crR ⇒ fzBB) and (crR ⇒ fzR) are
shown in Fig. 7. The spectral signature of (crR ⇒ fzR) on the
right of Fig. 7 shows two spectral properties typical of vege-
tation, namely: 1) the (Band 4/Band 3) ratio (proportional to

canopy chlorophyll absorption [15], [40]) is superior to that in
the left case (crR ⇒ fzBB) and 2) Band 5 reflects (slightly) less
than Band 4 (due to canopy water absorption [32], [40]). The
conclusion is that the fuzzy SRC is correct in the discrimination
between the two sets of pixels (crR ⇒ fzBB) and (crR ⇒ fzR)
considered indistinguishable by the crisp SRC.

The same procedure is adopted to investigate semantic tran-
sitions occurring between crisp WR into the hardened fuzzy
BB, i.e., (crWR ⇒ fzBB). Two sets of isolated pixels scattered
throughout the test image are selected such that (crWR ⇒
fzBB) in the first set and (crWR ⇒ fzWR) in the second set.
Their spectral signatures in TOARF values are shown in Fig. 8.
According to observations similar to those found in the previous
paragraph, the comparison of these two spectral signatures
reveals that the fuzzy SRC is correct in the discrimination
between the two sets of pixels (crWR ⇒ fzBB) and (crWR ⇒
fzWR) considered indistinguishable by the crisp SRC.

It is noteworthy that the main difference between the spectral
signatures of spectral category fzR, shown in Fig. 7 on the
right, and the spectral signatures of spectral category fzWR,
shown in Fig. 8 on the right, is that the former features a
slightly superior (Band 4/Band 3) ratio (proportional to canopy
chlorophyll absorption [15], [40]). This is additional evidence
of the high accuracy and sensitivity of the fuzzy SRC.
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Fig. 8. Two regions of interest. Min, max, mean, and mean ± Stdev curves are depicted (taken from ENVI). x-axis: Spectral band index (TM1 = 1, . . . ,TM5 =
5,TM7 = 6). Y-axis: TOARF values in [0, 1] rescaled into {0, 255}.

Fig. 9. (a) Zoomed image of Sicily, Italy, extracted from a Landsat 7 ETM+ image (path: 188, row: 034, acquisition date: September 26, 1999), radiometrically
calibrated into TOARF values and depicted in false colors (R: band TM5 = MIR1, G: band TM4 = NIR, B: band TM1 = B). (b) Preliminary classification map,
depicted in pseudocolors, automatically generated by the crisp LSRC from the radiometrically calibrated image shown in (a). Map legend shown in Fig. 2.

2) Second Test Image: Coastal Area of Sicily, Italy:
a) Optimization of the bandwidth parameter Δb by the

domain expert based on evidence from data: The reference
crisp LSRC classification map, automatically generated from
the second test Landsat subimage of Sicily, shown in Fig. 9(a),
is shown in Fig. 9(b).

The same type of graph shown in Fig. 6 is generated when
the fuzzy LSRC is input with the second test Landsat subimage
shown in Fig. 9. In this new graph (omitted to reduce paper
length), relationship (MPM EQ True) ⊇ (MWC > 1), with
α = 0.2, holds ∀ P ∈ {0, 0.1, . . . , 1.5}, in line with theoretical
expectations (see Section V-C1). In addition, this graph shows a
minimum in the number of multiple winners, where (MWC >
1), when ΔB = 1.30× Th while the number of mixed pixels,
where (MPM EQ True), is minimized when ΔB = 0.40× Th.

To conclude, ΔB = 1.30× Th is the favorite choice in this
second experiment where the fuzzy LSRC is input with the
seven-band Landsat image shown in Fig. 9(a).

b) Classification accuracy: Table V reveals that, in this
experiment, the most relevant semantic transitions occur be-
tween crisp R into the hardened fuzzy BB (crR ⇒ fzBB) and
crisp WR into the hardened fuzzy BB (crWR ⇒ fzBB). The
same conclusions reported in Section VI-A1b hold here in favor
of the fuzzy SRC discrimination capability.

3) Third Test Image: Mountainous Area in Northern Italy:
a) Optimization of the bandwidth parameter Δb by the

domain expert based on evidence from data: The reference
crisp LSRC classification map, shown in Fig. 10(b), is automat-
ically generated from the third test Landsat subimage of North-
ern Italy shown in Fig. 10(a). Next, this third test subimage is
input to the fuzzy LSRC to generate as output the same type of
graph shown in Fig. 6. In this new graph (omitted to reduce pa-
per length), relationship (MPM EQ True)⊇(MWC>1), with
α=0.2, holds ∀ P ∈{0, 0.1, . . . , 1.5}, in line with theoretical
expectations (see Section V-C1). In addition, this graph shows
a minimum in the number of pixels featuring (MWC>1)
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TABLE V
CONFUSION MATRIX OF THE HARDENED FUZZY SRC MAP WITH RESPECT TO THE CRISP SRC MAP EMPLOYED AS THE GROUND TRUTH WHEN THE

TEST IMAGE IS THAT SHOWN IN FIG. 9. THE MOST RELEVANT SEMANTIC TRANSITIONS ARE HIGHLIGHTED IN LIGHT AND DARK GRAY

Fig. 10. (a) Zoomed image of Northern Italy, extracted from a Landsat 7 ETM+ image (path: 193, row: 028, acquisition date: September 13, 1999),
radiometrically calibrated into TOARF values, and depicted in false colors (R: band TM5 = MIR1, G: band TM4 = NIR, B: band TM1 = B). (b) Preliminary
classification map, depicted in pseudocolors, automatically generated by the crisp LSRC from the radiometrically calibrated image shown in (a). Map legend
shown in Fig. 2.

when ΔB = 1.20× Th, while the number of pixels featuring
(MPM EQ True) is minimized when ΔB = 0.40× Th.

To conclude, ΔB = 1.20× Th is the favorite choice in this
third experiment where the fuzzy LSRC is input with the seven-
band Landsat image shown in Fig. 10(a).

b) Classification accuracy: Table VI reveals, that in this
experiment, the most relevant semantic transitions occur be-
tween crisp R into the hardened fuzzy BB (crR ⇒ fzBB), crisp
WR into the hardened fuzzy BB (crWR ⇒ fzBB), and crisp
TNCL into the hardened fuzzy BB (crTNCL ⇒ fzBB). For the
first two semantic transitions, the same conclusions reported in
Section VI-A1b hold. About the third transition (crTNCL ⇒
fzBB), it is not surprising because, per se, spectral category
TNCL is rather called “either thin clouds over water or dark-
toned bare soils in mountainous areas.” By visual interpretation
of the target image shown in Fig. 10, pixels labeled as crTNCL
appear to belong to a dark-toned bare soil whose detection
is made more explicit by the fuzzy SRC through label fzBB.
This conclusion is in favor of the fuzzy SRC discrimination
capability.

These fuzzy LSRC accuracy results hold for the downscaled
LSRC subsystems being tested, namely, SSRC, AVSRC, and

ISRC. Therefore, no additional classification accuracy is re-
ported in the rest of this paper.

4) Computation Time: In terms of computation time, the
crisp and fuzzy LSRC algorithms implemented in the C++
programming language require 5′50′′ and 7′50′′, respectively, to
generate the map shown in Fig. 11 from a full Landsat-7 ETM+
scene (path: 192, row: 029, acquisition date: June 20, 2000,
8065 × 7000 pixels in size) in a single-process single-thread
run on a standard desktop computer provided with a Dual Core
Pentium processor. Thus, the fuzzy LSRC version takes 31%
more time to run than the crisp LSRC version.

B. Crisp to Fuzzy SSRC Transformation

The fuzzy SSRC S- and Z-MFs’ full bandwidth parameter
ΔB = P × Th (refer to Section VI-A1a) is optimized across
the four-band SPOT-like images synthesized from the seven-
band Landsat subimages shown in Figs. 5(a), 9, and 10 (refer
to Section V-B). Three graphs, similar to that shown in Fig. 6,
are generated from these three fuzzy SSRC experiments. In
these three graphs (omitted to reduce paper length), the number
of multiple winners is minimized when ΔB = 1, 50× Th for
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TABLE VI
CONFUSION MATRIX OF THE HARDENED FUZZY SRC MAP WITH RESPECT TO THE CRISP SRC MAP EMPLOYED AS THE GROUND TRUTH WHEN THE

TEST IMAGE IS THAT SHOWN IN FIG. 11. THE MOST RELEVANT SEMANTIC TRANSITIONS ARE HIGHLIGHTED IN LIGHT AND DARK GRAY

Fig. 11. Preliminary spectral map, depicted in pseudocolors, generated by
LSRC from a Landsat 7 ETM+ image of the city area of Bologna, Italy (acqui-
sition date: June 20, 2000, SR: 30 m, path = 192, row = 029), radiometrically
calibrated into TOA reflectance. The test image shown in Fig. 5(a) is extracted
from this Landsat image. The LSRC map is transformed into the kml data
format and loaded as a thematic layer in a commercial 3-D earth viewer (e.g.,
Google Earth).

all test images. As a secondary consideration, the number of
mixed pixels is minimized at ΔB = 0.80× Th [first synthetic
test image generated from Fig. 5(a)], ΔB = 0.60× Th (sec-
ond synthetic test image generated from Fig. 9), and ΔB =
0.90× Th (third synthetic test image generated from Fig. 10),
respectively.

To summarize, ΔB = 1.50× Th is the favorite choice in the
three experiments where the fuzzy SSRC is tested.

C. Crisp to Fuzzy AVSRC Transformation

The fuzzy AVSRC S- and Z-MFs’ full bandwidth parameter
ΔB = P × Th (refer to Section VI-A1a) is optimized across
the four-band AVHRR-like images synthesized from the seven-
band Landsat subimages shown in Figs. 5(a), 9, and 10 (refer
to Section V-B). Three graphs, similar to that shown in Fig. 6,
are generated from these three fuzzy AVSRC experiments.
In these three graphs (omitted to reduce paper length), the
number of multiple winners is minimized at ΔB = 1.30× Th
[first synthetic test image generated from Fig. 5(a)], ΔB =
1.40× Th (second synthetic test image generated from Fig. 9),

and ΔB = 0.80× Th (third synthetic test image generated
from Fig. 10), respectively. As a secondary consideration, the
number of mixed pixels is minimized at ΔB = 0.40× Th [first
synthetic test image generated from Fig. 5(a)], ΔB = 0.70×
Th (second synthetic test image generated from Fig. 9), and
ΔB = 0.40× Th (third synthetic test image generated from
Fig. 10), respectively.

To summarize, there is no unique best value of P , such that
ΔB = P × Th, across the three experiments where the fuzzy
AVSRC is tested.

D. Crisp to Fuzzy ISRC Transformation

The fuzzy ISRC S- and Z-MFs’ full bandwidth parameter
ΔB = P × Th is optimized across the four-band IKONOS-
like images synthesized from the seven-band Landsat subim-
ages shown in Figs. 5(a), 9, and 10 (refer to Section V-B). Three
graphs, similar to that shown in Fig. 6, are generated from these
three fuzzy ISRC experiments. In these three graphs (omit-
ted to reduce paper length), the number of multiple winners
is minimized at ΔB = 1.00× Th [first synthetic test image
generated from Fig. 5(a)], ΔB = 1.10× Th (second synthetic
test image generated from Fig. 9), and ΔB = 1.50× Th (third
synthetic test image generated from Fig. 10), respectively. As
a secondary consideration, the number of mixed pixels is mini-
mized at ΔB = 0.40× Th [first synthetic test image generated
from Fig. 5(a)], ΔB = 0.00× Th (second synthetic test image
generated from Fig. 9), and ΔB = 0.50× Th (third synthetic
test image generated from Fig. 10), respectively.

To summarize, there is no unique best value of P , such that
ΔB = P × Th, across the three experiments where the fuzzy
ISRC is tested.

E. Comments

To minimize the number of multiple winners or the number
of mixed pixels according to the fuzzy SRC quality criteria pro-
posed in Section V-C2, the fuzzy S- and Z-MFs’ full bandwidth
parameter ΔB = P × Th clearly depends on the MS image
and optical imaging sensor at hand. However, if we accept that
the percentage of multiple winners and mixed pixels can range
up to 20% above their minima, then the domain of change of
the fixed percentage P of the crisp threshold value Th across
images and sensors becomes P ∈ [1.10, 1.40] to minimize
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TABLE VII
TOLERANCE INTERVAL ACROSS IMAGES AND SENSORS OF THE PERCENTAGE PARAMETER P , SUCH THAT ΔB = P × TH ,

BECOMES P ∈ [1.10, 1.40] TO MINIMIZE THE NUMBER OF MULTIPLE WINNERS UP TO 20% ABOVE THE MINIMUM

AND P ∈ [0.4, 0.5] TO MINIMIZE THE NUMBER OF MIXED PIXELS UP TO 20% ABOVE THE MINIMUM

multiple winners and P ∈ [0.40, 0.50] to minimize mixed pix-
els (see Table VII). Within these ranges of choice, reasonable
values of P are those at which the highest frequency of y-
axis minima occurs in the graphs collected in Sections VI-A–D
for the fuzzy LSRC (see Fig. 6), SSRC, AVSRC, and ISRC
subsystems. These values are P = 1.40 to minimize multiple
winners and P = 0.50 to minimize mixed pixels, respectively.
According to Section V-C2, the former optimization value,
P = 1.40, overcomes the latter.

To summarize, the final conclusion of this experimental
work is that, based on evidence from data, the fuzzy SRC
systems of systems adopts a predefined full bandwidth ΔB
parameter of the fuzzy S- and Z-MFs equal to ΔB = 1.40×
Th, where parameter Th is found in [14, Tab. III]. Since,
by definition of full bandwidth (refer to Section VI-A1), 0 <
ΔB = (2×Δb) = (c− b+ b− a) = (c− a), with a = [(1−
0.5× P )× Th] < b = Th < c = [(1 + 0.5× P )× Th] in (1)
and (2), then parameters a and b of the fuzzy S- and Z-MFs
become a = (0.3× Th) and c = (1.7× Th).

This final choice is a compromise between the following:
1) the time required to develop and tune a physical-model-based
system, such as the fuzzy SRC, which is typically very long
[12], [23]; 2) the optimization across images and sensors of the
fuzzy SRC system QIs (proposed in Section V-C2); and 3) the
satisfaction of operational requirements proposed in Section I.
In particular, this final choice implies that, like its crisp SRC
counterpart, the novel fuzzy SRC is fully automatic [35], i.e., it
requires neither user-defined parameters nor reference samples
to run.

VII. SUMMARY AND CONCLUSIONS

In his well-known work on supervised fuzzy classifica-
tion, Fangiu Wang states that “if knowledge representation
is poor, even sophisticated algorithms can produce inferior
outputs” [25].

Motivated by Wang’s words about the importance of knowl-
edge representation in an information processing device, this
paper aims to enhance an innovative operational fully auto-
mated near-real-time SRC system of systems eligible for use as
the pixel-based preliminary classification first stage of a two-
stage stratified hierarchical hybrid RS-IUS architecture. As in-
put, SRC requires an MS image radiometrically calibrated into
TOARF or surface reflectance ρ values, the latter being an ideal
(atmospheric noise-free) case of the former, i.e., TOARF ⊇
ρ. This radiometrically calibrated MS image can be acquired
by all existing and future planned spaceborne optical imaging
sensors provided with calibration metadata files in agreement
with the QA4EO guidelines.

For the sake of simplicity, i.e., to reduce the number of
system free parameters to be learnt by a human expert based
on intuition, domain expertise, and evidence from data obser-
vation, the original presentation of SRC adopts crisp (hard)
MFs unsuitable for dealing with component cover classes of
mixed pixels (class mixture). To overcome this limitation, a
novel fuzzy SRC system of systems is selected, designed,
implemented, and compared against the crisp SRC, employed
as a reference, in the preliminary classification of three test
images acquired across time, space, and four sensors (one real
and three synthesized).
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Twelve experiments show that the proposed fuzzy SRC
implementation, in which the full bandwidth parameter ΔB is
computed as ΔB(Th) = 1.4× Th, with the crisp threshold Th
fixed according to [14, Tab. III], features the following.

1) It maintains the same degree of automation as the crisp
SRC which is “fully automatic” (refer to Section I).
Since both the crisp and fuzzy SRCs require neither user-
defined parameters nor reference samples to run, their
degree of automation cannot be surpassed by alternative
approaches.

2) On the average, it provides the best minimization of the
number of multiple winners (refer to Section IV-F), i.e.,
it guarantees the best average separability between fuzzy
MFs (refer to Section V-C2).

3) Its output classification map is the same as that of its
crisp counterpart excluding multiple winners, i.e., its
robustness to changes in the input data set is the same
as that of the crisp SRC.

4) In addition to those generated by the crisp SRC, it pro-
vides as output three original products to model compo-
nent cover classes of mixed pixels (refer to Section IV-E).
This enhances the operational qualities of the fuzzy SRC
with respect to the crisp SRC’s (refer to Section I).

5) It replaces the hierarchical modular design of the crisp
SRC decision tree with a flat (parallel horizontal) modular
structure. The latter is easier to maintain and scale to
changing users’ needs and sensor properties. This en-
hances the operational qualities of the fuzzy SRC with
respect to the crisp SRC’s (refer to Section I).

6) Point 5) means that the fuzzy SRC is single process and
multithread while the crisp SRC decision tree is single
process and single thread. As a consequence, in line with
theory, to map a seven-band Landsat scene (8065 × 7000
pixels in size) on a standard desktop computer provided
with a Dual Core Pentium processor, a sequential imple-
mentation of the fuzzy SRC employs 30% more com-
putation time than its crisp counterpart, which requires
approximately 6 min to run. The fuzzy SRC computa-
tional overload would reduce to zero in parallel comput-
ing (single process and multithread). It is noteworthy that
the time interval between two consecutive spaceborne
image acquisitions is not less than approximately 15 min
(for the Meteosat Second Generation). This means that
both the crisp and the fuzzy SRC can be considered near
real time.

The conclusion is that, in line with theory, operational quali-
ties of the fuzzy and crisp SRCs are different, but both SRCs are
suitable for the development of operational automatic near-real-
time satellite-based measurement systems. This would open up
new interdisciplinary research and market opportunities such as
those listed below [15].

1) Integration into a complete desktop RS image process-
ing software of the two-stage stratified hierarchical RS-
IUS software toolbox employing SRC as its pixel-based
preliminary classification first stage. This complete desk-
top RS image processing software would consist of an
automatic, unifying (at the first stage), and standardized
(e.g., based on RS data calibrated into physical radio-

metric units of measure), but incremental (at the second
stage) software platform. It would make spaceborne op-
tical image applications simple, reliable, and provided
with traditional metrological/statistically based QIs as
well as novel semantic-based QIs to achieve seamless
intercomparison with alternative pertinent results. Based
on experimental results collected in operational contexts
[13]–[19], this complete desktop RS image processing
software is expected to outperform existing scientific and
commercial RS-IUSs such as those listed in Table I.

2) Seamless integration of RS imagery with Geographic
Information Systems (GIS). In RS common practice,
SRC provides an automatic tool for the transformation
of subsymbolic raster RS imagery into symbolic vector
geospatial information managed by GIS.

3) Integration of Internet-based satellite mapping on de-
mand with virtual Earth geobrowsers such as the hugely
popular Google Earth, NASA’s World Wind, and Mi-
crosoft Virtual Earth (see Fig. 11).

4) Development of operational satellite-based measurement
systems such as those envisaged under the ongoing inter-
national research programs GEOSS and GMES.

5) Development of semantic querying systems of large-scale
multisource RS image databases where SRC can be ex-
ploited as an automatic source of reference classification
maps. This would represent a dramatic improvement over
nonsemantic query modes currently available in image
database retrieval systems based on text-driven query
strategies and query by either an image, object, or multi-
object example [64].

6) Development of so-called fourth-generation future intel-
ligent EO satellites [65] where the operational automatic
near-real-time RS-IUS software proposed herein can be
mounted onboard. The same consideration holds for
ground receiving station which could be provided with an
operational automatic “intelligent” data processing chain.

7) Dissemination of advanced EO expertise, science, and
technology capacity in developing countries and emerg-
ing countries. Automatic EO image understanding tech-
nologies are “democratic” in nature, i.e., eligible for use
by all. In other words, EO researchers and institutions
should perceive SRC as a novel technical opportunity to
pursue ethical issues.
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