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Abstract—To deliver sample estimates provided with the nec-
essary probability foundation to permit generalization from the
sample data subset to the whole target population being sampled,
probability sampling strategies are required to satisfy three nec-
essary not sufficient conditions: 1) All inclusion probabilities be
greater than zero in the target population to be sampled. If some
sampling units have an inclusion probability of zero, then a map
accuracy assessment does not represent the entire target region
depicted in the map to be assessed. 2) The inclusion probabilities
must be: a) knowable for nonsampled units and b) known for those
units selected in the sample: since the inclusion probability deter-
mines the weight attached to each sampling unit in the accuracy
estimation formulas, if the inclusion probabilities are unknown, so
are the estimation weights. This original work presents a novel (to
the best of these authors’ knowledge, the first) probability sam-
pling protocol for quality assessment and comparison of thematic
maps generated from spaceborne/airborne very high resolution
images, where: 1) an original Categorical Variable Pair Similarity
Index (proposed in two different formulations) is estimated as
a fuzzy degree of match between a reference and a test seman-
tic vocabulary, which may not coincide, and 2) both symbolic
pixel-based thematic quality indicators (TQIs) and sub-symbolic
object-based spatial quality indicators (SQIs) are estimated with
a degree of uncertainty in measurement in compliance with the
well-known Quality Assurance Framework for Earth Observation
(QA4EO) guidelines. Like a decision-tree, any protocol (guidelines
for best practice) comprises a set of rules, equivalent to structural
knowledge, and an order of presentation of the rule set, known
as procedural knowledge. The combination of these two levels
of knowledge makes an original protocol worth more than the
sum of its parts. The several degrees of novelty of the proposed
probability sampling protocol are highlighted in this paper, at
the levels of understanding of both structural and procedural
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knowledge, in comparison with related multi-disciplinary works
selected from the existing literature. In the experimental session,
the proposed protocol is tested for accuracy validation of prelim-
inary classification maps automatically generated by the Satellite
Image Automatic Mapper (SIAM™) software product from two
WorldView-2 images and one QuickBird-2 image provided by
DigitalGlobe for testing purposes. In these experiments, collected
TQIs and SQIs are statistically valid, statistically significant, con-
sistent across maps, and in agreement with theoretical expecta-
tions, visual (qualitative) evidence and quantitative quality indexes
of operativeness (OQIs) claimed for SIAM™ by related papers. As
a subsidiary conclusion, the statistically consistent and statistically
significant accuracy validation of the SIAM™ pre-classification
maps proposed in this contribution, together with OQIs claimed
for SIAM™ by related works, make the operational (automatic,
accurate, near real-time, robust, scalable) SIAM™ software prod-
uct eligible for opening up new inter-disciplinary research and
market opportunities in accordance with the visionary goal of the
Global Earth Observation System of Systems initiative and the
QA4EO international guidelines.

Index Terms—Contingency matrix, error matrix, land cover
change (LCC) detection, land cover classification, maps compar-
ison, nonprobability sampling, ontology, overlapping area matrix
(OAMTRX), probability sampling, quality indicator of operative-
ness (OQI), spatial quality indicator (SQI), taxonomy, thematic
quality indicator (TQI).

ACRONYMS

ATCOR Atmospheric/Topographic Correction
B (visible) Blue
BHR Bi-Hemispherical Reflectance
BRDF Bidirectional Reflectance Distribution Function
Cal/Val Calibration/Validation
CEOS Committee on Earth Observation Satellites
CVPSI Categorical Variable Pair Similarity Index
DN Digital Number
DSM Digital Surface Model
DTM Digital Terrain Model
EO Earth Observation
FIEOS fourth-generation Future Intelligent Earth Obser-

vation Satellites
G (visible) Green
GEO Group on Earth Observations
GEOBIA Geographic Object-Based Image Analysis
GEOOIA Geographic Object-Observation Image Analysis
GEOROI Geographic Region Of Interest
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GEOSS Global EO System of Systems
GIS Geographic Information System
GIScience Geographic Information Science
GMES Global Monitoring for the Environment and

Security
GRNS Greenness
HR High spatial Resolution
IR Infrared
IUS Image Understanding System
LAI Leaf Area Index
LC Land Cover
LCC Land Cover Change
LCLUC Land Cover and Land Use Change program
LR Low spatial Resolution
MIR Medium-IR
MR Medium spatial Resolution
MS Multi-Spectral
NASA National Aeronautics and Space Administration
OA Overall Accuracy
OQI Quality Indicator of Operativeness
QA Quality Assurance
QA4EO Quality Accuracy Framework for Earth

Observation
QB-2 QuickBird-2
QI Quality Indicator
R (Visible) Red
RE Red Edge
ROI Region Of Interest
RS Remote Sensing
RS-IUS Remote Sensing Image Understanding System
SIAM™ Satellite Image Automatic Mapper
SIRS Simple Random Sampling
STRS Stratified Random Sampling
SURF Surface Reflectance
SWIR Short Wave Infrared
TIR Thermal IR
TM Trademark
TOA Top-Of-Atmosphere
TOARD TOA Radiance
TOARF TOA Reflectance
TOC Topographic Correction
USGS US Geological Survey
VHR Very High spatial Resolution
VIS Visible (spectral band)
WELD Web-Enabled Landsat Data set project
WGCV Working Group on Calibration and Validation
WV-2 WorldView-2

I. INTRODUCTION

IN RECENT years, the demand for high spatial resolution
(HR, ranging from 20 to 5 m) and very HR (VHR, below

5 m) spaceborne/airborne imagery has continued to increase
in terms of data quantity and quality, which has boosted
the rapid growth of the commercial VHR satellite indus-
try [1]. The ever-increasing accessibility/availability of space-
borne/airborne VHR images represents a major challenge for
those portions of the remote sensing (RS) community involved

with the development of satellite-based information/knowledge
processing systems [2]. In the Quality Assurance Framework
for Earth Observation (QA4EO) guidelines, delivered by the
international Group on Earth Observations (GEO) Commit-
tee on Earth Observation Satellites (CEOS) and adopted by
the Global Earth Observation System of Systems (GEOSS)
implementation plan for years 2005–2015 [3], [4], satellite-
based information/knowledge processing systems are required
to be suitable/reliable to allow the provision of “the Right
Information, in the Right Format, at the Right Time, to the Right
People, to Make the Right Decisions.”

Unfortunately, to date, the automatic or semi-automatic
transformation of huge amounts of multi-source multi-
resolution Earth observation (EO) images into information/
knowledge can still be considered far more problematic than
might be reasonably expected [5]–[19]. In practice, the in-
creasing rate of collection of EO images of enhanced spatial,
spectral, and temporal quality outpaces the ability of existing
RS image understanding systems (RS-IUSs, where terms “im-
age understanding system” and “computer vision system” are
synonyms) to infer from sensory data: 1) either continuous or
discrete sub-symbolic (e.g., biophysical) variables, e.g., a leaf
area index (LAI) map, or 2) (discrete) categorical variables,
e.g., land cover (LC) and LC change (LCC) maps.

Possible causes of the ongoing lack of operational (turnkey,
ready-to-go, good-to-go) RS-IUS solutions can be investigated
at the four levels of understanding of an information processing
system, namely, 1) computational theory (system architecture),
2) knowledge/information representation, 3) algorithms, and
4) implementation. Existing literature clearly acknowledges
that the linchpin of success of an information processing system
is addressing the system design and information/knowledge
representation, rather than algorithms or implementation
[5]–[17], [20]–[22]. This implies that, since existing RS-IUSs
encompass a huge variety of algorithms and implementations,
then their ongoing lack of productivity should be investigated
at the levels of understanding of computational theory and
knowledge/information representation [5]–[17]. If this conjec-
ture holds true then, to achieve the visionary goal of interna-
tional initiatives like the ongoing GEO GEOSS project [3],
[4], a new generation of operational RS-IUSs, based on en-
hanced multi-disciplinary foundations in computational theory
and information representation, should be developed by the
RS community in close cooperation with academic disciplines
like philosophical hermeneutics [23], [24], geography [25],
[26], neurophysiology [27]–[30], psychophysics [31], machine
learning [32]–[34], artificial intelligence [35]–[37], computer
vision [21], and computer science [26].

When dealing with spaceborne/airborne VHR imagery, the
inadequacy of the RS community to provide operational RS-
IUS solutions becomes twofold. On the one hand, the spatial
and spectral resolution of spaceborne/airborne VHR imagery
makes the complexity of VHR image understanding analogous
to the degree of complexity of human vision, recognized as a
hybrid (combined deductive and inductive) cognitive problem
[5]–[17], [35], [38]–[45], inherently ill-posed in the Hadamard
sense [46] and, therefore, very difficult to solve [32]. In the
words of Iqbal and Aggarwal: “Frequently, no claim is made
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about the pertinence or adequacy of the digital models as
embodied by computer algorithms to the proper model of
human visual perception... This enigmatic situation arises be-
cause research and development in computer vision is often
considered quite separate from research into the functioning of
human vision. A fact that is generally ignored is that biological
vision is currently the only measure of the incompleteness of
the current stage of computer vision and illustrates that the
problem is still open to solution” [47].

In addition to the complexity of VHR image understanding,
there is an incapacity of the RS community to validate VHR
image-derived products for the assessment and comparison of
competing RS-IUS solutions. This means that the validation
of VHR image-derived products is, per se, a cognitive problem
whose complexity, related to the development of RS-IUSs capa-
ble of VHR image understanding, should be considered of the
same order of complexity of human vision.

The primary objective of this work is to propose to the RS
community a novel (to the best of these authors’ knowledge,
the first) probability sampling protocol for the accuracy assess-
ment (accuracy validation [2], [3], [48]) and comparison of
classification maps generated from spaceborne/airborne VHR
images, where complementary symbolic pixel-based thematic
quality indicators (TQIs) [49]–[51] and sub-symbolic polygon-
based spatial quality indicators (SQIs) [52]–[54] are estimated
with a degree of tolerance in measurement in compliance with
the QA4EO international guidelines [3]. It is worth mentioning
that, like a decision-tree, any protocol (guidelines for best
practice [48]) comprises a set of rules, equivalent to structural
knowledge, and an order of presentation of the rule set, called
procedural knowledge. The combination of these two levels of
knowledge makes an original protocol worth more than the sum
of its (eventually non-original) parts.

As a subsidiary objective of this work, the proposed
protocol is tested for accuracy validation of preliminary
classification maps (pre-attentive vision classification maps,
pre-classification maps) generated, by means of the Satellite
Image Automatic Mapper (SIAM™) software toolbox selected
from the existing literature [5]–[17], from a set of multi-source,
multi-resolution, multi-temporal VHR images provided by Dig-
italGlobe for testing purposes. Presented in recent years to the
RS community for operational use in a RS-IUS pre-attentive
vision first stage, SIAM™ accomplishes multi-scale image
segmentation and multi-granularity image pre-classification si-
multaneously, automatically and in near real-time [5]–[17].

The several degrees of novelty of the proposed probability
sampling protocol encompass both levels of structural and
procedural knowledge as summarized below.

I) To the best of these authors’ knowledge, this is the first
time the probability sampling design of Stehman and
Czaplewski [55] is instantiated to assess and compare
thematic maps generated from VHR images, where two
sets of uncorrelated symbolic pixel-based TQIs [49]–[51]
and sub-symbolic object-based SQIs [52]–[54], [56] are
taken into account under the following constraints.

• Every metrological/statistically-based Quality Indi-
cator (QI) must be provided with a variance esti-
mation to be considered statistically significant, in

compliance with principles of statistics and the
QA4EO guidelines [3], [55].

• QI ensembles (e.g., TQIs, SQIs) have to account
for the well-known non-injective property of QIs
[5]–[17]. It is common knowledge that, given any
QI formulation, it is always possible to find two
different target phenomena featuring the same QI
value, e.g., two different thematic maps may feature
the same overall accuracy (OA) index [50], [51].
This implies that no hypothetical universal QI can
exist, which contradicts a significant portion of the
RS literature [57]–[59]. This is tantamount to saying
that, in any quality assessment task, a set of mutually
uncorrelated QIs has to be carefully selected by
domain experts to account for the non-injectivity of
QIs [5]–[17].

It is worth mentioning that, according to Stehman and
Czaplewski [55], probability or nonprobability sampling
protocols for map accuracy assessment consist of six basic
components.
1) Identification of the test map taxonomy, reference

sample set taxonomy, and their contingency table
(error matrix). In general, semantic associations be-
tween legend pairs are many-to-many, whose special
cases are many-to-one, one-to-many, and one-to-one
relations.

2) The sampling design protocol, by which sampling
units are selected into the sample.

3) The evaluation protocol, to collect information con-
tributing to the reference classification determination.

4) The labeling protocol, to assign the reference classifi-
cation(s) to the sampling units based on the informa-
tion collected by the evaluation protocol.

5) The analysis protocol, where a contingency table is
instantiated.

6) The estimation protocol, where QIs (summary statis-
tics, summary measures [55]) are collected from the
contingency table(s) and assessed in comparison with
reference standards.

By definition, probability sampling must satisfy three
necessary not sufficient conditions to deliver statistically
valid (consistent) sample estimates, i.e., sample estimates
provided with the necessary probability foundation to
permit generalization from the sample data subset to the
whole target population being sampled [55], [60].
(i) All inclusion probabilities be greater than zero in the

target population to be sampled. If some sampling
units have an inclusion probability of zero, then the
accuracy assessment does not represent the entire
target region depicted in the map to be assessed.

(ii) The inclusion probabilities must be [60]:
• knowable for nonsampled units and
• known for those units selected in the sample:

since the inclusion probability determines the
weight attached to each sampling unit in the
accuracy estimation formulas, if the inclusion
probabilities are unknown, so are the estimation
weights.
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TABLE I
EXISTING COMMERCIAL RS-IUS SOFTWARE PRODUCTS AND THEIR DEGREE OF MATCH

WITH THE INTERNATIONAL QA4EO GUIDELINES [5]

II) The aforementioned project requirements specification
means that:

• the proposed probability sampling protocol is sta-
tistically valid, i.e., consistent, so that the sampling
represents the entire target region of a test map [55].

• Since they are provided with a confidence interval,
estimated TQIs and SQIs are statistically significant.

These project requirements are neither trivial nor obvi-
ous. In the existing RS literature, e.g., [54], [61], [62],
both segmentation and classification map accuracies are
typically estimated via nonprobability sampling, where
inclusion probabilities of selected samples are unknown
or ignored, while QIs are not provided with any degree of
uncertainty in measurement, in violation with the princi-
ples of statistics and the QA4EO guidelines [3].

III) Stehman describes four common types of maps com-
parison [63]. In the first type, different thematic maps,
either crisp of fuzzy [64], [65], of the same region and
employing the same sorted set (legend) of LC classes,
are compared [66]. To date, a large segment of the RS
community appears concerned with this first type of maps
comparison exclusively [51], [66]. In the second type,
which includes the first type as a special case, thematic
maps, either crisp of fuzzy, of the same region, but featur-
ing map legends that differ in semantics and/or cardinality
(size) and/or order of presentation, are compared [63].
The present work focuses on this second type of inter-map
comparisons.

IV) Following identification of the test map and reference
sample set taxonomies (refer to point I.1 above in this
section), a contingency table (error matrix) must be se-
lected. In this paper, where test and reference semantic
vocabularies may not be the same (refer to point III above
in this section), the error matrix becomes an either square
or non-square overlapping area matrix (OAMTRX) [52],
[67]. The concept of OAMTRX, found in literature
[63], [68], is a generalization of the well-known con-
cept of (square and sorted) confusion matrix (CMTRX)
[50], [51].

V) Following identification of the test map and reference
sample set taxonomies (refer to point I.1 above in this sec-
tion), an OAMTRX instance, either square or non-square,
must be defined by a knowledge expert (knowledge engi-
neer [69]) who selects table entries (test-reference class
pairs) to be considered as “correct”. These “correct”
entries may be diagonal or off-diagonal OAMTRX cells.
The matching between two legends is, per se, a cog-
nitive (interpretation) process whose “information-as(an
interpretation)-process” is inherently equivocal [23], [24].
Hence, categorical variable matching should require ne-
gotiation and be community agreed [68], [70], [71]–[76].
Unlike the interpretation of a CMTRX, where the main
diagonal guides the interpretation process (at least in
terms of overal accuracy estimation [49]–[51]), compre-
hensive interpretation of an OAMTRX instance can be
very challenging, complex and time consuming because,
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in general, a non-square OAMTRX has no main diagonal
to guide the interpretation process or, if the OAMTRX is
square, its main diagonal may not consist, in part or at all,
of “correct” entries [52], [67], [68].

VI) Following definition of an OAMTRX (refer to point
V above in this section), an original QI, identified as
the Categorical Variable Pair Similarity Index (CVPSI)
∈ [0, 1], is estimated as a fuzzy degree of match be-
tween the reference and the test semantic vocabulary.
In practice, CVPSI is a fuzzy degree of similarity be-
tween an OAMTRX definition, where “correct” (allowed)
reference-test class relations are, in general, many-to-
many, with an (ideal) CMTRX, where allowed reference-
test class relations are one-to-one exclusively. Vice versa,
(1− CVPSI) is a normalized estimate of the additional
(classification) work required to fill up the semantic gap
from the test semantic vocabulary to the reference (target)
semantic vocabulary. For example, in the ideal case of
an OAMTRX where only one-to-one reference-test class
relations can be found, irrespective of the fact they are
diagonal or off-diagonal entries, then condition CVPSI
equal to 1 holds.

VII) In the probability sampling phase (refer to point I.2 above
in this section), a general rule of thumb would require to
select the reference data source “one step closer to the
ground” than the RS data used to make up the test map
[51]. Unfortunately, when dealing with thematic maps
generated from VHR imagery, it is often the case there
is no reference data source acquired at the same time of
the VHR image and one step closer to the ground. Hence,
the sole data source available for reference population
sampling is the same VHR image adopted to generate
the test map. In other words, the test and reference data
sources coincide with the VHR image at hand.

VIII) In the probability sampling phase (refer to point I.2 above
in this section), no prior knowledge of the class-specific
reference strata (layers) is available to run a stratified
random sampling (STRS) strategy in the VHR image at
hand (refer to point VII above). Hence, an original non-
standard simple random sampling (SIRS) procedure is ap-
plied per reference class (refer to Fig. 12 in Section VI-B2
below).

IX) In the estimation phase (refer to point I.6 above in this
section), symbolic pixel-based TQIs are selected from
the existing literature [49], together with their variance
estimation formulas [50]. In general, a different variance
estimator formula arises for each accuracy index and
each different sampling design [55]. In this paper, TQIs,
provided with a degree of uncertainty in measurement,
are estimated from a non-traditional OAMTRX instance,
which was defined and instantiated in the sample analysis
phase (refer to point V above in this section).

X) In the estimation phase (refer to point I.6 above in this
section), sub-symbolic polygon-based SQIs are selected,
augmented and instantiated in line with the RS literature
[54], together with their variance estimation formulas
[50]. In this substep of the estimation phase, thematic
information is ignored in the comparison between test and

reference samples, since thematic matching has already
been accounted for by symbolic pixel-based TQIs. In
practice, a (symbolic) classification map is transformed
into a (sub-symbolic) segmentation map.1 Thus, pairs of
test and reference polygons (2-D objects, segments) are
compared in terms of shape, irrespective of their thematic
labels. This step in sample analysis corresponds to the
investigation of the spatial distribution of thematic errors,
which has been highly recommended in literature [52],
[53], [56], but almost never performed in RS common
practice.

XI) In compliance with the definition of probability sam-
pling (refer to this section above), (unequal) inclusion
probabilities of sampling units, either pixels or poly-
gons employed in the estimation of, respectively, TQIs
and SQIs, are assessed to determine the weight, equal
to the inverse of the inclusion probability, attached to
each sampling unit in the Horvitz–Thompson sample es-
timator. The Horvitz–Thompson theorem guarantees that
the Horvitz–Thompson sample estimator is unbiased for
the population total [60] (for further details about the
Horvitz–Thompson theorem, refer to Section V below).

The main experimental conclusion of this work is that the
proposed protocol is tested successfully in the accuracy valida-
tion of the SIAM™ multi-granularity maps automatically gen-
erated from multi-sensor multi-temporal VHR images. In these
experiments, collected TQIs and SQIs are statistically valid and
statistically significant, consistent across maps, and in agree-
ment with theoretical considerations, visual (qualitative) evi-
dence, and (quantitative) QIs of operativeness (OQIs) claimed
for SIAM™ by the existing literature [5]–[17]. Estimated SQIs
are found to be negatively biased (e.g., underestimated) due
to, first, an eight-adjacency neighborhood effect and, second,
an inadequacy to cope with a test and a reference semantic
vocabulary when these vocabularies do not coincide.

As a subsidiary conclusion, the statistically consistent and
statistically significant accuracy validation of the SIAM™ pre-
classification maps proposed in this work, in combination with
the high-value OQIs claimed for SIAM™ by related papers [5]–
[17], make the operational (fast, accurate, automatic, robust,
scalable) SIAM™ software product eligible for opening up new
inter-disciplinary research and market opportunities in compli-
ance with the visionary goal of the GEO GEOSS initiative and
the GEO QA4EO guidelines.

The rest of this paper is organized as follows. Section II
presents definitions, terminology, and multi-disciplinary con-
cepts related to this work. In Section III, problem recognition
and opportunity identification are accomplished in a multi-
disciplinary framework. Section IV presents the test VHR
image set, provided by DigitalGlobe, and discusses the VHR
image pre-processing activities carried out before running

1The generation of a segmentation map from a binary mask or multi-level
image (e.g., a thematic map) is a well-posed segmentation problem (i.e., the
problem solution exists and is unique), typically solved by a computationally
efficient two-pass connected-component image labeling algorithm [77]. In
practice, a unique (sub-symbolic) segmentation map can be generated from a
(symbolic) thematic map, but the contrary does not hold, i.e., different thematic
maps can generate the same segmentation map [52].
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the SIAM™ preliminary classifier. The Horvitz–Thompson
theorem is discussed in Section V, where original inclusion
probabilities suitable for non-standard sampling designs are
proposed. In Section VI, a novel protocol to operationalize
the thematic and spatial accuracy assessment of thematic maps
generated from spaceborne/airborne VHR images is proposed.
In addition, this novel protocol is instantiated to validate the
preliminary classification maps automatically generated by the
SIAM™ from the VHR test images. In Section VII, OQIs
of the SIAM™ software product inferred from Section VI
are summarized. Section VIII presents new inter-disciplinary
research and market opportunities opened up by the operational,
automatic, near real-time SIAM™ pre-attentive vision classi-
fier. Conclusions are reported in Section IX.

II. ADOPTED DEFINITIONS, TERMINOLOGY,
AND MULTI-DISCIPLINARY CONCEPTS

This section is provided with a significant survey value
to make this paper self-contained for a potential readership
unfamiliar with the multi-disciplinary background of RS image
understanding. In this paper, the following definitions, termi-
nology, and multi-disciplinary concepts hold.

A. Quantitative and Qualitative Concepts of Information

• The following concepts are defined in compliance with
philosophical hermeneutics [23], [24].

• Numerical, sensory, quantitative “data” as synonyms
of observables, true facts. It is important to stress that
sensory data are provided, per se, with no semantics
at all [19].

• Sub-symbolic, quantitative, unequivocal
“information-as-thing,” according to the Shannon
theory of communication [78]. Quantitative
information according to Shannon is an object
or a thing (e.g., number of bits, number of words
in a document, etc.) irrespective of its meaning.
This makes the information exchange between a
sender and a receiver unequivocal, therefore easier
to deal with than when meaning is involved in the
communication process [16], [23], [24].

• Symbolic, qualitative, equivocal “information-as-(an
intepretation) process,” i.e., information as inter-
preted data [23], [24]. In the words of philosophical
hermeneutics, symbolic information is always re-
lated to “a receiver’s beliefs, desires, and background
knowledge,” i.e., the meaning of a message is always
context dependent. It is indeed a “harmless fiction”
to think about a meaning of a message at the source
“independently of what anyone (a receiver) happened
to know” [23], [24]. There are no inquirers (users,
knowers, receivers, cognitive agents) in general, but
context-dependent users. Analogously, (objectivized,
externalized) information systems (e.g., database sys-
tems) are always embedded in various social, cul-
tural, etc., contexts [23], [24].

• “Knowledge” is strictly related to the concept of
“information-as-(an intepretation)process,” such that

“there is no knowledge without both an object of
knowledge and a knowing subject. The claim that
there is absolute knowledge, or knowledge in itself,
above and beyond concrete knowing subjects, is fan-
tastic” [23], [24]. Based on this definition, the present
work adopts the expression “information/knowledge
processing system,” whose input consists of sensory
data and/or information at a lower level of user-
specific informative value or utility.

• The rest of this paper considers the following terms as
synonyms [16], [17].

• Symbolic, semantic, cognitive, categorical, ordinal,
nominal, qualitative, subjective, equivocal. For ex-
ample, (discrete) categorical variable.

• Sub-symbolic, sensory, numerical, non-semantic,
quantitative, objective, unequivocal. For example,
continuous or discrete sensory variable.

B. Inductive/Deductive/Hybrid Inference, Either
Sub-Symbolic or Symbolic

• There are two classical types of inference (learning)
known as induction, progressing from particular cases
(e.g., true facts, training data samples, etc.) to a general
estimated dependency or model, and deduction, progress-
ing from a general model to particular cases (e.g., output
values) [64].

• In the words of Mulier and Cherkassky: “induction
amounts to forming generalizations from particular true
facts. This is an inherently difficult (ill-posed) problem
and its solution requires a priori knowledge in addition
to data” [32] (p. 39). That is to say, to become better
posed (conditioned) for numerical treatment any (inher-
ently ill-posed) inductive data learning algorithm requires
(prior knowledge-based) deductive inference mechanisms
to avoid starting from scratch [16].

• The following terms are synonyms of deductive infer-
ence and become interchangeable in the rest of this work
[16], [17].
(Sub-symbolic or symbolic) deductive inference, deduc-

tive learning, top-down inference system, coarse-
to-fine inference, driven-by-knowledge inference,
learning-by-rules, physical model, prior knowledge-
based decision system, rule-based system, expert sys-
tem, syntactic inference, syntactic pattern recognition.

• The following terms are synonyms of inductive inference
and become interchangeable in the rest of this paper
[16], [17].
(Sub-symbolic or symbolic) inductive inference, inductive

learning, bottom-up inference, fine-to-coarse infer-
ence, driven-without-knowledge (knowledge-free) in-
ference, learning-from-examples, statistical model.

• In the rest of this work, expressions like sub-symbolic
(either discrete or continuous) variable, symbolic
(necessarily discrete) variable, sub-symbolic information,
and symbolic information are adopted, where sub-
symbolic information is a synonym of quantitative data or
“information-as-thing” while symbolic information is a



BARALDI et al.: CLASSIFICATION MAPS FROM SPACEBORNE/AIRBORNE IMAGES 707

synonym of “information-as-(an interpretation) process”
[23], [24] (refer to Section II-A). Thus, expressions like
inductive/deductive/hybrid (combined deductive and
inductive) inference, either sub-symbolic or symbolic, are
adopted in the rest of this work, depending on whether
the inference system deals with, respectively, sub-
symbolic continuous/discrete variables or (symbolic and
discrete) categorical variables. For example, SIAM™ is a
(semi-)symbolic, static (non-adaptive to input data),
syntactic (deductive) pre-attentive vision first stage
classifier [5]–[17] (refer to Section II-G below).

• In the RS literature, typical examples of sub-symbolic
inductive and sub-symbolic deductive inference are, re-
spectively, principal component analysis and tasseled cap
transformation [32]–[34].

• In the machine learning literature, typical examples of
symbolic inductive inference systems capable of learning
from labeled (supervised) data are artificial neural net-
works, support vector machines, nearest-neighbor classi-
fiers, etc. [32]–[34]. Typical examples of sub-symbolic
inductive inference systems capable of learning from unla-
beled (unsupervised) data are the unsupervised data clus-
tering algorithms [32]–[34], probability density function
estimators, vector data quantizers [32]–[34], image seg-
mentation algorithms [16], [17], [38]–[45], etc.

C. Human Vision

• “A fact that is generally ignored is that biological vision is
currently the only measure of the incompleteness of the
current stage of computer vision and illustrates that the
problem is still open to solution” [47] (refer to Section I).
For example, the present paper, which deals with computer
vision, namely, RS image understanding (classification)
and its quality assessment, should keep human vision as
its gold standard.

• The goal of an IUS is to provide plausible (multiple)
symbolic description(s) of a 3-D scene, belonging to the
(4-D) world-through-time and depicted in a (2-D) image at
a given acquisition time, by finding associations between
sub-symbolic image features (image-objects or, vice versa,
image-contours) with symbolic classes of 4-D objects-
through-time (4-D concepts-through-time, e.g., buildings,
roads, etc.), which belong to a so-called world model [35].
Equivalent to a 4-D spatio-temporal ontology of the world-
through-time [25], the world model can be graphically
represented as a semantic network (concept network, tradi-
tionally adopted in computer vision, artificial intelligence,
machine learning, Geographic Information science (GIS-
science), etc.), consisting of: 1) classes of 4-D objects-
through-time (concepts) as nodes and 2) inter-concept
relations (equivalent to subsets of the Cartesian product
between elements of the two concept sets) as arcs between
nodes, e.g., spatial relations, either topological (e.g., ad-
jacency, inclusion, etc.) or non-topological (e.g., distance,
in-between angle, etc.), non-spatial relations (e.g., part-of,
subset-of), or temporal relations [36], [37], [79], [80].

• In mammals, a vision system is comprised of a pre-
attentive vision first phase and an attentive vision second
phase summarized as follows.
(i) Pre-attentive (low-level) vision extracts picture primi-

tives based on general-purpose image processing cri-
teria independent of the scene under analysis. It acts
in parallel on the entire image as a rapid (< 50 ms)
scanning system to detect variations in simple visual
properties [27]–[29]. It is known that the human visual
system employs at least four spatial scales of analysis
[30], where cells in visual cortex feature gradations of
orientation much finer than 45◦ [144], e.g., around 15◦

[145]. Single opponent and double opponent color cells
are called Type I and Type II, respectively, by Wiesel
and Hubel [146] (examples of Type I and Type II
receptive fields can be found in [147]). Receptive fields
that are spatially opponent, but not color opponent are
termed Type III [147].

(ii) Attentive (high-level) vision operates as a careful scan-
ning system employing a focus of attention mech-
anism. Scene subsets, corresponding to a narrow
aperture of attention, are observed in sequence and
each step is examined quickly (20–80 ms) [27]–[29].

• In terms of computational theory, the problem of image
understanding (vision), from sub-symbolic (2-D) imagery
to symbolic description(s) of the 3-D viewed-scene be-
longing to the 4-D world-through-time, belongs to the
family of symbolic inductive data learning problems [16]
(refer to Section II-B). As such, it is inherently ill-posed
in the Hadamard sense [32] and, consequently, very dif-
ficult to solve due to: 1) the well-known information
gap between varying quantitative sensations (e.g., image
features) and stable qualitative percepts (e.g., 3-D object-
models belonging to the world model) and 2) the in-
trinsic insufficiency of image features due to occlusion
phenomena and dimensionality reduction [16], [35]. Since
vision is an (inherently ill-posed) symbolic inductive in-
ference problem, then its solution requires symbolic prior
knowledge in addition to (sub-symbolic) sensory data to
become better posed (conditioned) for numerical treat-
ment [16], [32] (refer to Section II-B). In the literature
of psychophysics, according to Vecera and Farah, pre-
attentive image segmentation is an interactive (hybrid)
inference process “in which top-down knowledge partly
guides lower level processing” [31] (p. 1294). This means
that human vision is a symbolic hybrid (combined deduc-
tive and inductive) inference system where the ignition of
symbolic prior knowledge starts at the pre-attentive vision
first stage [16], [17].

D. QA4EO

Founded in 2003, the GEO is a voluntary partnership of
governments and international organizations whose mandate
is to provide a framework for the coordination of efforts and
strategies capable of addressing common goals in EO disci-
plines. In 2005, GEO launched a “ten-year implementation
plan” to establish the visionary goal of the GEOSS initiative [4].
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The GEOSS key objective is to deliver operational, compre-
hensive, and timely “knowledge/information products” (refer
to Section I) generated (rather than extracted [23], [24]) from
a variety of satellite, airborne, and in situ sensory data sources
[3]. Interoperability in terms of synergistic use of multi-source
multi-resolution data depends upon the successful implemen-
tation of two key principles-Accessibility/Availability and Suit-
ability/Reliability, to allow the provision of and access to the
Right Information, in the Right Format, at the Right Time,
to the Right People, to Make the Right Decisions. This is
tantamount to saying that, according to the GEO [3], the neces-
sary and sufficient condition for the development of satellite-
based information/knowledge processing systems to be used
in operational mode in local- to global-scale monitoring pro-
grams is the successful implementation of the GEOSS key ob-
jectives of [4]: 1) Accessibility/Availability and 2) Suitability/
Reliability of RS data and data-derived information/knowledge
products.

To pursue the two aforementioned GEOSS key principles,
the GEO identified the need to develop a GEO data qual-
ity assurance (QA) strategy where calibration and validation
(Cal/Val) activities become critical to data QA and thus to data
usability. According to the GEO-CEOS QA4EO guidelines [3]:

(a) An appropriate coordinated program of Cal/Val activities
throughout all stages of a spaceborne mission, from
sensor building to end-of-life, is considered manda-
tory to ensure the harmonization and interoperability of
multi-source multi-temporal observational data and data-
derived products.

(b) To accomplish validation, sensory data and -derived
products generated in each step of a satellite-based
information processing workflow must have associated
with them a set of mutually uncorrelated, quantifiable,
metrological/statistically-based QIs featuring a degree
of uncertainty in measurement, to provide a documented
traceability of the propagation of errors through the
information processing chain in comparison with estab-
lished community-agreed reference standards (refer to
Section I).

By definition, radiometric calibration is the transformation
of dimensionless digital numbers (DNs) into a community-
agreed physical unit of radiometric measure. In line with the
QA4EO recommendations, the RS community regards as an in-
disputable fact that “the prerequisite for physically based, quan-
titative analysis of airborne and satellite sensor measurements
in the optical domain is their calibration to spectral radiance”
[81, p. 29]. According to related works [5]–[17], in addition to
ensuring the harmonization and interoperability of multi-source
observational data, radiometric calibration is a necessary not
sufficient condition for automatic (hybrid model based, refer to
Section II-B) interpretation of EO imagery. Irrespective of this
common knowledge, radiometric calibration is often neglected
in the RS literature and surprisingly ignored by scientists,
practitioners, and institutions in RS common practice, including
large-scale spaceborne image mosaicking and mapping, e.g.,
see [82]. For example, in conflict with the QA4EO guidelines,
popular RS-IUS commercial software products, such as those

listed in Table I, do not consider radiometric calibration of
RS imagery as a pre-requisite, with the sole exception of
the physical model-based Atmospheric/Topographic Correction
(ATCOR-2/3/4) commercial software [83]–[86]. This implies
that popular RS-IUS commercial software products, but the
ATCOR-2/3/4, are statistical model-based systems inherently
site specific and semi-automatic [16], [17], [87] (refer to
Section II-B).

To be community agreed, a proposed list of QIs of opera-
tiveness (OQIs), suitable for the assessment and comparison
of RS-IUSs used in operational mode, is summarized below
[5]–[17].

(i) Degree of automation (ease-of-use), monotonically de-
creasing with the number of system free parameters
to be user defined. It is also affected by the physical
meaning, if any, and the range of variation (e.g., bounded,
unbounded, normalized) of the system free parameters.

(ii) Effectiveness or accuracy, e.g., thematic and spatial accu-
racy of a classification map.

(iii) Efficiency, e.g., computation time and memory
occupation.

(iv) Robustness to changes in input parameters.
(v) Robustness to changes in the input data set acquired

across time, space, and sensors.
(vi) Scalability, to cope with changes in input data specifica-

tions and user requirements.
(vii) Timeliness, defined as the time span between sensory

data collection and data-derived product generation. It
increases monotonically with computer power and man-
power (e.g., the manpower required to collect reference
samples for training an inductive data learning system).

(viii) Costs, which increase monotonically with computer
power and manpower.

According to the definition promoted by the CEOS
WGCV—Land Product Validation (LPV) subgroup, validation
is the process of assessing, by independent means, the quanti-
tative accuracy of high-level information products derived from
RS data [2], [48].

In the broader definition promoted by the QA4EO guidelines
and adopted in this work, validation refers to the process of es-
timating, by independent means, all OQIs, including accuracy
as a special case, selected to parameterize a satellite-based
information/knowledge processing system for assessment and
comparison purposes.

Extended to the QA4EO definition of validation activities
[3], the CEOS hierarchy of validation is the following [48].

• Stage 1 validation. Product QIs and their uncertainties are
assessed using a small (typically < 30) set of geographic
locations and time periods by comparison with in situ or
other suitable reference data.

• Stage 2 validation. Product QIs and their uncertainties
are estimated over a significant (globally representative),
widely distributed set of geographic locations and multiple
time periods and seasons in comparison with reference
in situ or other suitable independent sources of reference
data. Results are published in the peer-reviewed literature.
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• Stage 3 validation. Product QIs and their uncertainties are
characterized in a statistically robust way via independent
measurements over the global (full) range of geographical
locations and for all time periods representing global
conditions. Results are published in the peer-reviewed
literature.

• Stage 4 validation. Validation results for stage 3 are
systematically updated when new product versions are
released and as the time series expands.

For example, stage 1 validation is involved with a large
majority of the existing RS papers where RS-IUSs are assessed
and compared. On the contrary, the combination of the present
work with related papers [5]–[17] aims at a stage 3 validation
of the SIAM™ pre-attentive vision first stage classifier.

E. Probability and Nonprobability Sampling Protocols

• By definition, probability sampling must satisfy the three
constraints listed in Section I[55]. Probability sampling
methods can be split into equal or variable (unequal)
probability sampling methods. Unequal inclusion proba-
bilities create no difficulties as long as they are known and
accounted for in the estimation formulas, but equal prob-
ability designs possess the advantage of simpler analysis.
For example, an area sampling protocol selects polygons
into the sample with probability proportional to polygon
area, so larger polygons will have a higher probability of
being selected [55]. Similar considerations hold for STRS
featuring unequal inclusion probabilities. Stratified sam-
pling with proportional allocation results in equal inclu-
sion probabilities, but stratified sampling with either equal
or optimal allocation usually leads to different inclusion
probabilities for the sampling units in different strata [60].
In general, a different variance estimator formula arises for
each accuracy index and each different sampling design
[55]. Unlike stated in [88], it is not true that probability
sampling is required for assessing the uncertainty of the
accuracy estimates.

• Nonprobability sampling methods are all the sampling
methods that do not satisfy the requirements of proba-
bility sampling methods listed in Section I. According
to literature [55]: “unfortunately, examples of nonproba-
bility sampling are common in accuracy assessment ap-
plications. Selecting reference locations by purposeful,
convenient, or haphazard procedures does not allow the
sampling design to determine the inclusion probabilities
for each sampling unit. Such designs, therefore, are not
probability samples. Purposefully selecting training data
for a supervised classification is a good example of a
nonprobability sample. Such samples are acceptable for
developing a landcover classification map, but often have
limited use for accuracy assessment because the necessary
probability foundation to permit generalization from the
sample data to accuracy of the full population is lacking”
[55]. To recapitulate, “it is possible to obtain useful infor-
mation from nonprobability samples, but the limitations of
such data should be recognized.” [55]. That said, it is not
true that nonprobability sampling methods are unable to

provide a degree of uncertainty in measurement, which is
contrast with what claimed in [88].

• A protocol, defined as a sorted set of guidelines for
good practice [48], encompasses a structural and a pro-
cedural knowledge (refer to Section I). The definition of
international guidelines for best practices, together with
standardization, has been a major challenge for the RS
community [3], [48], [88]. For example, in this work,
the proposed probability sampling protocol complies with
community-agreed best practices promoted by the GEO
QA4EO guidelines [3] (refer to Section II-D).

F. Geographic Object-Based Image Analysis (GEOBIA)

• In [39], [40], [79], GEOBIA is defined as a sub-discipline
of GIScience [25], [141], also known as geomatics engi-
neering [69], devoted to:
1) The automatic or semi-automatic partitioning (seg-

mentation, aggregation, simplification) of a raster RS
image, consisting of sub-symbolic unlabeled pixels,
into discrete sub-symbolic labeled image-objects (seg-
ments, polygons, regions), where the sub-symbolic
label is a segment identifier (e.g., an integer number,
say, Segment 1, Segment 2, etc.), such that each dis-
crete image-object is a connected set of pixels whose
visual (appearance, pictorial) properties are considered
relatively homogeneous with respect to their surround-
ings according to a measure of similarity chosen sub-
jectively based on its ability to create “interesting”
(“meaningful”) image-objects [16], [17].

2) The automatic or semi-automatic mapping (projec-
tion) of sub-symbolic labeled image-objects onto a
discrete and finite set of LC classes, i.e., of symbolic
4-D object-models-through-time belonging to a world
model [25], [35], [80], depending on the image-object-
specific spatial, spectral, and temporal characteristics,
so as to generate as output symbolic vector geospatial
information (e.g., LC and LCC maps) in a Geographic
Information System (GIS)-ready format.

• About the GEOBIA commitments, Hay and Castilla pro-
pose that “the primary objective of GEOBIA as a disci-
pline is to develop appropriate theory, methods and tools
sufficient to replicate (and or exceed experienced) human
interpretation of RS images in automated/semi-automated
ways, that will result in increased repeatability and pro-
duction, while reducing subjectivity, labor and time costs”
[39], [40]. In [79], Lang states that since automation is the
overall aim of GEOBIA (like that of any other computer-
based technique), the ultimate benchmark of GEOBIA is
to mimic human perception.

• Since the year 2000, contemporary with the availability
of the first spaceborne VHR commercial images acquired
by the GeoEye IKONOS multi-spectral (MS) sensor, two-
stage non-iterative GEOBIA systems and three-stage itera-
tive geographic object-oriented image analysis (GEOOIA)
systems, where the former is a special case of the latter,
i.e., GEOOIA ⊃ GEOBIA [16], [17], have quickly gained
widespread popularity, particularly in Europe, due to the
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availability of a series of commercial software products
developed by a German company [38], [89]–[92].

• To date a large portion of the RS community consid-
ers the GEOBIA/GEOOIA paradigm the state-of-the-art
in both scientific and commercial applications of space-
borne/airborne VHR imagery.

• Unfortunately, despite its commercial success, the GEO-
BIA/GEOOIA approach remains affected by a lack of
research, general consensus, and productivity, as acknowl-
edged by increasing sections of the existing literature [16],
[17], [38]–[40], [79]. For example, the GEOBIA claim
of mimicking human vision [39], [40] remains more an
expression of intentions than a fact [16], [17]. To comply
with human vision, an artificial vision system should also
be a symbolic hybrid inference system in both the pre-
attentive vision first stage and the attentive vision second
stage (refer to Section II-C). On the contrary, as an ex-
ample, state-of-the-art GEOBIA/GEOOIA systems share
the same inherently ill-posed, driven-without-knowledge,
sub-symbolic, inductive image segmentation pre-attentive
vision first stage [16], [17], [38]–[45], and feature, at
the attentive vision second stage, either an inductive su-
pervised data learning classifier or a symbolic syntactic
classifier (also refer to Section II-B). In practice, both
GEOBIA and GEOOIA architectures support fully sta-
tistical implementations, where no physical model-based
inference, equivalent to prior knowledge of the 4-D spatio-
temporal world, is ignited.

G. SIAM™

• The physical model-based (deductive) SIAM™ prelim-
inary classifier is by no means alternative, but com-
plementary in nature to any (inherently ill-posed [32])
inductive (statistical model-based) data learning system,
either symbolic (e.g., artificial neural networks, support
vector machines, etc. [32]–[34]) or sub-symbolic (e.g.,
unsupervised data clustering algorithms [32]–[34], vector
data quantization [32]–[34], image segmentation algo-
rithms [16], [17], [38]–[45], etc.), refer to Section II-B
[5]–[17].

• To the best of these authors’ knowledge, SIAM™ is
the first symbolic syntactic inference system (refer to
Section II-B), made available to the RS community for
operational use in a RS-IUS pre-attentive vision first
stage (refer to Section II-C), capable of accomplishing
multi-scale image segmentation and multi-granularity im-
age pre-classification simultaneously, automatically and in
near real-time [5]–[17].

• In terms of computationl theory (system design, system
architecture), exploitation of a pixel-based, symbolic, syn-
tactic pre-attentive vision first stage, like the SIAM™ or
the Spectral Classification of surface reflectance signatures
(SPECL) implemented as a by-product in the ATCOR-
2/3/4 software toolbox [83]–[85], [115] (refer to Table I),
referred hereafter as the ATCOR-SPECL sub-system, al-
lows the attentive vision second-stage classification to
benefit from driven-by-knowledge regularization of the

multiple solution space while avoiding the typical dis-
advantage of stratification, where identification of infor-
mative strata may be difficult [5]–[17]. In other words,
SIAM™ should never be considered as a standalone
system, but as a module in a three-stage, hierarchical,
stratified, feedback RS-IUS architecture consisting of:
(i) a RS image pre-processing stage zero,

(ii) a symbolic, syntactic, context-insensitive pre-attentive
vision first stage, e.g., implemented as SIAM™ or the
ATCOR-SPECL,

(iii) a battery of attentive vision second-stage, context-
sensitive, stratified, feature extractors and one-class
classification modules and

(iv) a feedback mechanism between the pre-attentive vision
first stage and the RS image pre-processing stage zero
[16], [17].

Hence, SIAM™ provides this novel hybrid RS-IUS ar-
chitecture with spectral prior knowledge of the 4-D world-
through-time starting from the pre-attentive vision first
stage (refer to Section II-C), which makes the inherently
ill-posed RS image interpretation problem better posed for
numerical treatment (refer to Section II-B).

• The aforementioned three-stage hybrid RS-IUS archi-
tecture, employing SIAM™ as its symbolic, syntactic,
pre-attentive vision first stage (refer to Section II-C),
is alternative to state-of-the-art two-stage non-iterative
GEOBIA and three-stage iterative GEOOIA system ar-
chitectures whose pre-attentive vision first stage consists
of an inherently ill-posed sub-symbolic inductive image
segmentation algorithm (refer to Section II-F).

• As input SIAM™ requires a RS image radiometri-
cally calibrated into top-of-atmosphere (TOA) reflectance
(TOARF) or surface reflectance (SURF) values, where
SURF is a special case of TOARF in very clear-sky
conditions and flat terrain conditions [93], i.e., TOARF ⊃
SURF, in compliance with the Cal(/Val) requirements of
the QA4EO guidelines [3] (refer to Section II-D). In
practice, SIAM™ does not consider preliminary atmo-
spheric correction as mandatory (see Table I) because
SIAM™ is knowledgeable on how to cope with RS data
affected by atmospheric effects (noise). In other words,
SIAM™ is capable of recognizing surface types in RS
images by “looking through” atmospheric effects, like the
presence of haze and thin clouds [5]–[17]. This “look-
through” capability is due to the fact that the original
prior knowledge base of SIAM™ consists of a reference
dictionary of spectral signatures in TOARF values, where
relation TOARF ⊃ SURF means that TOARF ≈ SURF +
atmospheric noise, whereas traditional libraries of spectral
signatures are in SURF values (measured at the ground
level), i.e., are atmospheric noise free. Well-known ex-
amples of reference dictionaries of spectral signatures in
(atmospheric noise-free) SURF values can be found in
the existing literature (e.g., refer to [94, p. 273]) or in
commercial software products [135], like the U.S. Geo-
logical Survey (USGS) mineral and vegetation spectral
libraries, the Johns Hopkins University spectral library,
and the Jet Propulsion Laboratory mineral spectral library
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[83]–[86]. Being provided with an atmospheric noise
model, SIAM™ is robust to the presence of atmospheric
effects.

• As output SIAM™ delivers preliminary classification
(pre-classification) maps at various degrees of semantic
granularity. In these semantic maps, the map legend is a
discrete and finite set of symbolic informational primitives
called color-based inference categories, spectral-based
semi-concepts, spectral categories or spectral end mem-
bers, e.g., “vegetation,” “bare soil or built-up,” “water or
shadow,” etc.

• The semantic meaning of a semi-concept is: 1) superior
to zero, which is the semantic value of sub-symbolic
image features, i.e., image-objects or, vice versa, image-
contours; and 2) equal or inferior to the semantic meaning
of the attentive vision concepts (e.g., LC classes, say,
“needle-leaf forest”), belonging to a world model, equiv-
alent to a 4-D spatio-temporal ontology of the physical
world-through-time (refer to Section II-C).

• Spectral categories generated as output by SIAM™ be-
long to six parent spectral categories (also called super-
categories) or major spectral end members which are listed
below.

1) “Clouds.”
2) “Either snow or ice.”
3) “Either water or shadow.”
4) “Vegetation,” equivalent to “either woody vegetation

or cropland or grassland (herbaceous vegetation)
or (shrub and brush) rangeland.”

5) “Either bare soil or built-up.”
6) “Outliers.”

Due to the presence of class “Outliers” (“Unknowns”),
SIAM™ provides a mutually exclusive and totally ex-
haustive mapping of the input MS image into a discrete
and finite set of spectral categories. This is in line with
the Congalton and Green requirements of a classification
scheme [51]. Although the definition of a rejection rate
is a well-known objective of any RS image classification
system, e.g., refer to [94], in RS, common practice image
classifiers are often applied without any outlier detection
strategy.

• Spectral categories in the (2-D) image domain are not
LC classes, equivalent to 4-D object-through-time models
in the real (4-D) world-through-time model [5]–[17]. In
general, one spectral category can belong to many LC
classes (e.g., spectral category “strong vegetation” can
belong to LC classes “grassland” or “agricultural fields”).
Analogously, one LC class encompasses different colors
(e.g., class “deciduous forest looks like several tones of
green equivalent to the quantized colors “average veg-
etation” or “dark vegetation”). To conclude, in general,
a finite set of many-to-many associations holds between
SIAM™’s spectral-based semi-concepts (belonging to the
(2-D) image domain) and reference LC classes (equiva-
lent to concepts or 4-D object-models in the real world-
through-time).

• SIAM™ is implemented as an integrated system of six
sub-systems, including one “master” Landsat-like subsys-
tem plus five “slave” subsystems, whose spectral resolu-
tion overlaps with, but is inferior to, Landsat’s, refer to
Table II.
1) A “master” seven-band Landsat-like SIAM™

(L-SIAM™) capable of detecting 95/47/18 mutually
exclusive and totally exhaustive spectral categories at
fine/intermediate/coarse semantic granularity, where
symbolic parent–child relationships can be leveraged
to improve the RS image interpretation process.
The legend of the preliminary classification map
generated by L-SIAM™ at fine semantic granularity
and consisting of 95 spectral categories is shown in
Table III.

2) A four-band Satellite Pour l’Observation de la
Terre (SPOT)-like SIAM™ (S-SIAM™), which
detects 68/40/15 mutually exclusive and totally
exhaustive spectral categories at fine/intermediate/
coarse semantic granularity.

3) A four-band National Oceanic and Atmospheric Ad-
ministration Advanced Very High Resolution
Radiometer (AVHRR)-like SIAM™ (AV-SIAM™),
which detects 82/42/16 mutually exclusive and totally
exhaustive spectral categories at fine/intermediate/
coarse semantic granularity.

4) A five-band ENVISAT Advanced Along-Track Scan-
ning Radiometer-like SIAM™ (AA-SIAM™), which
detects 82/42/16 mutually exclusive and totally
exhaustive spectral categories at fine/intermediate/
coarse semantic granularity.

5) A four-band QuickBird-like SIAM™ (Q-SIAM™),
which detects 52/28/12 mutually exclusive and to-
tally exhaustive spectral categories at fine/intermediate/
coarse semantic granularity. The legend of the prelim-
inary classification map generated by Q-SIAM™ at
fine semantic granularity and consisting of 52 spectral
categories is shown in Table IV.

6) A three-band Disaster Monitoring Constellation-like
SIAM™ (D-SIAM™), which detects 52/28/12 mutu-
ally exclusive and totally exhaustive spectral categories
at fine/intermediate/coarse semantic granularity.

The output spectral categories detected by the six SIAM™
sub-systems at fine, intermediate, and coarse semantic
granularity, described in Table II, are summarized in
Table V.

• With regard to implementation, in [6], enough information
is provided for the crisp L-SIAM™ implementation to
be reproduced. The down-scaled S-SIAM™, AV-SIAM™,
and Q-SIAM™ versions generated from L-SIAM™ (refer
to Table II) are described in [7], [8]. In [12], the crisp-
to-fuzzy SIAM™ transformation is explained in detail. It
is noteworthy that since its first 2006 release presented in
[6], L-SIAM™ has increased its number of output spectral
categories from 46 to 95 (see Table V). This shows that, in
line with theory [79], [87], there is a slow “learning curve”
in the development and fine-tuning of physical models,
like SIAM™.
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TABLE II
SIAM™ SYSTEM OF SYSTEMS: LIST OF SPACEBORN/AIRBORNE IMAGING SENSORS ELIGIBLE FOR USE
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TABLE III
PRELIMINARY CLASSIFICATION MAP LEGEND ADOPTED BY L-SIAM™ AT FINE SEMANTIC GRANULARITY CONSISTING OF 95 SPECTRAL

CATEGORIES (REFER TO TABLE II). PSEUDO-COLORS OF THE SPECTRAL CATEGORIES ARE GROUPED ON THE BASIS OF THEIR

SPECTRAL END MEMBER (E.G., “BARE SOIL OR BUILT-UP”) OR PARENT SPECTRAL CATEGORY (E.G., “HIGH” LEAF

AREA INDEX (LAI) VEGETATION TYPES). THE PSEUDO-COLOR OF A SPECTRAL CATEGORY IS CHOSEN

SO AS TO MIMIC NATURAL COLORS OF PIXELS BELONGING TO THAT SPECTRAL CATEGORY

TABLE IV
PRELIMINARY CLASSIFICATION MAP LEGEND ADOPTED BY Q-SIAM™ AT FINE SEMANTIC GRANULARITY CONSISTING OF 52 SPECTRAL

CATEGORIES (REFER TO TABLE II). PSEUDO-COLORS OF THE SPECTRAL CATEGORIES ARE GROUPED ON THE BASIS OF THEIR

SPECTRAL END MEMBER (E.G., “BARE SOIL OR BUILT-UP”) OR PARENT SPECTRAL CATEGORY (E.G., “HIGH” LEAF

AREA INDEX (LAI) VEGETATION TYPES). THE PSEUDO-COLOR OF A SPECTRAL CATEGORY IS CHOSEN

SO AS TO MIMIC NATURAL COLORS OF PIXELS BELONGING TO THAT SPECTRAL CATEGORY

TABLE V
SIAM™ SYSTEM OF SYSTEMS. SUMMARY OF INPUT BANDS AND OUTPUT SPECTRAL CATEGORIES REPORTED IN TABLE II.

(∗) EMPLOYED IN SENSOR-INDEPENDENT BI-TEMPORAL POST-CLASSIFICATION CHANGE DETECTION

• In terms of OQIs (refer to Section II-D), existing
per-pixel physical model-based decision-tree preliminary
classifiers, like SIAM™ or the ATCOR-SPECL, detect
output spectral categories (symbolic strata, symbolic
masks) automatically and in near real-time, where au-
tomation does not come at the expense of accuracy or ro-
bustness to changes in the input data set, but at the expense
of the informative content of spectral categories generated
as output information primitives whose semantic value is
low, i.e., equal or inferior to that of target 4-D LC classes-
through-time, refer to Section II-C.

III. PROBLEM RECOGNITION AND

OPPORTUNITY IDENTIFICATION

To pursue the two GEOSS key principles of Accessibility/
Availability and Suitability/Reliability of RS data and data-
derived information/knowledge products, considered necessary
to allow the provision of and access to the Right Information,
in the Right Format, at the Right Time, to the Right People, to
Make the Right Decisions, the GEO-CEOS QA4EO guidelines
require validation of sensory data and data-derived products
in terms of quantifiable, metrological/statistically based QIs
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featuring a degree of uncertainty in measurement [3] (refer to
Section II-D).

In recent years, the GEOSS visionary goal of providing
harmonized multi-source EO data, data-derived geospatial
information products and operational (turnkey, ready-to-go,
good-to-go) services at global, regional, and local spatial scales
has become increasingly urgent due to multiple drivers. First,
cost-free access to large-scale low spatial resolution (LR)
(above 40 m) and medium spatial resolution (MR, from 40 to
20 m) spaceborne image databases has become a reality in line
with the GEO vision [3], [95]. Second, the demand for HR and
VHR commercial satellite imagery has continued to increase in
terms of data quantity and quality [1] (refer to Section I). Third,
an increasing number of ongoing international research projects
aims at delivering operational RS-IUS products and services at
global spatial scale [2]. Among these ongoing programs worth
mentioning is the Global Monitoring for the Environment and
Security (GMES), an initiative led by the European Union (EU)
in partnership with the European Space Agency [96], [97], the
National Aeronautics and Space Administration (NASA) Land
Cover and Land Use Change (LCLUC) program [2, p. 3] and
the USGS-NASA Web-Enabled Landsat Data (WELD) project
[98], in addition to the aforementioned GEO GEOSS [3], [95].

Unfortunately, to date, the automatic or semi-automatic
transformation of huge amounts of multi-source multi-
resolution EO images into information/knowledge can still be
considered far more problematic than might be reasonably
expected (refer to Section I). In practice, the increasing rate
of collection of EO data of enhanced spatial, spectral, and
temporal quality outpaces the ability of existing RS-IUSs to
generate information/knowledge (e.g., LC and LCC maps, also
refer to Section II-A) from RS data [5]–[17].

Collected from the existing literature, many kinds of con-
verging evidence support the conclusion that productivity in
terms of quality, quantity, and value of RS data-derived prod-
ucts delivered by the RS community can still be considered low,
in contrast with the visionary goal of the GEOSS project and
the QA4EO guidelines. These converging sources of evidence
include the following:

• According to philosophical hermeneutics, the impact upon
computer science, information technology, artificial intel-
ligence, and machine learning of existing different quan-
titative and qualitative concepts of information (namely,
“information-as-thing” and “information-as- (an intepre-
tation) process”), embedded in more or less explicit in-
formation theories (refer to Section II-A), appears largely
underestimated [23], [24]. It means that fundamental
questions-like: When do sub-symbolic data become sym-
bolic information? When does vision go symbolic [21]?
etc.—appear largely underestimated and, as a conse-
quence, far from being answered [16], [17].

• There is an ongoing multi-disciplinary debate about a
claimed inadequacy of scientific disciplines such as com-
puter vision, artificial intelligence/machine intelligence
and cybernetics/machine learning from data, whose ori-
gins date back to the late 1950s, in the provision of
operational solutions to their ambitious cognitive objec-

tives [18], [19]. Deductive inference is the main focus
of interest of traditional artificial intelligence. Inductive
inference is the basis of the machine learning discipline.
It may mean that, if they are not combined, deductive and
inductive inference systems (refer to Section II-B) show
intrinsic weaknesses in operating mode, irrespective of
implementation [16], [17].

• “Research and development in computer vision is often
considered quite separate from research into the function-
ing of human vision. A fact that is generally ignored is
that biological vision is currently the only measure of the
incompleteness of the current stage of computer vision,
and illustrates that the problem is still open to solution”
[47] (refer to Section II-C).

• Typically adopted in LR (coarser than 20 m) RS image
applications, traditional context-insensitive (pixel-based)
deductive (physical model-based) or inductive (statisti-
cal model-based) RS-IUSs, exploiting the sole context-
insensitive chromatic/achromatic information in a (2-D)
image domain, tend to be affected by a well-known
salt-and-pepper classification noise effect [32]–[34].
To outperform traditional pixel-based classifiers, starting
from the late ’80s when spaceborne HR images (e.g.,
SPOT-1 to SPOT-5 imagery) became available for sci-
entific and commercial applications, a new generation
of context-sensitive RS-IUSs, capable of dealing with
image-objects, including (0-D) points, (1-D) lines, (2-D)
polygons, and multi-part polygons (strata) according to
the Open Geospatial Consortium Simple Feature Spec-
ification [33], rather than pixels alone, has been pro-
posed to the RS community [5]–[17], [77], [99], [100].
Since the year 2000, contemporary with the availability
of the first spaceborne VHR commercial images (namely,
the IKONOS images acquired and distributed by GeoEye),
two-stage non-iterative GEOBIA systems and three-stage
iterative GEOOIA systems, where the former is a spe-
cial case of the latter, i.e., GEOOIA ⊃ GEOBIA [16],
[17], have quickly gained widespread popularity [38],
[89]–[92]. Unfortunately, despite its commercial success,
the GEOBIA/GEOOIA approach remains affected by a
lack of research, general consensus, and productivity, as
acknowledged by increasing sections of the existing liter-
ature [16], [17], [38]–[40], [79] (refer to Section II-F).

• To outperform existing deductive and inductive inference
systems, a novel trend in recent literature aims at develop-
ing hybrid inference systems capable of continuous and
categorical variables extraction from sensory data [35]
(refer to Section II-B). For example, to be considered
inspired to human vision, an artificial vision system should
be implemented as a symbolic hybrid inference system
comprising a symbolic hybrid pre-attentive vision first
stage (refer to Section II-C). In line with this trend, new
opportunities in the design and implementation of oper-
ational hybrid RS-IUSs have been proposed to the RS
community in recent years [5]–[17]. For example, a three-
stage hybrid RS-IUS architecture, employing the opera-
tional SIAM™ software product as its symbolic, syntactic,
pre-attentive vision first stage (refer to Section II-G), is
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proposed as a viable alternative to existing state-of-the-art
two-stage non-iterative GEOBIA and three-stage iterative
GEOOIA systems, whose pre-attentive vision first stage
consists of an inherently ill-posed sub-symbolic inductive
image segmentation algorithm (refer to Section II-F).

• Publication standards typically adopted by the RS litera-
ture may be considered inadequate to the assessment of
alternative RS-IUSs in operating mode.

• In nonprobability sampling, sampling units are se-
lected by a purposeful, convenient, or haphazard
procedure that does not allow to determine the in-
clusion probability for each sampling unit. Hence,
nonprobability sampling lacks the necessary proba-
bility foundation to permit generalization from the
sample data to the full target population [55] (refer to
Section II-E). Whereas nonprobability sampling is
perfectly acceptable for, say, training/testing any in-
ductive data learning classifier, it should never be em-
ployed for map accuracy validation. On the contrary,
in the RS literature, there is a lack of probability sam-
pling protocols enforced for RS data-derived product
validation in compliance with principles of statistics
and the QA4EO guidelines (as negative examples not
to be imitated, refer to [54], [61], [62]).

• The sole accuracy is typically selected from the
possible set of mutually independent OQIs eligi-
ble for parameterizing RS-IUSs for assessment and
comparison purposes (refer to Section II-D). As a
consequence of this experimental drawback, the op-
erational domain of applications of these RS-IUSs
remains unknown or appears questionable. For ex-
ample, how does accuracy of a RS-IUS tested in a
local mapping problem scale to regional, continental,
global mapping applications [2]?

• Map accuracy estimates are almost never provided
with a degree of uncertainty in measurement in
compliance with the principles of statistics together
with the QA4EO recommendations [3]. The practical
consequence of this experimental drawback is that
the statistical significance of these accuracy estimates
remains unknown.

• In general, alternative RS data mapping solutions
are tested in toy problems at small spatial scale
(e.g., local scale) and/or coarse semantic granularity,
i.e., the CEOS WGCV LPV Stage 1 validation re-
quirements tend to be accomplished at best (refer to
Section II-D). The practical consequence of this ex-
perimental drawback is that the robustness of these
RS-IUSs to changes in the input data set together
with their scalability to real-world RS applications
at large (e.g., continental, global) spatial scale and
fine semantic granularity remain unknown or appear
questionable [16], [17].

• It should be well known that first-stage pre-attentive
vision algorithms, including image-object segmen-
tation and image-contour detection approaches (the
latter being the dual problem of the former), are
inherently ill-posed problem in the Hadamard sense

[16], [17], [32], [35], [38]–[45] (refer to Section II-C).
Irrespective of this scientific evidence, dozens of
presumably “better” image segmentation/contour de-
tection methods are presented each year in the RS
and computer vision literature, while relatively lit-
tle research has focused on the development of im-
age segmentation probability sampling strategies for
quality assessment and comparison purposes [61],
[62], [101], [102]. This lack makes it hard to com-
pare different image segmentation/contour detection
methods or even different parameterizations of a sin-
gle method.

• Quality assessment protocols or guidelines, like those
proposed in [54] and [88], do not satisfy the protocol
definition provided in Section II-E. For example, the
so-called protocol for accuracy assessment of classi-
fication maps generated from VHR images proposed
in [54] does not provide a set of rules for accuracy as-
sessment starting from (probability) sampling design
to end up with sample analysis and estimation (refer
to Section I). In practice, [54] presents a mere list of
formulas of thematic accuracy indices and geometric
error indices.

As an example of the theoretical and methodological lim-
itations mentioned above, let us consider works on image
segmentation assessment based on a finite reference sample
set, like [54], [61], and [62], which differ from works focused
on a complete-coverage segmentation map pair comparison,
such as [142]. In papers like [54], [61], and [62], segmentation
QIs are collected against, respectively, 11, one (!), and 37
reference image-objects selected by a nonprobability sampling
strategy in a spaceborne VHR image. Hence, they lack the
necessary probability foundation to permit generalization from
the sample data to accuracy of the whole population [88] (refer
to Section II-E). In addition, estimated QIs are not provided
with any degree of uncertainty in measurement. Hence, they
have no statistical significance [3]. If computed, due to the tiny
or small cardinality of the reference sample set, the degree of
uncertainty of these QI estimates would be extremely large [50],
showing that little (useful) information is conveyed by these QI
values.

Based on the aforementioned considerations, it is possible
to conclude that, almost ten years from the GEOSS launch,
the GEO-CEOS QA4EO guidelines have been successful in
gaining attention of the RS community on the GEOSS principle
of Accessibility/Availability of sensory data and data-derived
products. On the other hand, the second GEOSS principle of
Suitability/Reliability of operational, comprehensive and timely
“knowledge/information products” derived from RS data can
still be considered far from being accomplished by the RS
community.

According to philosophical hermeneutics, the cause of this
dichotomy is well known [23], [24]. The first GEOSS key prin-
ciple is quantitative (unequivocal) and related to the Shannon
concept of “information-as-thing” irrespective of its meaning
[78]. As such, it is easier to deal with than the second GEOSS
principle, which is qualitative (equivocal), has to deal with the
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meaning (interpretation, understanding) of (quantitative) data,
and is related to the concept of “information-as-(an interpreta-
tion) process” (refer to Section II-A).

To have a favorable impact on the yet-unaccomplished
second GEOSS key principle, where Suitability/Reliability
of operational, comprehensive, and timely RS data-derived
information products and services is required, this work aims at
two objectives. The main objective is to present to the RS com-
munity a novel and, to the best of these authors’ knowledge, the
first probability sampling protocol for accuracy assessment of
thematic maps generated from VHR images in compliance with
the QA4EO guidelines (refer to Section I). This means that,
among the OQIs listed in Section II-D, this work focuses on the
sole mapping accuracy assessment, required to be statistically
consistent and statistically significant, in contrast with a major
portion of the RS literature where non-probability sampling
methods are adopted instead (refer to this section above).

In the experimental session, the proposed protocol is tested in
the accuracy validation of thematic maps automatically gener-
ated from a test set of VHR images, acquired across time, space,
and sensors, by the existing SIAM™ software product (refer
to Section II-G). Hence, as its secondary objective, this work
provides a statistically consistent and statistically significant
accuracy validation of the SIAM™ software product (refer to
Section I), eligible for use as the pre-attentive vision first stage
in a novel generation of automatic three-stage hybrid RS-IUSs
(refer to Section II-G).

To accomplish its primary objective, this work finds several
opportunities in the existing literature as described below.

• In [55], Stehman and Czaplewski discuss the fundamental
principles of the six basic components of a probability
sampling protocol for thematic map accuracy assessment
(refer to Section I).

• Overton and Stehman provide a helpful discussion of the
Horvitz–Thompson theorem as a unifying perspective for
probability sampling [60].

• It is common knowledge that QI selection has to account
for the well-known non-injective property of QIs [5]–[17].
This implies that no hypothetical universal QI can exist,
which contradicts a significant portion of the RS literature
[57]–[59] (refer to Section I). For example, Stehman states
that “numerous accuracy measures have been proposed
for summarizing the information contained in an error
matrix. No one measure is universally best for all accuracy
assessment objectives, and different accuracy measures
may lead to conflicting conclusions because the measures
do not represent accuracy in the same way. Choosing
appropriate accuracy measures that address objectives of
the mapping project is critical” [49].

• Although often forgotten in RS common practice, it is
well known that the spatial distribution of mapping errors,
also known as locational accuracy [53] or location error
[56], is not investigated by traditional TQIs [49], [50]–
[53], which are typically site insensitive (nonsite specific
[53], context-independent), i.e., pixel based. As a conse-
quence, sub-symbolic object-specific (site-specific) SQIs
have been proposed [52], [53], [56], to be estimated in

combination with the more “traditional” symbolic pixel-
based TQIs (refer to Section I). In practice, in agreement
with [54], a (symbolic) classification map can be trans-
formed into a (sub-symbolic) segmentation map (refer to
footnote 1). Thus, SQIs compare pairs of test and reference
polygons (2-D segments) in terms of shape, irrespective
of their thematic labels. The complementary nature of
symbolic pixel-based TQIs and sub-symbolic object-based
SQIs is analogous to the exploitation of both pixels and
image-objects, considered complementary rather than al-
ternative, in RS-IUSs such as those proposed in [5]–[17],
[77], [99]. Intuitively, sub-symbolic object-based SQIs can
be related to the pre-attentive vision first phase in both hu-
man vision (refer to Section II-C) and GEOBIA/GEOOIA
systems (refer to Section II-F), e.g., refer to [54], [62],
[101]. On the other hand, symbolic TQIs can be related
to the attentive vision second phase in both human vision
(refer to Section II-C) and GEOBIA/GEOOIA systems
(refer to Section II-F).

• Optimized mutually uncorrelated symbolic pixel-based
TQIs can be selected in compliance with the works by
Stehman [49], Foody [53], [103] and Pontius et al. [127].
Unfortunately, to date, TQIs promoted by, say, Stehman
[49] and Pontius et al. [127] are in contrast with a large
portion of the existing RS literature where the kappa coef-
ficient of agreement, the zeta significance of the difference
in accuracy between two maps with independent kappa
coefficients, and the normalization of an error matrix are
still very popular, despite their well-known drawbacks
[49], [53], [103], [127].

• Mutually uncorrelated sub-symbolic image-object-based
SQIs can be inspired to those estimated in [54].

• Variance estimation formulas for both TQI and SQI en-
sembles can be selected from [50] (refer to Section II-D).

• A general rule of thumb would require to select the
reference data source one step closer to the ground than
the RS data used to make up the map [51] (refer to
Section I). Unfortunately, when dealing with thematic
maps generated from VHR imagery, it is often the case
there is no reference data source originated at the same
time of the VHR image acquisition, but one step closer
to the ground. For example, to assess the accuracy of
thematic maps generated from, say, the test VHR image set
acquired in the year 2010 and adopted in this work (refer to
Section IV below), pre-existing VHR thematic maps dated
2010 would be required, since ground visits cannot be per-
formed back in time. In general, in these cases the sole data
source available for reference population sampling is the
same VHR image adopted as input by the RS-IUS whose
output map has to be evaluated. In other words, the test and
reference data sources coincide with the VHR image at
hand. In compliance with the (qualitative, equivocal) con-
cept of “information-as-(an intepretation) process” [23],
[24] (refer to Section II-A), the lack of a reference data
source one step closer to the ground than the VHR image
at hand should not be considered a problem, as far as the
second knowledge expert (reference cognitive agent), the
one in charge of implementing the sample evaluation and
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labeling phases of the map accuracy assessment protocol
(refer to Section VI below), interprets the VHR image by
independent means from the first (test) cognitive agent,
namely, the RS-IUS whose maps are being validated.
In general, the collection of reference (“truth”) samples,
from the photointerpretation of VHR imagery, ground
visits, existing maps, tabular data, or a combination of
these sources, remains an equivocal (“information-as-(an
intepretation) process” [23], [24], refer to Section II-A),
expensive, tedious, difficult or impossible task [3], [55].

IV. TEST IMAGES AND THEMATIC MAPS

Since the topic of this work is the accuracy assessment
of maps generated from VHR images in a satellite-based
information/knowledge processing system workflow in compli-
ance with the QA4EO guidelines [3], the problem of quality
assessment of data-derived products should not be considered
independent of the radiometric and geometric quality of the
input data source (since “garbage in means garbage out”).

In the framework of the 2011 DigitalGlobe eight-band Chal-
lenge, two eight-band 2 m-resolution off-nadir WorldView-2
(WV-2) images of the capital site of Brazilia (Brazil) acquired
in, respectively, the green season (identified as acquisition
time 1, Time-1 (T1)) and the dry season (identified as acqui-
sition time 2, Time-2 (T2)) of the year 2010, were provided to
the present authors by DigitalGlobe for testing purposes [3].
An additional four-band 2.4-m resolution QuickBird-2 (QB-2)
image of Brazilia, acquired in 2010 at time T1 + 45 days, was
provided by DigitalGlobe for comparison purposes.

In this experimental session, the two WV-2 images and the
QB-2 image are radiometrically calibrated into TOARF values,
in compliance with the Cal/Val requirements of the QA4EO
guidelines (see Section II-D) and with the input data require-
ments of the SIAM™ software toolbox (refer to Section II-G).
Second, the two “slave” WV-2 images calibrated into TOARF
values are radiometrically registered (re-calibrated) to match
two “master” 7-band 30 m-resolution nadir-viewing Landsat-7
Enhanced Thematic Mapper+ (ETM+) images radiometrically
calibrated into TOARF values. Next, the three test VHR images,
featuring their most advanced calibration (or re-calibration)
stage, are mapped automatically by SIAM™. Finally, an au-
tomatic post-classification change detection software module
is applied to the two SIAM™ maps generated from the re-
calibrated WV-2 image pair.

A. WV-2 and QB-2 Image Pre-Processing

RS image pre-processing (enhancement), whose goal is to
transform an input image into an output image of enhanced ge-
ometric and/or radiometric quality, is clearly acknowledged as
a fundamental pre-requisite of RS image quantitative analysis
[3], [81], [83]–[87]. The rest of this section focuses exclusively
on the radiometric quality enhancement of spaceborne/airborne
VHR imagery, i.e., it does not deal with the improvement of
the geometric quality of RS images through geo-projeEnhanced
Thematic Mapperction, co-registration, and orthorectification,
considered beyond the scope of this paper although their impor-

tance is fundamental, particularly in multi-temporal analysis,
like LCC detection, where co-registration quality is typically
required below 1 pixel [83], [84], [113], [114].

It is well known that pictorial properties (reflected radiances)
of the same cover type are “affected significantly by Sun-target-
sensor geometry because most types of natural and artificial
surfaces are anisotropic reflectors... As a result, a fixed target
may be viewed from very different viewing angles, leading
to varying reflected radiance. This affects the detectability
of the temporal evolution of a fixed target. The bidirectional
dependency also poses problems in the retrieval of surface
parameters such as spectral albedo and radiant fluxes, as they
are defined over all directions” [104]. A typical illumination ef-
fect is when, caused by self-occlusion or occlusion phenomena
[10], more shadows are seen looking toward the sun whereas
more illuminated surfaces are seen when looking away from the
sun. Another typical illumination effect is when multi-temporal
images of the same surface area featuring increased solar zenith
angles appear darker and affected by longer shadows [104].

Starting from the late ’70s, the non-Lambertian nature of
vegetation reflectance has been considered a well-known lim-
itation to the use of AVHRR visible (VIS) and near-infrared
(NIR) reflectances. For example, in [105], it is stated that “it
would not be possible to composite reflectance data reliably
from AVHRR data without LC class-specific bidirectional re-
flectance distribution function (BRDF) effects correction.” To
normalize varying AVHRR image acquisition conditions, a time
series of AVHRR images acquired at different times and Sun-
target-sensor geometries are required as input to fit a model of
vegetated BRDF effects; next, vegetation spectral reflectances
are standardized to a chosen geometry of view and solar posi-
tion (e.g., nadir view and 45◦ solar zenith angle [104], [105])
to exhibit much smoother seasonal variations [104] and smaller
inherent data spread [105] than the original reflectances upon
fixed vegetation targets, which facilitates statistical analysis and
interpretation of RS images for monitoring changes associated
with surface conditions.

Two main approaches for correction of radiometric variations
in multi-date imagery emerge from the literature: physical
and statistical approaches for radiometric normalization [104],
[106]. Atmospheric radiative transfer models aim at accounting
for some or all radiometric effects on surface response by
converting DNs into physical units of TOA radiance (TOARD)
using sensor calibration coefficients, then calculating SURF
values as a function of sunlight (direct) illumination conditions
(e.g., affected by the Sun-to-Earth distance at the acquisi-
tion time), topographic effects (e.g., incident angle between
the sunlight direction and the normal to the target surface),
and atmospheric effects (e.g., airlight component), where
the (isotropic) Lambertian surface hypothesis holds. Finally,
(anisotropic) non-Lambertian surface types are accounted for
by estimating surface albedo from SURF values divided by a
LC class-specific BRDF factor [83], [84], [86]. With regard
to physically based BRDF models that require accurate pre-
liminary correction of TOARD values into SURF values, e.g.,
refer to the Second Simulation of the Satellite Signal in the
Solar Spectrum (6S) code developed by Vermote et al. [107],
these are functions (e.g., linear functions) of the LC type,
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electromagnetic wavelength, solar, and sensor positions [105].
LC class-specific BRDF models require estimation of model
free parameters to be optimized in a set of RS images, acquired
in a variety of solar and sensor positions, sufficient to enable
BRDF models to be fitted [104]–[106]. In practice, a reference
library of sensor-specific multiple views of a fixed target surface
type must be built up to fit a LC type-specific BRDF model.
This approach typically presents two problems. “First, there is
no guarantee that the BRDF of, say, vegetation remains constant
over time, for reflectance changes as plants grow and respond
to their environment. Second, atmospheric conditions can vary
considerably and, unless these are taken into account, will affect
the calculated BRDF. Modeling bidirectional reflectance of a
variety of vegetation types and performing BRDF correction to
a known accuracy remains a difficult task” [105].

The statistical model-based approaches for radiometric cor-
rection aim at an empirical radiometric normalization of relative
radiometric differences existing between multiple data sets
through radiometric registration (matching), i.e., registering
one data set to another so that it appears as if both were acquired
under the same set of acquisition conditions. Mostly adopted
for correction of time series of RS images rather than spatial
matching of images, statistical approaches have also been used
to generate radiometrically matched image mosaics [106].

This subsection focuses on the radiometric quality of RS
images in terms of:

• Absolute radiometric calibration of DNs into TOARD
values (refer to Section II-D) [5]–[17].

• Atmospheric correction and topographic correction (TOC)
[10], [108], [109] of TOARD into SURF values when the
target surface is assumed to be Lambertian [93].

• Approximation of SURF with TOARF values in clear-sky
and flat terrain conditions (refer to Section II-D) [5].

• Surface type-specific BRDF effect correction of SURF or
TOARF values into spectral albedo values to account for
non-Lambertian surfaces [83], [84], [86], [105].

1) Absolute Radiometric Calibration of DNs into TOARD
Values: The linear conversion of DNs into radiometrically cor-
rected TOARD values, called absolute radiometric calibration,
assumes the viewed earth surface be Lambertian (isotropic).
For example, for each pixel p and wavelength λ in band Band
of a WV-2 or QB-2 product acquired at time t[110], like the
VHR test images adopted in this work (refer to the introduction
to Section IV), the following absolute radiometric calibration
equation holds:

0 ≤TOARD(p, λ ≡ Band, t)

=
[absCalFactor(Band, t)∗DN(p,Band, t)]

effectiveBandwidt(Band, t)
(1)

where TOARD(p, λ) ≥ 0 is expressed in radiometric physi-
cal units [W ∗ m−2 ∗ sr−1 ∗ micrometer−1], while absolute cal-
ibration parameters absCalFactor and effectiveBandwidth are
found in the WV-2 and QB-2 image medatadata file (exten-
sion.IMD).

2) Atmospheric Correction and Topographic Correction of
TOARD into SURF Values: In the words of Schaepman-Strub

et al. [81], “reflectance quantities acquired under hemispherical
illumination conditions (i.e., all outdoor measurements) depend
not only on the scattering properties of the observed surface, but
as well on atmospheric conditions, the object’s surroundings,
and the topography, with distinct expression of these effects in
different wavelengths.” For example, the calibrated at-sensor
radiance in pixel p of an EO image, where p is located in
(lat, long) coordinates, at acquisition time t and wavelength λ,
identified as TOARD(p, λ, t), can be described as [10]

0 ≤TOARD(p, λ, t)

=L
surface

(p, λ, t) + L
adj

(p, λ, t) + L
airlight

(λ, t) (2)

where Lsurface(p, λ, t) is the target surface-reflected radi-
ance due to several components, namely, an unscattered sun-
light component, a scattered skylight component [111], and
a scattered terrain irradiance incident on the target directly
from surrounding terrain slopes (refer to this section below),
Ladj(p, λ, t) is the adjacency radiance reflected by objects other
than the target and scattered or reflected into the sensor by the
atmosphere, and Lairlight(λ, t) is the scattered solar radiance
from the atmosphere to the sensor, commonly called airlight
[111] or upwelling path radiance [83], [84]. It is noteworthy
that terms Ladj(p, λ, t) and Lairlight(λ, t) contain no informa-
tion on the surface properties of the target pixel p.

Expanding term Lsurface(p, λ, t) when the Lambertian sur-
face assumption holds, we obtain [83]–[86]

0 ≤Lsurface(p, λ, t)

=SURF (p, λ, t) · τuw(λ, t) ·
1

π · dSE(t)2

· [(τdw(λ, t) · ESUN(λ) · cos (ϕ(p, t)))
+Edif (λ, t) · s+ Eter(p, λ, t)] (3)

where SURF (p, λ, t) ∈ [0, 1] is the target surface reflectance
coefficient, τuw(λ, t) ∈ [0, 1] is the upward atmospheric
spectral transmittance, τdw(λ, t) ∈ [0, 1] is the downward at-
mospheric spectral transmittance, ESUN(λ) is the exoatmo-
spheric solar irradiance, found in literature [5] and related to
the so-called sunlight [111], ϕ(p, t) ∈ [0, π/2] is the incident
angle on a tilted surface, where ϕ(p, t) is computed from a
digital surface model (DSM) and/or a digital terrain model
(DTM) and the sun position, namely, the solar zenith and
azimuth angles found in the RS image metadata, dSE(t) is
the Earth–Sun distance in astronomical units to be interpolated
from values found in literature as a function of the viewing day
and time, t, transformed into a Julian day value in range {1,
365}, such that dSE(t) approximately belongs to range 1 ±
3.5% [5], Edif(λ, t) ≥ 0 is the hemispherical diffuse irradiance,
also called diffuse irradiance at the surface, ambient light
or indirect illumination [5], s is the skyview factor (visible
portion of the sky, related to the so-called skylight) ∈ [0, 1]
to be computed from a DSM and/or a DTM [83]–[86],
and Eter(p, λ, t) ≥ 0 is the scattered/reflected terrain irradi-
ance incident on the target directly from surrounding terrain
slopes, then this terrain irradiance component is null in flat
terrains [5].
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The substitution of (2) in (3) provides the solution of the
simplified radiative transfer equation in terms of surface re-
flectance, SURF (p, λ, t) ∈ [0, 1], where the Lambertian sur-
face assumption holds [83]–[86] (see (4), shown at the bottom
of the page).

In (4), atmospheric effects are modeled by atmospheric pa-
rameters τuw(λ, t)∈ [0, 1], τdw(λ, t)∈ [0, 1]Lairlight (λ, t)≥0
and Edif (λ, t) ≥ 0. Topographic effects, requiring a DEM to
be assessed, are the incident angle to the target surface element
ϕ(p, t), Eter(p, λ, t) and Ladj(p, λ, t) and the skyview factor
s. It is noteworthy that term Ladj(p, λ, t) accounts for both
atmospheric and topographic effects.

With regard to atmospheric effects, in [112], a preliminary
study of atmospheric stability was made on a dried lake in
Tuz Golu, Turkey, selected as a CEOS vicarious campaign site
offering good overall spectral uniformity and ease of access,
in August 2010. According to these authors, “data show larger
than expected variation in both the day to day and within
day measurements. Higher values of the atmospheric aerosol
optical thickness (AOT) were collected during the earlier part
of campaign interval than expected ranging from 0.5 to 0.65
for the shorter 340 nm wavelengths. Also, it shows substantial
changes in AOT halfway through the campaign, dropping to
between 0.15 and 0.3. The impacts of having an AOT that
ranges from 0.65 to 0.15 for 380 nm is the transmittance of the
atmosphere ranges from 0.52 to 0.86. This clearly demonstrates
the need for coincident measurements of the atmosphere at
the time of overpass. In comparison, a site used in Brookings,
South Dakota, during the entire month of August, varies from
0.4 to 0.1, and has an average of 0.15 at 380 nm. This results
in a change in the transmittance of the atmosphere at 380 nm
between 0.67 and 0.90. Another site near Algodones Dunes in
southwestern part of the USA has an AOT at 380 nm varying
from 0.2 to 0.05, or a transmittance value of 0.82 to 0.95.”

With regard to topographic effects, the well-known problem
of RS image TOC is a circular (chicken-and-egg) dilemma:
while image classification should be run only after TOC takes
place, TOC requires a priori knowledge of surface roughness
which is LC class specific [10], [108], [109]. To overcome
this limitation, “more research regarding the use of better
stratification methods” is strongly encouraged [108], [109].
These recommendations are accounted for in [10], where an
automatic symbolic stratification of spaceborne optical imagery
is accomplished for an automatic TOC implementation via the
SIAM™ software toolbox [5]–[17].

In addition to categorical stratification, TOC requires DSM
data be subjected to quality constraints. In [113], results reveal
that the accuracy of the TOC depends on the accuracy and
spatial resolution of the DSM data as well as the co-registration
between the DSM and satellite images. In practice: 1) artifacts
(e.g., information holes) in the DSM data can cause significant
local errors in the correction, 2) mis-registration error of one or

two pixels can lead to large error of retrieved surface reflectance
values, and 3) a DSM resolution equal or below the spatial
resolution of satellite imagery is needed for the best results.

To recapitulate, in TOC applications the following DSM
requirements specification holds:

• In line with the RS image orthorectification requirements
[114], the DSM spatial resolution should be ≤ (1/4)÷ 1
times the spatial resolution of the imaging sensor [83]–
[86], [113], [114].

• The mis-registration error between DSM and orthorecti-
fied satellite imagery should be below 1 pixel [113], [114],
in line with co-registration requirements for RS image
orthorectification [83], [84].

• The DSM quality should be “high” to avoid DSM artifacts
(e.g., no holes in the DSM data) [113].

3) Approximation of SURF with TOARF Values in Clear-
Sky Conditions and Flat Terrain: For a “very clear” sky con-
dition, when τuw(λ, t) ≈ 1, τdw(λ, t) ≈ 1 and Lairlight(λ, t) =
Edif (λ, t) ≈ 0[5], [93], if term Ladj(p, λ, t) is also ignored,
i.e., Ladj(p, λ, t) ≈ 0, while, due to a flat terrain hypothe-
sis, Eter(p, λ, t) ≈ 0 and incident angle ϕ(p, t) equals the
sun zenith angle θz(p, t), i.e., ϕ(p, t) ≡ θz(p, t), then the
SURF (p, λ, t) coefficient computed via (4) is approximated as
follows [5], [110]:

TOARF (p,Band, t) = π · dSE(t)
2

· TOARD(p,Band, t)

ESUN(Band) · cos(ϑz(p, t))
∈ [0, 1] (5)

where the sensor-specific band-averaged solar spectral irradi-
ance, ESUN(Band), can be found in the sensor characteristics
specification or in the image metadata file, while the acquisition
time t and the solar zenith angle θz are provided with the image
metadata file (with extension.IMD in the WV-2 image case).

To recapitulate, TOARF = (5) provides an approximation
of SURF = (4) when atmospheric effects are ignored together
with topographic effects (flat terrain hypothesis), whereas
BRDF effects are omitted because the Lambertian surface
hypothesis holds.

In [5], it is shown that when SURF = (4) is approximated
with TOARF = (5), the latter is affected by two error terms
due to atmospheric effects that tend to compensate for each
other. Across wavelengths, this property improves the effective-
ness of TOARF as an estimator of the true SURF values.

In addition, when wavelength λ increases, then TOARF pro-
vides a better approximation of SURF [5]. It is well known that
light scattering due to atmospheric conditions (haze, consisting
of gas molecules and water droplets) and aerosols (consisting of
liquid droplets and solid particles suspended in the atmosphere
and generated by either natural or anthropogenic sources) is
inversely proportional to the energy wavelength λ, i.e., shorter
wavelengths of the spectrum are scattered more than the longer

[0, 1] 
 SURF (p, λ, t) = π · dSE(t)
2 · 1

τuw(λ)
· (TOARD(p, λ, t)− Lairlight(λ, t)− Ladj(p, λ, t))

τdw(λ, t) · ESUN(λ) · cos (ϕ(p, t)) + Edif (λ, t) · s+ Eter(p, λ, t)
(4)
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wavelengths. Thus, a visible blue (B) channel is affected by
scattering across all atmospheric conditions ranging from “very
clear” (where scattering is proportional to a factor λ−4) to “very
hazy” (where scattering is proportional to a factor λ−0.5) and
cloudy (where complete scattering occurs, proportional to a
factor λ0) [93]. On the contrary, in the medium infrared (MIR)
wavelengths the amount of atmospheric scattering is known to
be “quite small except for “very hazy” atmospheres and can be
considered negligible” [93, p. 476].

To summarize, atmospheric effects can be omitted (ignored),
i.e., SURF = (4) ≈ TOARF = (5) when: 1) visible wave-
lengths are acquired in “very clear” or “clear” sky conditions
and 2) the NIR and MIR portions of the electromagnetic spec-
trum are acquired in all various atmospheric conditions unless
sky is “very hazy.”

Typically, a dark object subtraction technique is recom-
mended to reduce atmospheric effects due to the upwelling
path radiance [5], [93], [110]. In practice, when (4) is adopted
assuming that τuw(λ, t) ≈ 1 and τdw(λ, t) ≈ 1, while terms
Edif (λ, t), Eter(p, λ, t), and Ladj(p, λ, t) are ignored and
the flat terrain condition holds such that the incident angle
ϕ(p, t) ≡ θz(p, t), then (5) can be replaced by the following
approximation of (4), namely:

TOARF (p,Band, t) = π · dSE(t)
2

· (TOARD(p,Band, t)− Lairlight(Band, t))

ESUN(Band) · cos (ϑz(p, t))
. (6)

If (6) is adopted in place of (5) then, by definition,
TOARF = (6) = 0 for a dark object (blackbody), then the
unknown variable Lairlight(λ) is equal to the TOARD = (1)
value measured upon the blackbody [110].

4) Anisotropic BRDF Effect Correction from SURF Val-
ues into Spectral Albedo: The task of BRDF correction
is to derive, for non-Lambertian surfaces, spectral albedo
(bi-hemispherical reflectance, BHR) values, defined over all
directions [104], from SURF = (4) values, TOARF = (5)
or TOARF = (6) values where the Lambertian surface as-
sumption holds. For operational use, a LC-dependent BRDF
anisotropy factor, Kanstrpc(p, λ, t), needs to be calculated for
each surface type, which accounts for the relation between
measured SURF (p, λ, t) values [86] or TOARF(p, λ, t) values
[106] and the spectral albedo, such that

BHR

(
p, λ, t) =

SURF (p, λ, t)

K1anstrpc(p, λ, t, surface type

)

OR
TOARF (p, λ, t)

K2anstrpc(p, λ, t, surface type)
(7)

where the BRDF factor Kanstrpc (p, λ, t, surface type) is esti-
mated from an appropriate either statistical or physical surface
type-specific BRDF model [83]–[86].

A concern on validity may arise from the fact that a surface
BRDF model should not be confused with a TOA (at-sensor)
BRDF model. However, “some studies have shown that the
anisotropic properties of the surface dominate over the impact
of the atmospheric anisotropy for sensor spatial resolution finer
than tens of kilometers. Apart from satellite resolution the rel-
ative importance of the surface and the atmosphere in effecting
TOA BRDFs depends on climate regime. It is expected that

atmospheric effects on TOA BRDFs are larger for a humid and
hazy atmosphere than for a dry and clean one” [104].

A short survey of existing literature on BRDF effect correc-
tion in RS images is proposed below.

In [112], BRDF factor effects on a dried lake in Tuz Golu,
Turkey (refer to this section above), were assessed by the Na-
tional Physical Laboratory (UK) using the Gonio-Radiometric
Spectrometer System. BRDF factor measurements were per-
formed in the timeframe of the satellite overpasses to be used as
input to a radioactive transfer code in the vicarious calibration
process, where a full sequence of measurements at viewing
angles: 10◦, 20◦, 30◦ takes 10 min. The spectrometer used
with the goniometer system operated over the spectral range
400–1300 nm. As stated in this paper: “The results show that
there are dramatic changes in BRDF effects for small changes
in solar zenith angle of approximately 0.25 reflectance factor
(i.e., there is a difference in surface reflectance of 0.25 when
reflectance ranges in [0, 1]) at 650 nm over a 30 degree change
in measurement angle. This could be the result of the surface
structure of the salt flat.”

In the ATCOR software product (refer to Table I), the physi-
cal model-based radiometric processing chain, shown in Fig. 1,
requires as input three major entities [83]–[86].

• Atmospheric look-up tables created using a radiative trans-
fer code (e.g., MODTRAN) and some initial knowledge
about the state of the atmosphere (e.g., aerosol model).

• DSM and/or DTM data and their derived quantities such as
terrain slope, aspect, and skyview factor. Required DSM
constraints are mentioned above in Section IV-A2.

• TOARD calibrated and geocoded image data, stored in raw
geometry including all geometric information (e.g., pixel
location, solar and sensor geometry, etc.).

The radiative transfer parameters required for the inversion
of the at-sensor radiance TOARD = (1) to calculate the at-
mospheric parameters and the spectral albedo, BHR = (7),
typically comprise 5 up to 7 ancillary input data dimensions
[83]–[86], [104], [113].

• Sensor view and azimuth angles, solar zenith, and azimuth
angles.

• AOT (depth). In the ATCOR commercial software product
it is computed with a standard automatic AOT retrieval
approach which is class specific and works in areas
with dark surfaces, i.e., it requires preliminary classifi-
cation, performed by the ATCOR-SPECL pre-classifier,
which is the only existing symbolic syntactic alternative
to the SIAM™ software product found in commercial
software toolboxes [83]–[85], [115] (refer to Section II-G).
In the context of the ATCOR software toolbox, the
ATCOR-SPECL sub-system is considered a by-product.
An atmosphere visibility (in kilometers or, vice versa,
a dimensionless optical depth) can be selected, e.g., a
summer atmosphere visibility of approximately 30 km.

• Aerosol model, e.g., maritime/rural/urban/desert aerosol
model.

• Atmospheric water vapor amount, which is class specific
and requires preliminary classification, performed by the
ATCOR-SPECL pre-classifier [85], [115]. For example,
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Fig. 1. Same as in [86], courtesy of Daniel Schläpfer, ReSe Applications
Schläpfer. Complete atmospheric correction and radiometric normalization
scheme implemented in an “augmented” version of the ATCOR software
product [83]–[86], capable of transforming sensory data into surface reflectance
values and, next, spectral albedo. Processing blocks are represented as circles,
and output products are represented as rectangles. In this physical model-based
workflow, categorical variables, generated as output by multiple preliminary
classification stages (e.g., refer to blocks identified as “pre-classification” and
“quantitative classification”), are required for continuous bio-physical variables
estimation to be conducted on a stratified categorical variable-specific basis.
The so-called pre-classification stage is implemented as the non-adaptive, rule-
based, spectral classifier SPECL, considered as a by-product in the ATCOR
software toolbox. Among existing commercial software products, such as
those listed in Table I, the ATCOR-SPECL pre-classifier appears as the only
alternative to the symbolic, syntactic, static SIAM™ [5]–[17]. In practice,
SIAM™ is eligible for replacing the ATCOR-SPECL sub-system in the spectral
albedo estimation workflow shown in this figure.

a water vapor column in centimeters can be selected
from a known set of instances, e.g., tropical conditions/
midlatitude summer/dry summer, spring, or fall/dry desert
or winter.

• DSM or DTM, to derive quantities such as terrain slope,
aspect and skyview factor.

• Wavelength.

In the ATCOR software product [83]–[86], where the stan-
dard automatic method of AOT retrieval works in areas with
dark surfaces and is extended to the automatic selection of
standard aerosol models, there are two main sources of errors

in surface albedo estimation, particularly for VHR imaging
sensors: first, the spectral correlation of MIR (also called short-
wave IR, SWIR), visible, and NIR channels is uncertain over
vegetation and water surface types and, second, dark objects
highly depend on the surface cover type. Therefore, the aerosol
characterization is currently based on standard values in non-
vegetated areas, although new methods are still under investi-
gation over non-vegetated surfaces, e.g., bright surfaces.

Two considerations about the estimation of BHR = (7) stem
from this short analysis of the physical model-based ATCOR
radiometric processing workflow shown in Fig. 1 [83]–[86]:
1) (7) is LC class-specific [114] and 2) in common practice,
the solution of (7), i.e., the estimation of a continuous physical
variable from sensory data, requires as input, at several stages
of the data processing workflow, categorical variables belong-
ing to preliminary classification maps automatically generated
from the same RS image to be radiometrically corrected (see
Fig. 1). In other words, equivalent to two sides of the same coin,
categorical variables (e.g., LC and LCC maps) and continu-
ous variables (e.g., spectral albedo, LAI, green biomass, etc.)
should be estimated from RS images alternately and iteratively.
It means that, in a RS image processing workflow conceived
as a hybrid inference feedback system, like the stratified TOC
algorithm proposed in [10] (refer to Section IV-A2), continu-
ous variables are estimated on a categorical (stratified) basis
while (enhanced) categorical variables are estimated from (en-
hanced) continuous variables in addition to prior knowledge
(refer to Section II-B).

In [104], physical model-based LC class-specific BRDF
linear models are generated for four LC types observed by the
AVHRR sensor as a function of four free parameters, namely,
three geometric parameters, the solar zenith angle, satellite
viewing zenith angle, and relative azimuth angle (defined as
the difference between the Sun and the sensor azimuth angles),
plus one physiological canopy parameter, the normalized
difference vegetation index (NDVI) considered as a proxy of
the LAI and the green biomass. Three linear model coefficients
are empirically estimated as functions of NDVI for each LC
type by minimizing the differences between the observed and
the modeled reflectances using an optimization algorithm.
Observations are collected in multiple RS images providing a
proper sample of the geometric parameter 3-D space. The four
target LCs are: barren, grassland, forest, and cropland. In these
experiments, the satellite viewing zenith angle dependence of
reflectance for barren and grassland is significantly stronger
than for cropland and forest.

In [105], physically based BRDF models employing three
free parameters to correct SURF values of five canopies (in-
digenous forest, exotic forest, scrub, pasture, and tussock)
in AVHRR images are fitted statistically. To perform BRDF
correction, these parameters can be used in conjunction with
a vegetation map specifying proportions of these groups at any
given location, and the correction applied as a linear combina-
tion of BRDF models.

In [106], physical model-based LC class-specific BRDF
linear model parameters for radiometric normalization (reg-
istration) of multi-temporal Landsat images are estimated in
image overlapping areas. LC class-specific BRDF linear model
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TABLE VI
WV-2 AND QB-2 IMAGE SET, PROVIDED BY DIGITALGLOBE FOR TESTING PURPOSES IN THE FRAMEWORK OF THE

2011 DIGITALGLOBE EIGHT-BAND CHALLENGE, AND LANDSAT-7 ETM+ IMAGES SELECTED AS “MASTER”
IMAGES FOR RADIOMETRIC REGISTRATION (RE-CALIBRATION) OF THE TWO “SLAVE” WV-2 IMAGES

parameters are three geometric variables, the solar zenith angle,
the satellite viewing zenith angle, and the relative azimuth angle
(refer to this section above), while the linear model coefficients
to be estimated are two. First, TOARF = (5) is computed
(which assumes the surface be Lambertian), and, next, areas of
cloud, smoke, recent fire scars, and crops (where considerable
seasonal change are observed) are masked out (rejected) to
minimize the real change component in overlap areas. Finally,
in the image overlapping areas, masked to include the target
LCs only, two surface type-specific BRDF linear model coeffi-
cients are estimated when the model geometric parameter 3-D
space is properly sampled by multiple RS images acquired in
a small range of time (to guarantee that target LC types do not
change their pictorial properties during parameter estimation).
The target non-Lambertian LC classes (strata) are: water, bare
soil, woody, and non-woody vegetation.

In [114], the same empirical BRDF model employed in [106]
is easily adapted for VHR imagery, where shadow (casted by
trees and buildings, accounting for one quarter of the entire
image area) detection and removal remains a very challenging
problem.

5) Implemented Pre-Processing of the WV-2 and QB-2 Test
Images: Provided by DigitalGlobe for testing purposes, the
three VHR images acquired over the capital site of Brazilia
(Brazil) in 2010 feature the acquisition parameters shown in
Table VI. They encompass a WV-2 image acquired at T1,
corresponding to the green season, a WV-2 image acquired
at T2, corresponding to the dry season, and a QB-2 image
acquired at T1 + 45 days, corresponding to the green season.

Fig. 2. Ground observed azimuth and zenith angles of the satellite positions
(black circles, coincident as one) and sun positions (yellow circles) for the two
test images WV-2 T1 and T2.

In the rest of this paper, the eight WV-2 bands are identified
as follows: Band 1, 400–450 nm, Coastal Blue (Violet, CB);
Band 2, 0.450–0.510 nm, visible Blue (B); Band 3, 0.510–0.580
nm, visible Green (G); Band 4, 0.585–0.625 nm, visible Yel-
low (Y); Band 5, 0.630–0.690 nm, visible Red (R); Band 6,
705–745 nm, Red Edge (RE); Band 7, 0.770–0.895 nm, NIR1;
Band 8, 0.860–1.040 nm, NIR2.

The four QB-2 bands are identified as follows: Band 1,
0.450–0.520, visible Blue (B); Band 2, 0.520–0.600, visible
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Fig. 3. (a) Upwelling path radiance for images WV-2 T1 and T2 in comparison with their simulated nadiral observations. (b) Downwelling transmissivity,
τdw ∈ [0, 1], for images WV-2 T1 and T2 in comparison with their assumed nadiral observations.

Green (G); Band 3, 0.630–0.690, visible Red (R); Band 4,
0.760–0.900, NIR.

Table VI shows that the WV-2 data set is particularly suit-
able for multi-temporal analysis as the viewing geometries are
nearly identical between the two acquisitions, although the Sun
position changes significantly from East to North-East. Due to
the difference in Sun positions, then differences in atmospheric
effects (e.g., upwelling path radiance component of the at-
sensor radiance), together with surface type-specific BRDF
effects, are expected to affect the two test WV-2 images.

Fig. 2 illustrates the ground observed azimuth and zenith
angles of the satellite positions and sun positions for the two
test images WV-2 T1 and T2.

Fig. 3(a) illustrates the continuous curve values of
Lairlight(λ, t) calculated by MODTRAN simulations for the
WV-2 T1 and T2 images, together with the two dotted curves of
the two WV-2 T1 and T2 images simulated with a sensor nadir
view (i.e., satellite viewing zenith angle equals zero [104]),
e.g., to mimick a Landsat sensor viewing geometry. In the two
WV-2, T2 and T1 continuous curves the atmospheric visibility
is estimated equal to 31 km and 34 km, respectively, where
a 30 km atmospheric visibility is a standard approximation
in most applications for clear-sky conditions. Between the T1
and T2 continuous curves, differences in airlight are up to
25%, the former showing larger upwelling path radiance values.
Differences between continuous (off-nadir view) and dotted
(nadir view) curve pairs across wavelengths are up to 15%
for T1 and 10% for T2, where larger airlight values are those
acquired in the off-nadir view. It means that in comparison
with Landsat images, WV-2 T1 and T2 values are larger by,
respectively, a 15% and a 10% factor. Fig. 2(b) illustrates
the downwelling atmospheric transmissivity for the same four
cases mentioned above, where the biggest differences between
the two test images WV-2 T1 and T2 are found in the the RE
and NIR2 bands. These differences are due to the different
concentration of estimated water vapor between the wet (T1)
and dry (T2) seasons.

a) Atmospheric correction: Atmospheric correction typi-
cally requires as input ancillary data (summary statistics, e.g.,
AOT, water vapor amount, aerosol model, etc. [83]–[86], refer
to Section IV-A2), to be collected at several locations within

the RS image footprint at the time of acquisition of the RS
image, but are rarely available in practice. Hence, the problem
of atmospheric correction is inherently ill- or poorly posed,
i.e., it is difficult to solve and require user’s supervision to
make it better posed [5]. For example, in [105], to improve the
atmospheric correction performed by the 6S atmospheric trans-
mission model [107], monthly climatological mean profiles of
pressure, temperature, water vapor, and ozone were collected
by ozone probes.

The present authors have repeatedly observed that EO images
radiometrically calibrated into SURF values and delivered by
EU institutions, data providers, RS scientists, and practitioners
are often affected by spectral distorsion. This means that SURF
spectra extracted from these atmospherically corrected images
lack physical meaning, i.e., these estimated spectra disagree
with reference SURF spectra, measured at the ground level,
found in the existing literature (e.g., refer to [94, p. 273]
or in public domain spectral libraries [83]–[86] (refer to
Section II-G). This lack of physical meaning is particularly true
for estimated SURF range extrema, e.g., pixel values belonging
to either very bright (e.g., snow, light-tone buildings, etc.) or
very dark (e.g., water) image-objects.

Based on these considerations, no empirical atmospheric
correction is adopted to estimate SURF = (4) values, but
TOARF = (5) values are computed instead. This conserva-
tive choice is justified by the fact that the prior knowledge
base of the syntactic SIAM™ preliminary classifier consists
of a reference dictionary of spectral signatures in TOARF
values, where TOARF ⊇ SURF, such that TOARF ≈ SURF +
atmospheric noise (refer to Section II-G). This means that
SIAM™ is knowledgeable to cope with noisy RS data, namely,
it is capable of recognizing surface types through atmospheric
noise, like haze and thin clouds [5]–[17] (refer to Section II-G).

b) TOC: In general, in case of VHR imagery, the TOC re-
quirements specification mentioned in Section IV-A2 becomes
almost impossible to fulfill. In the words of ATCOR [86]: “at
spatial resolutions down to 0.5 m, the slope of surfaces can no
longer be easily defined and no generic irradiance correction
can be applied, e.g. in forests or settlements. New models for
radiometric surface representation would be required but no
generic solution is currently available.”
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In this paper, no DSM of the target surface area could be
found to fulfill the aforementioned TOC constraints. Hence, no
TOC approach is applied.

c) BRDF effect correction: No required library of sensor-
specific multiple views of a target surface type is available for
physically based BRDF model fitting. Hence, no BRDF model
can be applied.

This means that, to make the two test WV-2 images compa-
rable (e.g., for LCC detection) by reducing the inherent spread
(variance) of reflectances acquired through time in different
acquisition conditions upon the same non-Lambertian surface
type, a statistical model-based approach must be adopted for
empirical radiometric registration (matching) of the two test
WV-2 images to a reference data set, so that it appears as if
they were acquired under the same set of acquisition conditions
(refer to the introduction to Section IV-A).

d) Assessment of the information content of the two test
WV-2 images radiometrically calibrated into TOARF values:
Table VI shows that, in comparison with the QB-2 spectral
channels, the WV-2 band 1 (CB), band 4 (Y), band 6 (RE), and
band 8 (NIR2) can be considered “new,” while “traditional”
WV-2 channels, (approximately) in common with the QB-2
spectral resolution, are: band 2 (B), band 3 (G), band 5 (R),
and band 7 (NIR1).

In the two WV-2 test images radiometrically calibrated into
TOARF = (5) values, it is observed that, across their eight
bands, the average inter-band correlation is ≥ 0.933 for image
T1 and ≥ 0.939 for image T2. The traditional threshold adopted
by Congalton and Green to consider correlation high is 0.8
[51]. Hence, in the two test WV-2 images of Brazilia acquired
in the wet (T1) and dry (T2) seasons of the year 2010, the
average inter-band correlation is high, i.e., their information
redundancy is statistically high. The same consideration holds
true for the WV-2 image of the downtown area of Rome,
Italy, acquired on 2009-12-10 and downloaded as a product
sample from the DigitalGlobe website [116], whose average
inter-band correlation is > 0.9. Based on these considerations,
the conjecture made here is that the average inter-band corre-
lation of the eight-band WV-2 channels is expected to be high
(> 0.8 [51]) across time and space. In other words, the eight-
band WV-2 inter-band information redundancy is expected to
be high irrespective of time and space, although it is important
to consider that correlation is insensitive (invariant) under a
linear transformation of the two random variables at hand (e.g.,
reflectances generated from the same target surface type in two
different spectral bands).

In the existing RS literature, the aforementioned “new”
WV-2 channels have been considered relevant based on evi-
dence collected from statistical classification approaches [117],
[118]. Additional physical model-based considerations about
the potential discrimination capability of the “new” WV-2
channels CB and RE can be inferred from the RS literature as
summarized below.

• About the discrimination capabilities of the WV-2 band
6 (RE) in 705–745 nm (see Table VI). In [119], shifts in
the Red Edge Position (REP) are found to improve sep-
aration: 1) between broadleaved species from coniferous

and grassland and 2) between coniferous of different ages.
Unfortunately, shifts in REP can be detected by hyperspec-
tral sensors exclusively. In [120], two Red Edge (RedE1
and RedE2) plus one visible Red band of a hyperspectral
MIVIS sensor are selected for tree species discrimination:
Red band ranges in 650–670 nm, RedE1 in 690–710 nm
and RedE2 in 730–750 nm. It is noteworthy that the WV-2
RE band (refer to Table VI) overlaps with both the two
aforementioned MIVIS bands RedE1 and RedE2. For
vegetation detection in general, it is common knowledge to
consider the Landsat MIR1 channel, which is sensitive to
both vegetation moisture content and soil moisture, as the
best Landsat band overall, superior to bands NIR, MIR2
and visible (see Table VI) [143]. In [121], where reference
samples of vegetated LCs do not include crops stressed by
limited soil water availability, most valuable bands for the
estimation of LAI are considered the NIR band, followed
by the RE, MIR, and visible bands. In these experiments,
the condition that water required for crop irrigation is fully
available diminishes the discrimination capability of the
MIR band upon the reference vegetation sample at hand,
while the NIR band remains superior to the RE channel.

• About the discrimination capabilities of the WV-2 band
1 (CB) in 400–450 nm (see Table VI). It com-
prises Moderate Resolution Imaging Spectroradiometer
(MODIS) bands Violet 1 (V1, 0.405–0.420 μm) and
V2 (0.438–0.448 μm) which are considered relevant
by oceanographers together with MODIS bands Blue 1
(B1, 0.459–0.479 μm) and B2 (0.483–0.493 μm). In com-
parison with the WV-2 band 2 (B) channel ranging in
450–510 nm (see Table VI), the WV-2 band 1 CB should
see further into the water and support bathymetric studies
around the globe. To hold true, this potential improve-
ment requires: 1) clear water and, simultaneously, 2) very
clear atmospheric conditions to reduce atmospheric
scattering [93].

To recapitulate, the “new” WV-2 channels, CB, Y, RE, and
NIR2 (see Table VI), are expected to be useful, i.e., statistically
uncorrelated to the “traditional” WV-2 bands R, G, B, and
NIR1, at a local image scale and/or in EO circumstances whose
relevance can be considered high by application domain experts
(e.g., oceanographers), but whose statistical occurrence can be
considered low, or unlikely (e.g., the RE band may be useful in
the separation of specific tree species found in very localized
forest stands [119], [120]; the CB band requires clear coastal
water to exploit its penetration capability and, simultaneously,
very clear atmospheric conditions to reduce its atmospheric
scattering, refer to this section above).

For example, in the two test, WV-2 images of Brazilia
available in this work, at a qualitative level of visual analysis
none of the “new” WV-2 bands appears capable of providing
additional LC class discrimination capabilities. For example,
water appears turbid and cannot be penetrated by the WV-2
band 1 CB significantly better than the WV-2 band 2 B does. In
addition, no significant wood/forest tree population does exist
in the two WV-2 test images to be discriminated by the WV-2
band 6 RE any better than the WV-2 band 7 NIR1 does.
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Fig. 4. (a) Subset of interest of a Landsat-7 ETM+ image at time T1, 30 m spatial resolution, acquisition date 2010-02-03, radiometrically calibrated into TOARF
values, depicted in false colors (R: band 5, G: band 4, B: band 1). Default image histogram stretching: ENVI linear stretching 2% [138]. (b) L-SIAM™ preliminary
map of the Landsat-7 ETM+ image at time T1 shown in Fig. 4(a). Spectral categories are depicted in pseudo colors. Map legend: refer to Table III.

Overall, the aforementioned WV-2 data-specific observations
can be considered quite obvious. They are perfectly in line
with the RS common practice. For example, it is well known
that inter-band correlations of visible channels Red, Green,
and Blue acquired by existing spaceborne optical sensors (e.g.,
Landsat, MODIS, etc., see Table VI), irrespective of their spa-
tial resolution, are typically high (> 0.8). As another example,
in hyperspectral images, the average inter-band correlation is
typically high. For example, in an airborne, 285 band (rang-
ing from visible Blue to MIR), 1.8 m resolution Airborne
Prism Experiment hyperspectral image of Baden, Switzerland,
acquired on 2011-06-26 (courtesy of Daniel Schläpfer, ReSe
Applications Schläpfer), the average inter-band correlation is
> 0.8. It is superfluous to point out that the high inter-band
correlation of hyperspectral images does not mean at all that
hyperspectral images cannot be very useful. It only means that,
in the RS common practice, RS-IUSs adopt a hyperspectral
image-specific feature selection first stage suitable for spectral
dimensionality reduction, e.g., principal component analysis,
spectral end-member detection, etc. [85], [86], [119].

Based on the aforementioned WV-2 image-specific quali-
tative and quantitative observations, supported by theoretical
considerations of general validity selected from the existing lit-
erature, this experimental session selects the existing four-band
Q-SIAM™ software product implementation (refer to Table II)
to map the two test WV-2 images based on “traditional” bands
B, G, R, and NIR1 exclusively, i.e., the WV-2 “new” bands,
CB, Y, RE, and NIR2, are ignored in these experiments (because
their contribution in terms of discrimination capability is con-
sidered negligible in the two test images at hand). Of course,
this experimental strategy is adopted with the sole objective of
testing a map quality assessment protocol. It does not mean at
all that, in general, the “new” WV-2 bands CB, Y, RE, and NIR2
are considered worthless. For example, it would be perfectly
reasonable to implement an ad-hoc second-stage WV-2 sensor-
specific spectral rule set to exploit the potential discrimination
capabilities of the “new” WV-2 channels CB, Y, RE, and NIR2,

in series with the standard Q-SIAM™ preliminary classification
first stage exploiting as input the “traditional” WV-2 bands R,
G, B, and NIR1 which are shared with QB-2 and a variety of
other sensors (refer to Table V).

e) Radiometric registration of “slave” off-nadir 2-m res-
olution WV-2 images to “master” nadir-view 30-m resolution
Landsat images: To reduce the inherent spread (variance) of
the WV-2 data acquired through time in different acquisition
conditions upon the same non-Lambertian surface type, in-
cluding permanent reflectors (such as asphalts and concrete
surface areas), a statistical model-based approach is adopted
for empirical radiometric registration (matching) of the test
off-nadir 2-m resolution WV-2 T1 and T2 images to a ref-
erence data set consisting of two nadir-view 30-m resolution
Landsat images acquired (approximately) at time T1 and T2,
respectively.

Despite the recent malfunction in the Landsat-7 ETM+
sensor and the recent termination of the long-lived Landsat-5
TM mission, Landsat data continue to have tremendous sci-
entific utility [2]. It is well known that Landsat sensors are
well-behaved and stable. For example, the Landsat-5 TM and
Landsat-7 ETM+ radiometric calibration uncertainties of the
at-sensor spectral radiances are both around 5%. ETM+ is the
most stable of the Landsat sensors, changing by no more than
0.5% per year in its radiometric calibration [122]. In addition,
since the Landsat satellites are not adjustable nadir viewing,
they tend to minimize BRDF effects. Thus, two cloud-free
Landsat-7 ETM+ images were selected from the USGS Global
Visualization Viewer (http://glovis.usgs.gov/) as a reference for
the test WV-2 image pair for inter-sensor data calibration pur-
poses. Acquisition parameters of the two reference (“master”)
Landsat-7 ETM+ images are described in Table VI.

The two “master” 30-m resolution Landsat-7 ETM+ im-
ages, radiometrically calibrated into TOARF = (5) values, are
shown in Figs. 4(a) and 5(a), together with their L-SIAM™
maps shown in Figs. 4(b) and 5(b), respectively. Next, the
two “slave” 2-m resolution WV-2 T1 and WV-2 T2 images,
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Fig. 5. (a) Subset of interest of a Landsat-7 ETM+ image at time T2, 30 m spatial resolution, acquisition date 2010-07-13, radiometrically calibrated into TOARF
values, depicted in false colors (R: band 5, G: band 4, B: band 1). Default image histogram stretching: ENVI linear stretching 2% [138]. (b) L-SIAM™ preliminary
map of the Landsat-7 ETM+ image at time T2 shown in Fig. 5(a). Spectral categories are depicted in pseudo colors. Map legend: refer to Table III.

radiometrically calibrated into TOARF = (5) values, are re-
calibrated with respect to their “master” 30-m resolution Land-
sat ETM+ images as described below.

Four regions of interest (ROIs) are identified across spatial
resolutions in the overlapping stack of two Landsat-7 ETM+
(master) and two WV-2 (slave) images. Based on a photointer-
petation process in combination with thematic evidence pro-
vided by the L-SIAM™ maps of the two Landsat-7 ETM+
images [refer to Figs. 4(b) and 5(b)], the following surface
composition through time is assigned to each ROI.

• ROI1 (constant water). T1 (namely, green season): Water,
T2 (namely, dry season): Water.

• ROI2 (vegetation with within-class variance due to season-
ality). T1: Vegetation (grassland), T2: Vegetation (shrub
rangeland, whose LAI is inferior from that of grassland).

• ROI3 (permanent scatterer). T1: Flat roof in white build-
ing, T2: Flat roof in white building.

• ROI4 (inter-class transition). T1: Vegetation (shrub range-
land), T2: Barren land.

Stemming from a radiometric registration approach, radio-
metric correction linear parameters for the WV-2 band 2 B,
band 3 G, band 5 R, and 7 NIR1 (refer to Section IV-A5d)
at time T1 and T2 are shown in Table VII. These radiometric
correction parameters reveal that the WV-2 T1 image needs a
stronger linear correction with respect to its “master” ETM+
T1 image than the WV-2 T2 image with respect to its “master”
ETM+ T2 image. This agrees with the physical model-based
estimate of atmospheric effects proposed in Section IV-A5a.

The effectiveness of the accomplished radiometric registra-
tion of the two “slave” 2-m resolution WV-2 images to match
the two “master” 30-m resolution Landsat images is proved by
the standard deviation of the absolute differences in reflectance
through time of permanent reflectors (e.g., ROI1 as permanent
water, ROI3 as building roof, etc.), located in the overlapping
areas of the two re-calibrated WV-2 images at time T1 and T2,
which is significantly reduced, from 10% to 50%, with respect

to the standard deviation of the absolute differences collected
in the original WV-2 image pair radiometrically calibrated into
TOARF = (5) values. This is the first source of independent
evidence confirming the consistency of the radiometric regis-
tration process applied to the two WV-2 images.

B. Q-SIAM™ Preliminary Classification of the WV-2 and
QB-2 Test Images

The Q-SIAM™ output products generated from the re-
calibrated WV-2 image at time T1, shown in Fig. 6(a), are
depicted in Figs. 6(b) and 7. Those generated from the re-
calibrated WV-2 image at time T2, shown in Fig. 8(a), are
depicted in Figs. 8(b) and 9. In addition to preliminary clas-
sification maps at different semantic granularities, automatic
Q-SIAM™ output products are described as follows:

• An eight-adjacency cross-aura map generated from the
preliminary classification map (see Fig. 7(c) generated
from Fig. 7(b) at time T1 and Fig. 9(c) generated from
Fig. 9(b) at time T2, respectively). It highlights contours
of symbolic image-objects automatically detected in the
preliminary classification map domain (refer to footnote
1) [5]–[17].

• As an example of a categorical stratum, a binary vege-
tation mask is extracted from the preliminary classifica-
tion map (see Fig. 7(d) generated from Fig. 7(b) at time
T1 and Fig. 9(d) generated from Fig. 9(b) at time T2,
respectively).

When compared with the “master” L-SIAM™ map pair
shown in Figs. 4(b) and 5(b), the two Q-SIAM™ preliminary
maps shown in Figs. 6(b) and 8(b) appear overall (qualitatively)
consistent, such as overall consistent appear their inter-map
local differences. For example, while moving from the green
to the dry season, differences between the Q-SIAM™ prelim-
inary maps of the two WV-2 images, equivalent to differences
between Figs. 6(b) and 8(b), appear characterized by temporal
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TABLE VII
RADIOMETRIC REGISTRATION APPROACH: BAND-SPECIFIC RADIOMETRIC CORRECTION LINEAR PARAMETERS ESTIMATED FOR THE FOUR BANDS B,
G, R AND NIR1 OF TWO “SLAVE” WV-2 IMAGES, ACQUIRED AT TIME T1 AND T2 AND RADIOMETRICALLY CALIBRATED INTO TOARF VALUES, TO

MATCH TWO “MASTER” LANDSAT-7 ETM+ IMAGES, ACQUIRED AT TIME T1 AND T2 AND RADIOMETRICALLY CALIBRATED INTO TOARF VALUES

shifts in vegetation labels equivalent to transitions from supe-
rior (e.g., “large”) to inferior (e.g., “average” or “low”) LAI
values (refer to the Q-SIAM™ map legend shown in Table IV).

This is the second source of independent evidence confirming
the consistency of the radiometric registration process applied
to the two WV-2 images.
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Fig. 6. (a) WV-2 T1 image, 2 m spatial resolution, acquisition date 2010-02-04, radiometrically calibrated into TOARF values and re-calibrated according to a
“master” Landsat-7 ETM+ image shown in Fig. 4(a), depicted in false colors (R: 5, G: 7, B: 2). Default image histogram stretching: ENVI linear stretching 2%
[138]. Compare this WV-2 image with its reference Landsat image shown in Fig. 4(a). (b) Q-SIAM™ preliminary map of the WV-2 T1 image shown in Fig. 6(a).
Spectral categories are depicted in pseudo colors. Map legend: see Table IV. Compare this Q-SIAM™ map with the L-SIAM™ shown in Fig. 4(b), generated
from the reference Landsat image depicted in Fig. 4(a).

Fig. 7. (a) Zoom of the WV-2 T1 image, 2 m spatial resolution, acquisition date 2010-02-04, radiometrically calibrated into TOARF values and shown in Fig. 6(a),
depicted in false colors (R: 5, G: 7, B: 2). Default image histogram stretching: ENVI linear stretching 2% [138]. (b) Zoom of the Q-SIAM™ preliminary map,
shown in Fig. 6(b), of the WV-2 T1 image shown in Fig. 7(a). Spectral categories are depicted in pseudo colors. Map legend: see Table IV. (c) 4-adjacency cross-
aura measure generated from the Q-SIAM™ preliminary map, shown in Fig. 7(b), of the WV-2 T1 image shown in Fig. 7(a). Cross-aura values range in {0, 4}.
(d) Binary vegetation mask generated from the Q-SIAM™ preliminary map, shown in Fig. 7(b), of the WV-2 T1 image shown in Fig. 7(a).

The test QB-2 image acquired at time T1 + 45 days,
radiometrically calibrated into TOARF = (5) values, is
shown in Fig. 10(a). The Q-SIAM™ output products

generated from the radiometrically calibrated QB-2 im-
age at time T1 shown in Fig. 10(a) are depicted in
Fig. 10(b)–(d).
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Fig. 8. (a) WV-2 T2 image, 2 m spatial resolution, acquisition date 2010-08-04, radiometrically calibrated into TOARF values and re-calibrated according to a
“master” Landsat-7 ETM+ image shown in Fig. 5(a), depicted in false colors (R: 5, G: 7, B: 2). Default image histogram stretching: ENVI linear stretching 2%
[138]. Compare this WV-2 image with its reference Landsat image shown in Fig. 5(a). (b) Q-SIAM™ preliminary map of the WV-2 T2 image shown in Fig. 8(a).
Spectral categories are depicted in pseudo colors. Map legend: see Table IV. Compare this Q-SIAM™ map with the L-SIAM™ shown in Fig. 5(b), generated
from the reference Landsat image depicted in Fig. 5(a).

Fig. 9. (a) Zoom of the WV-2 T2 image, 2 m spatial resolution, acquisition date 2010-08-04, radiometrically calibrated into TOARF values and re-calibrated
according to a “master” Landsat-7 ETM+ image shown in Fig. 8(a), depicted in false colors (R: 5, G: 7, B: 2). Default image histogram stretching: ENVI linear
stretching 2% [138]. (b) Zoom of the Q-SIAM™ preliminary map, shown in Fig. 6(b), of the WV-2 T2 image shown in Fig. 9(a). Spectral categories are depicted
in pseudo colors. Map legend: see Table IV. (c) 4-adjacency cross-aura measure generated from the Q-SIAM™ preliminary map, shown in Fig. 9(b), of the WV-2
T1 image shown in Fig. 9(a). Cross-aura values range in {0, 4}. (d) Binary vegetation mask generated from the Q-SIAM™ preliminary map, shown in Fig. 9(b),
of the WV-2 T1 image shown in Fig. 9(a).
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Fig. 10. (a) QB-2 T1 + 45− day image, 2.4 m spatial resolution, acquisition date 2010-03-16, radiometrically calibrated into TOARF values, depicted in false
colors (R: 3, G: 4, B: 1). Default image histogram stretching: ENVI linear stretching 2% [138]. (b) Q-SIAM™ preliminary map of the QB-2 T1 + 45− day
image shown in Fig. 10(a). Spectral categories are depicted in pseudo colors. Map legend: see Table IV. It is noteworthy that, within the Q-SIAM™ mutually
exclusive and completely exhaustive classification scheme, cloud detection is perse an interesting operational product with relevant commercial applications and,
to the best of these authors’ knowledge, without alternative solutions in either commercial or scientific RS-IUSs. (c) Four-adjacency cross-aura measure generated
from the Q-SIAM™ preliminary map, shown in Fig. 10(b), of the QB-2 T1 + 45− day image shown in Fig. 10(a). Cross-aura values ranges in {0, 8}. (d) Binary
vegetation mask generated from the Q-SIAM™ preliminary map, shown in Fig. 10(b), of the QB-2 T1 + 45− day image shown in Fig. 10(a).

It is noteworthy that the test QB-2 image was acquired
approximately 45 days later than the WV-2 image at time T1,
moving away from the green into the dry season. When the
Q-SIAM™ preliminary classification map generated from the
WV-2 T1 image, shown in Fig. 6(b), is compared with
the Q-SIAM™ preliminary classification map generated from
the QB-2 T1 + 45 days image, shown in Fig. 10(b), vegetation
spectral categories typically associated with specific ranges
of LAI values (refer to the Q-SIAM™ map legend shown in
Table IV) reveal a moderate overall (image-wide) decrease in
LAI which is perfectly consistent with seasonal effects.

This is the third source of independent evidence confirming
the consistency of the radiometric registration process applied
to the two WV-2 images (also refer to Section IV-A5e).

In addition, this qualitative result proves on an a posteriori
basis that the Q-SIAM™ mapping qualities, in terms of both
accuracy and robustness to changes in the input data set ac-
quired through time and VHR sensors, namely, WV-2 and
QB-2, appear high.

Since VHR optical sensors constitute a relevant portion of
the available EO commercial satellite constellations, including
DigitalGlobe’s (which encompasses the WV-2 and QB-2 sen-
sors investigated in this work), GeoEye’s, RapidEye’s, etc. (in-

vestigated in related works [5]–[17]), these conclusions mean
that SIAM™ is eligible for enlarging the spectrum of large-
scale (e.g., world-scale) VHR image-derived information prod-
ucts encompassing both thematic and continuous variables, as
well as operational (near real-time, accurate, robust, easy to use,
scalable) services for both scientific (quantitative) and commer-
cial (qualitative and quantitative) RS data applications. This
is tantamount to saying that commercial global providers of
VHR optical images may greatly benefit (in terms of revenues,
scientific impact, etc.) from the incorporation of an automatic
preliminary classification first stage, like SIAM™, in op-
erational multi-mission, multi-resolution, spaceborne/airborne
optical image processing systems provided with a feedback
mechanism for driven-by-knowledge RS image enhancement
(e.g., automatic stratified TOC [10], refer to Sections II-G
and IV-A4). For example, it is worthy of note that within the
SIAM™ mutually exclusive and completely exhaustive classi-
fication scheme, cloud detection is per se an interesting oper-
ational product with relevant commercial applications. To the
best of these authors’ knowledge, the Q-SIAM™ performance in
cloud detection [e.g., see Fig. 10(b)] appears superior to that of
alternative commercial or scientific RS-IUSs (refer to Table I)
in terms of degree of automation, accuracy and efficiency.
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Fig. 11. (a) Automatic SIAM™-based post-classification change/no-change detection map of the WV-2 image pair at time T1 and T2 shown in Figs. 6(a)
and 8(a). Map legend: refer to Table VIII. (b) Automatic SIAM™-based post-classification change/no-change greenness (ΔGRNS) index generated from the
WV-2 image pair at time T1 and T2 shown in Figs. 6(a) and 8(a), respectively. Legenda of the continuous output ΔGRNS index is as follows: 1) ΔGRNS < 0
(vegetation decrease) if (GRNS(T2) < GRNS(T1)); 2) ΔGRNS > 0 (vegetation increse) if (GRNS(T2) > GRNS(T1)); and 3) DumbNeg value = (−150)
if ((GRNS(T1) == 0) AND (GRNS(T2) == 0)), equivalent to the “never vegetation” condition.

Finally, it is worth mentioning that an operational, multi-
mission, MS, spaceborne/airborne image processing feedback
system incorporating SIAM™ as its preliminary classification
first stage (refer to Section II-G) may be implemented:

• at the multi-mission EO image receiving antenna and
ground segment, or

• on-board the satellite payload. This would open up a
concrete scenario for the development of so-called fourth
generation future intelligent earth observation satellites
(FIEOSs) [102].

C. Q-SIAM™-Based Post-Classification Change
Detection in the Test WV-2 Image Pair

It is well known that the accuracy of change/no-change de-
tection by means of a thematic map pair difference is subjected
to the following upper bound [61]:

Accuracy of the bi-temporal post-
classification change/no-
change detection map

≤ (Accuracy of the map at time T1
× Accuracy of the map at time T2). (8)

Thus, a map pair difference is recommended if and only if the
two maps employed as input are very accurate. For example, if
the two input maps feature an accuracy as high as 90%, then the
accuracy of the map difference cannot be superior to 81%.

Fig. 11(a) shows the Q-SIAM™-based semantic-driven auto-
matic bi-temporal change/no-change detection map generated
from the Q-SIAM™ map pair of the two test WV-2 images
at time T1 and T2 shown in Figs. 6(b) and 8(b), respectively.
The legend of this automatic change/no-change detection map
is shown in Table VIII.

Fig. 11(b) reveals the SIAM™-based semantic-driven au-
tomatic change/no-change greenness (GRNS) index generated
from the WV-2 image pair at time T1 and T2, shown in

Figs. 6(a) and 8(a), respectively, and the Q-SIAM™ map pair at
time T1 and T2, shown in Figs. 6(b) and 8(b), respectively. The
original GRNS index expression implemented in SIAM™ can
be found in [7], [8]. Legend of the continuous output difference
in greennes (ΔGRNS) is the following: 1)ΔGRNS < 0 (vege-
tation decrease) if (GRNS(T2) < GRNS(T1)); 2) ΔGRNS >
0 (vegetation increse) if (GRNS(T2) > GRNS(T1)); and
3) DumbNeg value = (−150) if ((GRNS(T1) == 0) AND
(GRNS(T2) == 0)), equivalent to the “never vegetation”
condition.

Overall, at a qualitative level of visual assessment, the VHR
difference maps shown in Fig. 11(a) and (b) appear perfectly
consistent. Starting from (8), high quality of a VHR post-
classification change map means that, on an a posteriori basis
(by abduction inference [69]), the two VHR thematic maps
adopted as input are both high quality.

This qualitative result is the fourth source of independent
evidence confirming the consistency of the radiometric reg-
istration process applied to the two WV-2 images employed
as input to the Q-SIAM™ preliminary classifier (also refer to
Sections IV-A5e and IV-B).

V. HORVITZ–THOMPSON THEOREM

The objective of this section is twofold. First, the Horvitz–
Thompson theorem, where unequal inclusion probabilities are
accounted for probability sampling, is presented to the RS
community where it is typically ignored. In this presentation,
a notation partly different from that proposed in [60] is intro-
duced. Second, original inclusion probabilities suitable for non-
standard probability sampling strategies are proposed.

Map accuracy assessment is an established component of the
process of creating and distributing categorical (thematic, clas-
sification) or continuous maps [55]. The fundamental basis of
a categorical or continuous map accuracy assessment protocol
is a location-specific comparison, across a geographic region
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TABLE VIII
LEGEND OF THE AUTOMATIC Q-SIAM™-BASED POST-CLASSIFICATION BI-TEMPORAL CHANGE/NO-CHANGE DETECTION MAP

of interest (GEOROI), between the target map (also called
test map or predicted map [66]) to be evaluated and ground
condition(s) or “reference” condition(s), eventually belonging
to a complete-coverage reference map (also called truth map
[66]), collected from a target (true) population to be univocally
identified [123].

A statistical population is defined as the collection of all
discrete elements of interest together with one or more cate-
gorical and/or continuous quantities (“variables of study”), e.g.,
class label(s), associated with each discrete element. In map
accuracy assessment, a population can be defined as all spatial
units forming a partition of the GEOROI, where a spatial unit
can be: 1) a point (e.g., a pixel in a digital map), 2) a polygon
(e.g., a 2-D map-object), or 3) a square block of points (e.g.,
block of pixels), and where the categorical and/or continuous
variables of study associated with each spatial unit are obtained
from both the reference map and the target map [123]. In other
words, both the test map and the reference map are statistical
populations where each spatial unit must be associated with
an instance of the categorical and/or continuous variable(s) of
study. The difference between these two statistical populations
is the population of interest for map accuracy assessment,
where an observation of this difference population could be
an indicator variable representing whether a spatial unit is
classified correctly or not [123].

Unfortunately, it is impractical to obtain a census of the refer-
ence population. In other words, a complete-coverage reference
map of the GEOROI almost never exists in practice. If reference

conditions are available for only a sample of the GEOROI, then
the test map accuracy statistics must be estimated from this
reference sample [49].

There are two basic ways to approach statistical sampling
(refer to Section II-E): nonprobability and probability sam-
pling, featuring either equal or unequal inclusion probabili-
ties. Unequal inclusion probabilities create no difficulties as
long as they are known and accounted for in the estimation
formulas. The inclusion probabilities determine the weight,
equal to the inverse of the inclusion probability, attached to
each sampling unit in the Horvitz–Thompson sample estimator.
The Horvitz–Thompson theorem guarantees that the Horvitz–
Thompson sample estimator is unbiased for the population total
[60]. In agreement with the QA4EO international guidelines
[3], before being used in scientific investigations and policy
decisions, thematic or continuous maps should be validated
exclusively by means of probability sampling criteria [55], [56],
[60] (refer to Section II-E). Such a map accuracy assessment
requirement is not obvious; for example, in the RS common
practice it is traditionally violated, e.g., see [54], [61], [62].

To review the Horvitz–Thompson theorem as a unifying
perspective for probability sampling, a notation partly different
from that proposed in [60] is introduced as follows:

• Let U identify the finite population (universe) to be sam-
pled. In general, the finite population U to be sampled
may be intended as belonging to the test thematic map
or the reference thematic map, refer to this section above.
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In practice, U is a finite set of discrete population units
(elements) u ∈ U , where the population size (cardinality)
is US = |U | ∈ {1,∞). Thus, all possible population units
u ∈ U provide a complete partition of the population U to
be sampled. For example, if U belongs to a digital 2-D
(image) domain, then population units belong to three
spatial types: pixel, block of pixels, or polygon [123].

• S identifies the finite sample space defined as the set of
all possible discrete samples (sampling units) s ∈ S ≡
GEOROI(refer to this text above) ⊇ U under the chosen
probability sampling design (e.g., a simple random sam-
pling strategy) across the GEOROI. Thus, all possible
sampling units s ∈ S provide a complete partition of the
finite sample space S. For example, if S ≡ GEOROI is a
digital 2-D (image) domain, sampling units belong to three
spatial types: pixel, block of pixels, or polygon [123].

• After sampling across the sample space S ≡ GEOROI, a
finite sample set SS ⊆ S is selected, such that SS ∩ U =
SS ⊆ U ⊆ S ≡ GEOROI. The SS size (cardinality) is
SSS = |SS| ∈ {1,∞), with SSS ≤ US if the element
spatial types in the sample space S and universe U to be
sampled are assumed to be the same.

• It is important to point out that the spatial type of samples
is independent of the spatial type of population units, e.g.,
samples s ∈ S ≡ GEOROI are pixels while units u ∈ U ⊆
S ≡ GEOROI are polygons (2-D segments) or vice versa.
For example, let us consider a finite sample space S ≡
GEOROI, coincident with an EO image, where sampling
units s ∈ S are pixels whereas the target population to
be sampled U ⊆ S ≡ GEOROI consists of image-objects
(polygons [25]) depicted in the EO image at hand and
labeled as instances of class “buildings” by an expert
photointepreter.

• p(s) identifies the probability of selecting a given sample
s ∈ S at a particular step of the sampling protocol, such
that [60]:∑

s∈S
p(s) = 1, with S ≡ GEOROI ⊇ U. (9)

In a traditional sample space representation of the sampling
design, a probability sample is defined as a selection procedure
for which [60] (refer to Section I):

(i) The selection probability p(s) is known for all samples
s ∈ S ≡ GEOROI ⊇ U , such that (9) holds true.

(ii) Each unit u in the finite population U to be sampled,
with U ⊆ S ≡ GEOROI, has a nonzero probability of
being selected, i.e., condition p(s) > 0 if (u ∩ s) �= 0
must hold ∀u ∈ U ⊆ S ≡ GEOROI. The first-order in-
clusion probability that unit u in the population U will be
included in a finite sample set SS, such that SS ∩ U =
SS ⊆ U ⊆ S ≡ GEOROI, where SSS ≤ US (refer to
this section above), is denoted by πu.

(iii) Inclusion probabilities πu associated with non-sampled
units u ∈ U need only be knowable. This is extremely
useful for operational needs where it is impractical to
know the inclusion probabilities for the entire universe
U of possible sampling units [60].

The Horvitz–Thompson estimation requires a natural transi-
tion of the sampling design representation from the selection
probability representation (refer to this section above) to the
inclusion probability representation. In the latter, the first-
order inclusion probability πu is defined for each population
element (unit, object) u of the finite universe U to be sampled,
whose size is US, as the probability that element u will be
included in a finite sample set SS whose size is SSS, such
that SS ∩ U = SS ⊆ U ⊆ S ≡ GEOROI with SSS ≤ US if
the element spatial types in the sample space S and universe
U to be sampled are assumed to be the same. In practice, the
first-order inclusion probability πu can be expressed as follows
(refer to the Appendix):

πu=

⎡
⎢⎣1−

⎛
⎝ ∑

p(s)
s∈S:(u∩s)=0

⎞
⎠

SSS
⎤
⎥⎦>0, ∀u∈U⊆S≡ROI (10)

such that πu → 1 if SSS → ∞, i.e., unit u of the population
U to be sampled is included in the finite sample set with
probability tending to 1 if the sample set size tends to infinity
(in compliance with the central limit theorem). In practice (10)
means that the probability πu of selecting a target element u
in sample space S in a sequence of SSS independent yes/no
experiments is equal to 1 minus the probability of selecting all
the remaining non-target elements, s ∈ S: (u ∩ s) = 0, to the
power of SSS.

The inclusion probability representation of the sampling
design requires that πu > 0∀u ∈ U ⊆ S ≡ GEOROI. For
many standard probability sampling designs, the required
inclusion probabilities πu, ∀u ∈ U ⊆ S, are readily calculated.
For example:

• Simple random sampling (SIRS) design. To select a ran-
dom sample of n elements (sampling units) from a pop-
ulation U of N elements, which means that SS ⊆ U ≡
S ≡ GEOROI, SSS = n ≤ US = N , the selection prob-
ability of a sampling unit s ∈ S is p(s) = 1/N , thus the
probability of an element u ∈ U of being included in the
finite sample set SS becomes, according to (10):

πu = n/N, ∀u ∈ SS = {s1, . . . , sn}. (11)

For further details about (11), refer to the Appendix.
• Stratified random sampling (STRS) design, where strata
h = 1, . . . , H are available a priori, such that their size in
terms of elements (sampling units) Nh is known, e.g., the
number of sampling units nh must be increased to reduce
the standard error (confidence interval) of class-specific
accuracy estimates such that the stratum h corresponds
to the mapped area of the h-th class [123]. If selection
within stratum h of nh sampling units out of Nh ele-
ments known a priori is conducted via a stratum-specific
SIRS, which means that SSh ⊆ Uh ≡ Sh ≡ GEOROIh,
SSSh = nh ≤ USh = Nh, then the selection probability
of a sampling unit s ∈ Sh is p(s) = 1/Nh, thus the prob-
ability of an element u ∈ Uh of being included in the
finite sample set SSh becomes, according to (10) as a
generalization of (11):

πu = nh/Nh, ∀u ∈ SSh = {s1, . . . , snh
}. (12)
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As a non-standard sampling example, let us conceive a
probability sampling design capable of generating a random
sample of the finite population U of (2-D) image-objects,
labeled as buildings, which are depicted in a EO image whose
total area is A = number of rows × number of columns. Sup-
pose we randomly locate 20 sample points (s_pnts) across the
spaceborne image, such that GEOROI(image) ≡ S, to generate
a sample set SS = {s_pnt1, . . . , s_pnt20}, whose cardinality
is SSS = 20. The selection probability p(s) would be the
probability that sample point s ∈ sample spaceS “hits” a target
image-object (polygon) u. This is tantamount to estimating
the probability p(s) of selecting a sample polygon (s_plygn),
s ∈ S ≡ GEOROI ⊇ U , where s coincides with a target image-
object (building) u ∈ U . If a sample object (s_plgyn) s ≡ u
has area au and the area of the sample space S ≡ GEOROI
(image) is A, then the random selection probability for a sample
polygon s_plygn ≡ u is

p(s_plygn ≡ u) =

au∑
i=1

p(s_pnti) =
au∑
i=1

1/A = au/A,

s_pnti ∈ S ≡GEOROI ⊇ U.

Hence, according to (10), the probability that at least one of
the 20 sample points “hits” an image-object u ∈ U is

πu=
{
1−

⌊
p(s_plygn �=u)SSS

⌋}
=
{
1−[(A−au)/A]20

}
.

The same sampling strategy described above implemented
within a given stratum Uh whose area is Ah provides an
inclusion probability equal to

πu=
{
1−

⌊
p(s_plygn �=u)SSS

h

⌋}
=
{
1−�(Ah−au)/Ah�20

}
.

The Horvitz–Thompson theorem may be stated as follows
[73]: if πu = (10) > 0, ∀u ∈ U ⊆ S ≡ GEOROI, then, for
a given finite sample set SS, such that SS ∩ U = SS ⊆
U ⊆ S ≡ GEOROI, with cardinality |SS| = SSS > 0, the
Horvitz–Thompson sample estimator

T̂y =
∑
u∈SS

yu
πu

=
∑
u∈SS

wu · yu (13)

where

wu = 1/πu, ∀u ∈ SS ⊆ U ⊆ S ≡ GEOROI (14)

is unbiased for the population total [60],

Ty =
∑
u∈U

yu (15)

i.e., (13)→(15) must hold, where (14) means that each sampled
population element u ∈ SS ⊆ U ⊆ S ≡ GEOROI, represents
wu elements of the finite population U (which has been sam-
pled) when the sample data statistics are “expanded” to estimate
totals and means over U .

For example, in a standard STRS design, if there are two
strata (populations to be sampled independently) U1 and U2

with, respectively, N1 = 1000, N2 = 100, and n1 = n2 = 20,
then πu = (12) = 20/1000 = 1/50 in U1 and πu = (12) =

20/100 = 1/5 in U2, thus each sample element u ∈ SS1 ⊆
U1 ⊆ S1 ≡ GEOROI1 represents wu = 50 elements of the
population U1 being sampled, whereas each sample element
u ∈ SS2 ⊆ U2 ⊆ S2 ≡ GEOROI2 represents wu = 5 elements
of the population U2 being sampled.

As another example, if N is the number of elements (units) in
the finite population (universe) U to be sampled according to a
standard SIRS strategy eligible for selecting n sampling units
when yu = 1, then Ty = (15) = N while πu = (11) = n/N ,
∀u ∈ SS ⊆ U ⊆ S ≡ GEOROI, thus:

T̂y =
∑
u∈SS

yu
πu

=

sn∑
u=s1

wu · 1 =

sn∑
u=s1

N

n
= N = Ty

hence, (13) = (15) holds in line with theoretical expectations,
which means that (11) = πu = n/N is correct.

Analogously, in a standard STRS design, if Nh is the number
of elements (units) in the h-th finite stratum Uh to be sampled
to select nh sampling units when yu = 1, then Ty = (15) = Nh

while πu = (12) = nh/Nh, ∀u ∈ SSh ⊆ Uh ⊆ S ≡ GEOROI,
thus:

T̂y =
∑

u∈SSh

yu
πu

=

sn,h∑
u=s1,h

wu · 1 =

sn,h∑
u=s1,h

Nh

nh
= Nh = Ty

hence (13) = (15) holds in line with theoretical expectations,
which means that (12) = πu = nh/Nh is correct.

To recapitulate, because of the emphasis on equal probability
sampling in introductory statistical methods courses, statis-
tics practitioners may view unequal probability sampling as
unacceptable or even “biased”. The Horvitz–Thompson theo-
rem establishes the intuitively appealing solution that unequal
inclusion probabilities of sampled population elements, u ∈
U ⊆ S ≡ GEOROI, are accounted for simply by using the
appropriate per-unit weight wu equal to the inverse of the inclu-
sion probability, wu = (1/πu) = (14)[60]. For many standard
probability sampling designs, like SIRS and STRS, the required
inclusion probabilities πu, ∀u ∈ U ⊆ S, are readily calculated,
see (11) and (12), otherwise they need to be carefully addressed
(refer to this section above).

VI. NOVEL PROTOCOL TO OPERATIONALIZE THE

THEMATIC AND SPATIAL ACCURACY ASSESSMENT OF

THEMATIC MAPS GENERATED FROM VHR
SPACEBORNE/AIRBORNE IMAGERY

In this section, the six components of a novel probability
sampling protocol for accuracy assessment of thematic maps
generated from VHR imagery are discussed and instantiated
in compliance with the probability sample design proposed by
Stehman and Czaplewski [55] (see Section I). These six stages
are summarized below.

(i) Identification of the GEOROI, test map taxonomy, refer-
ence sample set taxonomy and their contingency table.

(ii) Probability sampling design, where the following deci-
sions must be taken.

• Estimation of the sample set cardinality depending
on the project’s requirements specification in terms
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of: 1) target OA or per-class accuracies, 2) target
confidence interval, and 3) available project budget.

• Selection of the sampling frame. The sampling
units providing a complete partition of the sampling
universe can be represented by a sampling frame
[123]. A sampling frame consists of the materials
or devices which delimit, identify, and allow ac-
cess to the elements of the target population across
the GEOROI. There are two types of sampling
frames: (1-D, 1-D) list frames and (2-D, 2-D) area
frames [55].

• Selection of the spatial type(s) of sampling units,
e.g., pixel, polygon or block of pixels [123].

• Selection of the sampling strategy, e.g., SIRS (refer
to Section V), systematic sampling, STRS (refer to
Section V), etc.

(iii) Evaluation protocol, namely, procedures to collect infor-
mation pertaining to the thematic determination of both
reference and test sampling units. Typically, information
pertaining to the thematic determination of the reference
sampling units is collected by means of field campaigns,
photointerpretation of EO images “one step closer to the
ground” than the RS data used to make up the test map
[51], i.e., EO images whose spatial and/or spectral quality
is higher than that of the RS images employed for the
generation of the test map, or a combination of these two
information sources.

(iv) Labeling protocol, consisting of rules for assigning one
or more class indexes to each reference sampling unit
and each test sampling unit based on the information
collected by the evaluation protocol.

(v) Analysis protocol, where a contingency table (error ma-
trix) selected in step (i) is instantiated.

(vi) Estimation protocol, where summary QIs, provided with
their confidence interval, are estimated from the contin-
gency table(s) and assessed in comparison with reference
standards in compliance with the QA4EO international
guidelines [3] (refer to Section II-D).

In the rest of this section, the aforementioned six stages are
designed and instantiated for accuracy assessment of prelim-
inary classification maps automatically generated at multiple
semantic granularities by the automatic SIAM™ software prod-
uct (refer to Section II-G) from three VHR test images acquired
across time, space, and sensors (refer to Section IV).

A. Identification of the GEOROI, Test Map Taxonomy,
Reference Sample Set Taxonomy, and Their Contingency Table

A thematic map accuracy assessment begins with the identi-
fication of the GEOROI (refer to Section V), test map taxonomy
(legend), reference sample set taxonomy, and their contingency
table (error matrix).

Whenever multiple sensory data or information sources [23]
must be combined (integrated) and used together in a structured
(synergistic) way, “as there may be differences in semantics
as well as in the structure of these data sets, the data must be
adapted to fit the task, often with compromises being made.
Currently, the cost of these integration and adaptation activities

is a major barrier to the adoption and efficient exploitation
of complex data sets. An important aspect of this integration
process is the recognition of semantic differences between data
sets. Often these differences are missed due to incomplete
documentation, but more importantly mistakes occur because
of misunderstanding due to assumptions made at the domain
level... Subtle differences in semantics may result in data
being improperly integrated, which may not be noticed until
after operational decisions are made... These mistakes may be
costly” [70].

In practice, the development of ontologies (e.g., spatio-
temporal ontologies of the world-through-time, refer to
Section II-C) may facilitate the capture of domain knowledge
in such a way as to detect or prevent errors when semantic
data sources must be integrated. In the words of philosophical
hermeneutics [23], [24], where an inquirer (receiver, cognitive
agent) always plays a pro-active role in the generation of infor-
mation from data, the concept of (qualitative) “information-as-
(an interpretation) process” is complementary to the concept of
(quantitative) “information-as-thing” adopted by the Shannon
theory of communication [78]. In the notion of “information-
as-(an interpretation) process,” a “fusion of horizons,” or
“fusion of ontologies,” always takes place between a speaker
and the listener(s) (refer to Section II-A). For example, in the
artificial intelligence common practice, an application-domain
expert (knowledge expert) provides a set of requirements, in
user-speak [124], for the content and scope of a conceptual
ontology, to be later transformed by a knowledge engineer
[69] into a statement of external functionality, in techno-speak
[124], suitable for developing the logical ontology expressed in
description logics [70].

In the domain of thematic map accuracy assessment and
comparison, two semantic data sources, the test map and the
reference sample set, must be compared. Thus, the semantic
data source integration (harmonization) process must begin
with the identification and clear understanding of:

(i) the legend (taxonomy [68], ontology [70], [80] or classi-
fication system [51], which includes both taxonomy and
generation rules [51], [68]) of the test map to be evaluated
across the selected GEOROI,

(ii) the reference classification extracted from the target,
finite, and discrete population located in the GEOROI
and

(iii) relations required to harmonize the test and reference
semantic vocabularies. In the words of Cerba et al. [140],
“harmonisation of classifications schemes and systems,
codelists, terminology and vocabulary (i.e., selection of
corresponding items, definition of rules for mapping
languages) must be created before the building of (data)
harmonisation tools”.

The problem of inter-vocabulary semantic mapping is clearly
acknowledged by the existing literature where thematic maps
comparison is considered a fundamental procedure in geo-
graphical analysis [66]. For example, Stehman describes four
common types of categorical map comparison [63].

1) Comparison of different thematic maps, either crisp of
fuzzy [64], [65], of the same region and featuring the
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same sorted set of LC classes, which is tantamount to
saying different categorical maps of the same GEOROI
with the same thematic map legend, taxonomy [68],
ontology [70], [80] or semantic vocabulary, considered
as a sorted set of semantic concepts. Typical motivations
to compare maps that share the same categorical variable
for the same region are [66]: 1) to quantify landscape
transformation by comparing a map from a former time
to a map from a latter time, 2) to validate a simulation
model by comparing a predicted map to a truth map, and
3) to evaluate cartographic techniques by comparing a
map created by one technique to a map created by an
alternative technique. To date, a large segment of the RS
community appears concerned with this first type of maps
comparison exclusively [51], [66].

2) Comparison of thematic maps, either crisp of fuzzy, of
the same region, but whose LC class vocabularies differ
in terms of semantics and/or order of presentation and/or
cardinality (number of classes) [68], [139], [140]. This
second type of thematic map comparisons includes the
first type as a special case.

3) Comparison of thematic maps, either crisp of fuzzy, of
different regions, but featuring the same map legend.

4) Comparison of thematic maps, either crisp of fuzzy, of
different regions and whose map legends differ in terms
of semantics and/or order of presentation and/or cardi-
nality. This fourth type of thematic map comparisons
includes the third type as a special case.

About the comparison of thematic map pairs, the following
considerations hold:

• Although a large segment of the RS community appears
exclusively concerned with the first of the aforementioned
four types of comparison of thematic maps, there is a
significant body of literature dealing with the second
and/or fourth type. In the words of Ahlqvist [68, p. 1227]:
“many scholars have acknowledged a need to negotiate
and compare information stemming from different classi-
fication systems. Works on semantic uncertainty [125] and
semantic interoperability [126] of geographic information
reflect this concern. Works in computer science, artificial
intelligence and information science have also tackled the
issue of translations between heterogeneous information
sources and many see a potential for using formalized
descriptions, or ontologies [70], that can describe category
semantics, to address this issue [71]–[73]. . . Once a clas-
sification scheme has been transformed into a formalized
categorization a translation can be achieved by matching
the concepts in one system with concepts in another, either
directly or through an intermediate classification. Concep-
tually, these computational approaches largely follow sug-
gestions from the cognitive sciences on how categories are
mentally constructed and this has informed some recent
examples of negotiating different nomenclatures including
some that specifically target incompatible land use and LC
taxonomies [74]–[76]”.

• Semantic associations between the test and reference se-
mantic vocabularies involved with a categorical map pair

comparison, equivalent to inter-vocabulary semantic rela-
tions considered as “correct” by a cognitive agent (refer
to Section II-A), are, in general, many-to-many relations
[139], whose special (simpler) cases are one-to-many,
many-to-one, and one-to-one relations.

• All possible semantic associations between the two dis-
crete and finite sets of test and reference semantic concepts
are represented by the Cartesian product (or product set)
between the two discrete and finite sets of concepts. In
a tabular form, a Cartesian product is equivalent to a so-
called bi-dimensional contingency table [55], otherwise
called association matrix, cross-tabulation matrix [66],
full semantic change matrix [68], error matrix [55], or
OAMTRX [52], [67], which can be either square or non-
square, depending on whether cardinalities of the two
nominal sets are equal or different.

• The matching (harmonization) of two semantic legends is,
per se, a cognitive (interpretation) problem whose solution
is equivocal, pertaining to the domain of “information-
as-(an interpretation) process” (refer to Section II-A). It
means that two independent cognitive agents (knowledge
engineers in the nomenclature of artificial intelligence
[69]) are likely to match two thematic vocabularies differ-
ently. In other words, no “universal (context-independent)
best match” between two categorical variables can exist,
but the most appropriate semantic match between differ-
ent nomenclatures becomes a matter of negotiation and
community-agreement [23], [24].

• A comprehensive interpretation of an OAMTRX, either
square or non-square, can be very challenging, complex,
and time consuming. In general, an OAMTRX has no
major diagonal of matching class_pairs (“correct” table
entries) to guide the interpretation [52], [67], [68]. This
is tantamount to saying that off-diagonal or scattered table
entries can be considered perfectly “correct” in an either
square or non-square OAMTRX.

• A square OAMTRX is not equivalent to a popular
CMTRX, which is square by definition [49], [50], [51].
In the former, the presence of “correct” off-diagonal or
scattered entries is expected. In the latter, the test and
reference sorted legends coincide and the main diagonal
guides the interpretation process. A square OAMTRX
becomes equivalent to a traditional (square) CMTRX if
and only if the test and reference semantic vocabularies are
the same sorted set of concepts. In other words, it is always
true that the class of CMTRXs is a subset (special case) of
the class of OAMTRXs, i.e., OAMTRX ⊃ CMTRX.

• It is noteworthy that whereas the construction of an
OAMTRX is straightforward and non-controversial when
the semantic labels of sampling units are crisp (hard), the
method to construct an OAMTRX is not obvious at all
when semantic labels are soft (fuzzy) [66], [68].

• A similar consideration holds about the selection of qual-
ity summary statistics generated from an OAMTRX. Al-
though there is still some debate on this issue when dealing
with crisp semantic labels [49], [127]–[129], there is even
more debate when fuzzy semantic labels are involved
[66], [68].
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This work adopts the following hypotheses:
• It exclusively deals with the first and second types of the

aforementioned four types of thematic map comparisons,
where the second type is a generalization of the first (refer
to this section above).

• It exclusively deals with hard semantic labeling of each
sampled population element belonging to the test map
domain or the reference sample.

Based on these working hypotheses, the following consider-
ations hold true:

• “Correct” associations between the test and reference
semantic vocabularies are expected to be many-to-many.
They can be modeled as “correct” entries in an OAMTRX,
which can be either square or non-square.

• Since it deals with crisp semantic labels exclusively, the
construction of an OAMTRX becomes straightforward
and non-controversial (refer to this section above).

• Although an OAMTRX has no major diagonal of
“correct” entries to guide the interpretation [52], [67],
[68], the distribution of “correct” entries across an
OAMTRX does convey (useful) information about the
degree of match between the two test and reference
categorical variables [23]. Intuitively, the information
carried out by many-to-many relations encompassed by
an either square or non-square OAMTRX is: 1) more
vague (fuzzier) than, i.e., inferior to, say, the unambiguous
information carried out by ideal (simplest) one-to-one
relations typically allowed by a CMTRX, and 2) superior
to the null information conveyed by all-to-all inter-
vocabulary relations. To estimate from an OAMTRX
the degree of match between the two test and reference
categorical variables, the novel Categorical Variable Pair
Similarity Index, CVPSI ∈ [0, 1], is proposed below.

1) Definition of the Novel CVPSI Estimated From an
OAMTRX: An original degree of match between a test and a
reference categorical variable, identified as CVPSI ∈ [0, 1], is
estimated from an OAMTRX as described below.

In an OAMTRX (and its special case, CMTRX), it is typical
that columns represent the reference classification while rows
indicate the test map to be evaluated [51]. Let us identify as
TC the cardinality of the test classification taxonomy and as
RC the cardinality of the reference sample taxonomy. The total
number of “correct” (allowed) elements (cells, entries) in an
OAMTRX is identified as CE, such that 0 ≤ CE ≤ RC ×
TC. In addition, symbol “==” is adopted to mean “equal to.”

The CVPSI computation problem is constrained as follows:
(a)

CE =
TC∑
t=1

RC∑
r=1

CEt,r,with CEt,r ∈ {0, 1}

= {“correct”entry(t, r), “noncorrect”entry(t, r)} ,
CE ∈{0, RC × TC}.

(b) If (CE == 0), then CVPSI = 0. It means that, when
no “correct” entry exists, then the degree of match be-
tween the two categorical variables is zero. If (CE ==
0), then also the classification OA probability estimate,
pOA ∈ [0, 1] is equal to 0.

(c) If (CE == RC × TC), then CVPSI → 0. It means
that when all table entries are considered “correct,” then
nothing is meaningful or makes the difference between
the two categorical variables. It is noteworthy that, if
(CE == RC × TC), then pOA = 1, but at the expense
of CVPSI → 0. This intuitively proves that, being in-
dependent QIs of the test thematic map under considera-
tion, pOA and CPVSI must be maximized jointly.

(d) If{[(
TC∑
t=1

CEt,r = CE+,r

)
== 1, r = 1, . . . , RC

]

×AND

[(
RC∑
r=1

CEt,r = CEt,+

)
== 1, t = 1, . . . , TC

]}

i.e., if [(CERC = RC) AND (CETC = TC)], then
CVPSI = 1. It means that when the reference and test
map legends “match” each other by means of one-to-one
relations exclusively, then the OAMTRX is equivalent to
a CMTRX and CVPSI is maximum.

(e) If [not condition(b) AND not condition(c) AND not con-
dition(d)] then CVPSI ∈ (0, 1).

For example, in a (square) CMTRX, then CVPSI = 1 ac-
cording to condition (d). In practice, CVPSI ∈ [0, 1] is a fuzzy
degree of similarity between: 1) an OAMTRX whose definition
requires the selection by a domain expert of the “correct”
entries, i.e., “correct” (allowed) reference-test class relations
which are, in general, many-to-many and 2) an (ideal) CMTRX
version of an OAMTRX, where allowed reference-test class
relations are one-to-one exclusively, irrespective of the fact that
“correct” entries are diagonal or off-diagonal entries.

Another way of interpreting index CVPSI ∈ [0, 1] is to con-
sider its complementary value (1− CVPSI) ∈ [0, 1]. Index
(1− CVPSI) is a normalized estimate of the additional (clas-
sification) work required to fill up the semantic gap from the test
semantic vocabulary to the reference semantic vocabulary.

To satisfy the set of aforementioned constraints (a) to (e), the
following set of original equations is proposed.

CVPSI ∈ [0, 1], CVPSI

=
1

RC+TC

(
RC∑
r=1

fRC(CE+,r)+

TC∑
t=1

fTC(CEt,+)

)
(16)

with

fRC(i)=

{
0 if i=0,

e
− (i−1)2

(TC
3 )

2

if i>0,
with i∈{0, TC}⊂I+0 ,

where i=CE+,r, r∈{1, RC} (17)

fTC(j)=

{
0 if j=0,

e
− (j−1)2

(RC
3 )

2

if j>0,
with j∈{0, RC}⊂I+0 ,

where j=CEt,+, t∈{1, TC}. (18)

It is trivial to prove that (16)–(18) satisfy the aforementioned
requirements (a) to (d). In this section below, it is proved that
requirement (e) is satisfied too.
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TABLE IX
REFERENCE LAND COVER CLASS DESCRIPTIONS AND SAMPLING UNIT TYPES IDENTIFIED IN THE WV-2 AND QB-2

TEST IMAGES DESCRIBED IN SECTION IV AND CONSIDERED AS THE REFERENCE POPULATION TO SAMPLE

TABLE X
DEFINITION OF “Correct” ENTRIES IN AN OAMTRX INSTANTIATION [8], [52], [67] GENERATED AS THE CROSS-TABULATION BETWEEN THE Q-SIAM™

SPECTRAL CATEGORIES AT THE INTERMEDIATE LEVEL OF SEMANTIC GRANULARITY [5]–[17], WHERE TC = 28 (SEE TABLE V), AND THE ADOPTED

REFERENCE SET OF LAND COVER CLASSES, WHERE RC = 7 (4 TABLE IX). THUS, IN ITS COMPLETE VERSION, THIS CONTINGENCY TABLE CONSISTS

OF RC = 7COLUMNS AND TC = 28 ROWS. FOR THE SAKE OF SIMPLICITY, IN THIS EXAMPLE (SYNTHETIC, BUT REALISTIC), ONLY 16 OF THE

28 SIAM™ SPECTRAL CATEGORIES, NAMELY, THOSE WHOSE OCCURRENCE IS ABOVE 0.5% IN THE TEST MAP GENERATED FROM THE WV-2 TEST

IMAGE, IN ADDITION TO CLASS “Unknowns” (UN3), ARE SHOWN. THE YELLOW HIGHLIGHT COLOR IDENTIFIES “Correct” ENTRIES

(ALLOWED PAIRWISE RELATIONS). THE PINK HIGHLIGHT COLOR IDENTIFIES BARRED ENTRIES. IN THIS OAMTRX EXAMPLE,
IF RC IS FIXED TO 7 AND TC IS SET EQUAL TO 16, THEN THE INTER-VOCABULARY DEGREE OF MATCH CVPSI = 0.5598

(REFER TO THE TEXT IN THIS SECTION FOR COMPUTATION DETAILS)

2) Instantiation With the SIAM™ Pre-Classification Maps
Automatically Generated from the WV-2 and QB-2 Test Images:
SIAM™’s preliminary classification maps consist of a discrete
and finite set of spectral categories at fine, intermediate, and
coarse semantic granularities (refer to Section II-G) [5]–[17].
Many-to-many associations hold between SIAM™’s color-
based inference categories (e.g., “vegetation”), which belong to
the (2-D) image domain, and a reference set of LC classes (e.g.,
“deciduous forest,” “evergreen forest,” etc.), equivalent to 4-D
object-models belonging to the 4-D model of the world-

through-time [25], [35] (refer to Section II-C). Hence, an either
square or non-square OAMTRX is required to model the many-
to-many relations capable of harmonizing the test spectral
categories and the reference LC classes [8], [52], [67] (refer
to this section above).

In general, when dealing with a map generated from VHR
imagery, no data source one step closer to the ground than the
VHR image employed to make up the map is available for
reference population sampling. Hence, the test and reference
VHR data sources coincide [51] (refer to Section III). This is
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also the case of this work, where a reference LC taxonomy is
selected by an expert photointerpreter (cognitive agent), whose
inference activities are, per se, subjective (equivocal [23], [24],
refer to Section II-A), in the VHR test image at hand according
to the following constraints:

(a) The reference legend is mutually exclusive and totally
exhaustive, in compliance with the Congalton and Green
criteria for selecting a target taxonomy [51].

(b) It is capable of mapping reference image-objects, identi-
fied by the expert photointerpreter in the test VHR image
at hand, into a discrete and finite set of semantic labels.

(c) The reference legend and the reference image-objects are
selected by independent means from the RS-IUS whose
maps, generated from the same VHR test image, are
being validated (refer to Section III).

As a result of a photointerpretation process of the WV-2 and
QB-2 test images subjected to the aforementioned constraints
by a domain expert, seven reference LC classes are identified
as shown in Table IX.

As an example, Table X shows the OAMTRX instance
[8], [52], [67] whose “correct” entries are defined for the
Q-SIAM™ spectral categories at the intermediate level of
semantic granularity [5]–[17], where TC = 28, (see Table V)
cross-tabulated with the reference set of LC classes, listed in
Table IX, where RC = 7. Thus, in its complete version, this
contingency table consists of RC = 7 columns and TC = 28
rows. To reduce the vertical size of Table X, only 16 of the
28 Q-SIAM™ spectral categories, namely, those whose occur-
rence is above 0.5% in the test map generated from the WV-2
image, in addition to class “Unknowns” (UN3), are shown.

It is noteworthy that, in Table X, selection of “correct”
entries is equivalent to the “fusion of horizons,” or “fusion of
ontologies,” mentioned above in this section. Although sub-
jective in nature (because terms “semantic,” “subjective,” and
“equivocal” are synonyms [23], [24], refer to Section II-A),
associations between spectral categories and reference LC
classes shown in Table X should not be considered arbitrary.
Rather, they should be community-agreed and considered spe-
cific of the two test and reference semantic vocabularies, but
independent of the RS image adopted as input by the test
thematic map.

As a synthetic but realistic example, let us investigate
the inter-vocabulary degree of match, CVPSI, estimated, via
(16)–(18), from the OAMTRX instance shown in Table X when
RC is fixed to 7 and TC is set equal to 16.

• If all elements in Table X were considered as “correct”
entries, thus CE = RC × TC = 7× 16 = 112, then con-
dition (c) would hold, where it is expected that CVPSI →
0. If we apply (16)–(18) we obtain:

Equations (16) to (18)

= CVPSI =
1

7 + 16
(7 ∗ fRC(16) + 16 ∗ fTC(7))

=
1

22
(7 ∗ 0.000367 + 16 ∗ 0.001344) = 0.001 ≈ 0.

Thus, (16)–(18) satisfy constraint (c) when an OAMTRX
features all “correct” entries, when RC = 7 and
TC = 16.

• In the specific case of Table X, where RC = 7, TC =
16 and CE = 42 ≤ RC × TC = 7× 16 = 112, then re-
quirement (e) should hold, therefore:

Equations (16) to (18)

=
1

7 + 16

(
RC=7∑
r=1

fRC(AE+,r) +

TC=16∑
t=1

fTC(AEt,+)

)

=
1

23

(
fRC(2) + fRC(5) + 3 ∗ fRC(6)

+ 2 ∗ fRC(7) +

16∑
t=1

fTC(AEt,+)

)

=
1

23

(
0.965455 + 0.569783 + 3 ∗ 0.415237

+ 2 ∗ 0.282063 +
TC∑
t=1

fTC(CE+t)

)

=
1

23
(3.345074 + fTC(0) + fTC(1) + 8 ∗ fTC(2)

+ 3 ∗ fTC(3) + 2 ∗ fTC(4) + fTC(5))

=
1

23
(3.345074 + 0 + 1 + 8 ∗ 0.832208 + 3 ∗ 0.479652
+ 2 ∗ 0.191463 + 0.052931)

=
1

23
(3.345074 + 9.532473) =

12.87747

23
= 0.559893 ∈ (0, 1).

The conclusion is that (16)–(18) satisfy constraint (e) in the
example where OAMTRX = Table 1.

Table XI reports the CVPSI value extracted from the three
OAMTRX instances defined in this work to cross-tabulate the
reference set of LC classes, shown in Table IX, where RC = 7,
with the legend of a Q-SIAM™ map at fine, intermediate and
coarse semantic granularity, where the number of Q-SIAM™’s
test classes, TC, is equal to 52, 28, and 12, respectively, refer
to Table V. For the sake of simplicity, these three OAMTRX
instances are not shown in this presentation, but can be accessed
through anonymous ftp [148]. In addition, a subset of the
OAMTRX instance defined between the Q-SIAM™ legend at
intermediate granularity and the reference classes is shown in
Table X.

In line with theoretical expectations, Table XI reveals that,
in these experiments, the CVPSI index is monotonically non-
decreasing (i.e., it increases or remains constant) with the
semantic granularity of the Q-SIAM™ map, i.e., CVPSI does
not increase as the SIAM™ semantic granularity gets coarser.
In other words, in these experiments, CVPSI is monotoni-
cally non-decreasing with the degree of specialization of the
Q-SIAM™ spectral categories. Vice versa, the “semantic gap”
from the test Q-SIAM™ spectral categories to the reference
land cover classes, estimated as (1− CVPSI), is monotoni-
cally non-increasing (i.e., it decreases or remains constant) with
the cardinality of the latter [5]–[17].
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TABLE XI
CATEGORICAL VARIABLE PAIR SIMILARITY INDEX, CV PSI ∈ [0, 1], REFER TO (16)–(18), ESTIMATED FROM AN OAMTRX INSTANCE

WHERE “Correct” ENTRIES ARE SELECTED BETWEEN THE Q-SIAM™ SPECTRAL CATEGORIES, WHOSE CARDINALITY TCAT FINE,
INTERMEDIATE, AND COARSE SEMANTIC GRANULARITY IS EQUAL TO 52, 28, AND 12, RESPECTIVELY, AND THE REFERENCE CLASSES,

DESCRIBED IN TABLE IX, WHOSE CARDINALITY RC = 7. HENCE, THESE THREE OAMTRX INSTANCES CONSIST OF 364, 196,
AND 84 ENTRIES. FOR THE SAKE OF SIMPLICITY, THESE THREE OAMTRX DEFINITIONS ARE NOT SHOWN IN THIS PRESENTATION,

BUT CAN BE ACCESSED THROUGH ANONYMOUS FTP [148]. IN ADDITION, A SUBSET OF THE OAMTRX INSTANCE DEFINED

BETWEEN THE Q-SIAM™ LEGEND AT INTERMEDIATE GRANULARITY AND THE REFERENCE CLASSES IS SHOWN IN TABLE X.

Finally, it is noteworthy that the CVPSI estimation from an
OAMTRX definition, like that shown in Table X, is preliminary
to and completely independent from the instantiation phase
of the OAMTRX, when cells are filled with occurrences or
probability values. These probability values are investigated
by TQIs, like the OA probability. This is to say that, being
independent QIs of the test thematic map under investigation,
TQIs and the CPVSI must be maximized jointly.

B. Probability Sampling Design

In this subsection, a probability sampling protocol is pro-
posed to accomplish the following decisions (refer to the in-
troduction to Section VI).

• Estimation of the sample set cardinality depending on
the project’s requirements specification, with regard to:
1) target OA and confidence interval, 2) target per-class
accuracy and confidence interval, and 3) costs of sampling
in compliance with the project budget.

• Selection of the sampling frame, either (1-D) list frame or
(2-D) area frame [55].

• Selection of the spatial type(s) of sampling units, e.g.,
pixel, polygon, or block of pixels [123].

• Selection of the sampling strategy, e.g., SIRS, STRS,
systematic sampling, etc. (refer to Section V).

1) Sample Set Cardinality Estimation: In order to estimate
the minimum number of reference sampling units to be sampled
and labeled for each thematic class of the test map to be evalu-
ated, Lunetta and Elvidge propose a statistical criterion which
depends on the project requirements specification, namely, the
target class-specific accuracy and error tolerance, but is inde-
pendent of costs of sampling to be accounted for in the project
budget [50]. This criterion is described below.

It is well known that any classification OA probability es-
timate, pOA ∈ [0, 1], is a random variable (sample statistic)
with a confidence interval (error tolerance) associated with
it, identified as ±δ, where δ represents the half-width of the
error tolerance at a specified confidence level(1− α) such that
0 < δ < pOA ≤ 1, with α ∈ [0, 1], known as the desired level
of significance (e.g., α = 0.05), which is the risk that the
actual error is larger than ±δ, hence the specified confidence
level (1− α) (e.g., 1− α = 1− 0.05 = 95%) is the required
probability that the actual error falls within the confidence
interval ±δ. In practice, pOA ± δ is a function of the specific
test data set used for its estimation, and vice versa. For example,
for a given reference sample set size (SSS) comprising inde-

pendent and identically distributed (i.i.d.) reference samples2

and an estimated classification accuracy probability pOA, it is
possible to prove that the half width δ of the error tolerance
±δ at a desired confidence level (e.g., if confidence level (1−
α) = 95% then the critical value is 1.96) can be computed as
follows [50]:

δ =

√
(1.96)2 · pOA · (1− pOA)

SSS
. (19)

Vice versa, minimum SSS = f (target pOA, target δ) can be
computed as follows:

SSS =
(1.96)2 · pOA · (1− pOA)

δ2
. (20)

For each c-th class simultaneously involved in the classification
process, with c = 1, . . . , C, where C is the total number of
classes, with C ≥ 2 (at least, the total number of classes C com-
prises a target LC class and class “outliers”; It is noteworthy
that the definition of a rejection rate is a well-known objective
of any RS image classification system, e.g., refer to [94, p. 185],
it is possible to prove that [50]):

δc =

√
χ2
(1,1−α/C) · pOA,c · (1− pOA,c)

SSSc
, c = 1, . . . , C (21)

where α is the desired level of significance, i.e., the risk that
the actual error is larger than ±δc (e.g., α = 0.05), 1− α/C
is the level of confidence (e.g., if α = 0.05 and C = 5, then
1− 0.05/5 = 0.99), and χ2

(1,1−α/C) is the upper (1− (α/C))∗

100th percentile of the chi-square distribution with one degree
of freedom (e.g., if the level of confidence is (1− 0.05/5) =
0.99, then χ2

(1,0.99) = 6.63).
Vice versa, minimum SSSc = f (target pOA,c, target δc), c =

1, . . . , C, can be computed as follows:

SSSc=
χ2
(1,1−α/C) · pOA,c · (1−pOA,c)

δ2c
, c=1, . . . , C. (22)

Instantiations of community-agreed target values and con-
fidence intervals of classification accuracy measures can be

2In the RS common practice, the i.i.d. hypothesis almost never applies to
reference samples due to spatial autocorrelation between neighboring pixels
belonging to the same LC type. This is tantamount to saying that the number of
statistically independent observations that can be made in space-time is limited
[25]. This is in accordance with Tobler’s first law of geography: “all things are
related, but nearby things are more related than distant things” [130], although
certain phenomena clearly constitute exceptions [25].
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found in literature. For example, according to the USGS clas-
sification system constraints [111], the target one-class pOA ∈
[0, 1]± δ is fixed at 0.85 ± 2%. The per class classification
accuracy, pOA,c ∈ [0, 1]± δc, c = 1, . . . , C should be about
equal and never below 70%, whereas a reasonable reference
standard for δc is about 5% [8].

This means that, if the desired level of significance α = 0.07
and C = RC = 7, then the level of confidence (1− α/C) =
0.99 and χ2(1, 1− α/C) = 6.63. In this case, if pOA,c = 85%,
with δc = ±2%, then SSSc = (22) = 2113, c = 1, . . ., RC =
7. If pOA,c = 85%, with δc = ±5%, then SSSc = (22) = 338,
c = 1, . . ., RC = 7, and so on.

Instantiation with the SIAM™ pre-classification maps auto-
matically generated from the WV-2 and QB-2 test images: In
this paper, the project requirements specification is as follows:

• The target number of reference LC classes, RC, is set
equal to RC = 7, see Table IX.

• The target OA probability and confidence interval, pOA ∈
[0, 1]± δ, are fixed at 0.85 ± 2%, in line with the USGS
standards [111]. The significance level, ∝, is fixed at 0.05,
thus χ2

(1,1−∝) = χ2
(1,1−0.05) ≈ 3.84 in (20).

• Per-class accuracies, pOA,c, c = 1, . . . , C, with C equal to
either TC = 52/28/12 (see Table V) or RC = 7, should
be similar and never below 0.70, with an error tolerance,
±δc, equal to ±5%. For the estimation of the reference
per-class sample size SSSc = (22), the target pOA,c, c =
1, . . . , RC, is set equal to 0.85 [8]. In addition, the refer-
ence per-class significance level, ∝ /RC, is fixed at 0.01,
thus χ2

(1,1−∝/RC) = χ2
(1,1−0.01) ≈ 6.63 in (22).

Given these project requirements, sample set size estimates
are calculated as follows:

• According to (20), the minimum sample set size, indepen-
dent of the test image and sampling costs, necessary to
assess the OA assuming USGS parameters is

SSS =(20) =
χ2
(1,1−α) · pOA · (1− pOA)

δ2

≈ 3.84 · 0.85 · (1− 0.85)

0.022
≈ 1225.

• According to (22), the minimum per-class sample set size
necessary to assess the target per-class accuracy assuming
the previously defined parameters is

SSSc =(22) =
χ2
(1,1−α/RC) · pOA,c · (1− pOA,c)

δ2c
,

c =1, . . . , RC ≈ 6.63 · 0.85 · (1− 0.85)

0.052
≈ 340.

It is noteworthy that these minimum sample set size estimates
may refer to sample units whose spatial type is either pixel or
polygon, e.g., refer to Table V.

2) Sampling Frame: The definition of a sampling design
requires to specify a finite sample space S, assumed to co-
incide with the selected GEOROI, i.e., S ≡ GEOROI, see
Section VI-A, where S consists of a finite set of discrete spatial
units (sampling units, e.g., pixels, blocks of pixels, or polygons

[123]) that form a complete (totally exhaustive) partition of the
selected GEOROI, such that S is a superset of the finite popu-
lation U to be sampled, thus U ⊆ S ≡ GEOROI. The sampling
units forming the 2-D sampling universe S ≡ GEOROI can be
represented by a sampling frame [123]. There are two types of
sampling frames: a (1-D. 1-D) list frame and a (2-D, 2-D) area
frame [55].

• A 1-D list frame is defined as a list of all such spatial
units forming a complete partition of the target GEOROI
along with a spatial address for each unit (e.g., spatial
coordinates or an identification number unique to each
unit). Thus, the sample is selected directly from this
1-D list of sampling units representing the entire GEOROI
independent of the 2-D sample space S [123].

• The sampling protocol used with an area frame is based
on, first, selecting a sample of ideal dimensionless spa-
tial locations, also called sample candidates or sampled
locations [55], otherwise called geo-atoms as a dimension-
less atomic abstraction of geographic information [25],
followed by associating a sampling unit with each spatial
location. Hence, the actual sampling units, for example,
polygons, are selected indirectly via the intermediate step
of the sample of point locations. An explicit rule for asso-
ciating a unique sampling unit, say, either a pixel, polygon,
or block of pixels, with any spatial location within the
area frame must be established. For example, a rule for
associating a unique polygon with a randomly selected
point location is to sample that polygon within which the
random point fell. This particular area frame sampling
protocol illustrates that it is not necessary to delineate all
polygons in the target population to obtain the sample.
An area frame is preferable to a 1-D list frame when
a systematic design is planned. For example, if the area
frame is a map of all pixels, converting the map to a 1-D
list frame of pixels would not only be unnecessary work,
it would lose much of the spatial structure important for
systematic sampling. Area frames better retain the spatial
features of a geospatial population [55]. On the other hand,
point (area) sampling is effectively the same as sampling
from a 1-D list frame if the spatial units (e.g., pixels)
partitioning the GEOROI are all equal in area and have
the same shape. For example, for a polygon assessment
unit, the point sampling protocol will select polygons into
the sample with probability proportional to polygon area,
so larger polygons will have a higher probability of being
selected. These unequal inclusion probabilities must be
accounted for in the analysis and estimation stage, e.g., by
means of the Horvitz–Thompson theorem, see Section V.

Instantiation with the SIAM™ pre-classification maps auto-
matically generated from the WV-2 and QB-2 test images: In
this paper, neither a complete-coverage reference map (“truth
map” [66]) is available nor reference categorical strata (layers)
are available on a a priori basis. For example, no reference map
of the image-wide set of image-objects identified as elements
of the reference class “Light Built-up” (LB), see Table IX, is
available. Thus, no 1-D list frame is possible. An area frame
is selected instead, such that if the sampling unit is an areal
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Fig. 12. Original non-standard class-specific simple random sampling (SIRS) strategy. Left. Sample point selection for the reference class “Grass” (Gr), see
Table IX, using a set of random spatial locations (sample candidates) generated by a SIRS strategy applied per reference class. Since the reference class Gr
features non-contextual (i.e., color) properties, rather than contextual properties, like geometric attributes or texture, then the selected spatial unit is “pixel,” see
Table IX. Green locations (“hit”) are included in the Gr class-specific sample, while red points (“miss”) are excluded. Right. Sample polygon selection for the
reference class “Light Built-up” (LB), see Table IX, using a set of random spatial locations. “Hits” on an image-object which is a member of the reference class
LB require delineation of the object-specific shape and size with a polygon, illustrated with a red boundary. This LB class-specific object selection shows how a
single reference class-object consists of different colors likely to be matched by several spectral categories detected by SIAM™, i.e., this semantic image-object
belonging to reference class LB is eligible for encompassing a one-to-many relation with spectral categories (spectral end members) detected by the first-stage
SIAM™ preliminary classifier.

sampling unit, e.g., sample pixel or polygon, then the explicit
rule for associating a sample pixel or polygon with a randomly
selected point location is to select that sample pixel or polygon
within which the random point fell, see Fig. 12.

3) Selection of the Spatial Type(s) of Sampling Units: The
sampling unit, e.g., a 0.1 hectare (ha) pixel, 10 ha polygon,
1000 ha circular plot, etc., is the fundamental unit on which
the accuracy assessment is based. The sampling unit can be
defined without specifying what will be observed on that unit on
the ground; thus, no assumption about homogeneity of thematic
classes for the sampling unit is necessary. Because the sampling
unit is the ultimate basis for the comparison of the thematic
map and reference sample classifications, whatever sampling
unit is chosen, it is essential that this choice be explicitly and
clearly stated and considered acceptable to users of the thematic
map [55].

There are two types of sampling units [55].

• (Dimensionless) Point, featuring no area extent. The sta-
tistical population associated with a point sampling unit is
viewed as continuous. In [25], dimensionless atomic ab-
straction of geographic information are called geo-atoms
(refer to this section above).

• Areal unit featuring a 2-D spatial coverage. The statistical
population associated with areal units is considered as
partitioned into discrete spatial units such as pixels or
polygons. The three primary areal sampling units are the
following.

• Pixels, representing small areas (e.g., 30 m pixel), are
related to point sampling units, but because pixels
still possess some areal extent, they partition the

mapped population into a finite, though large, number
of sampling units.

• Polygons. Polygon sampling units are usually irregu-
lar in shape and differ in size. For example, in a RS
imagery, man-made objects are typically photointer-
preted as polygons approximating the object-specific
shape and size, see Fig. 12.

• Fixed-area plots. Fixed-area plot sampling units are
usually regular in shape and cover some predeter-
mined areal extent. In practice, pixels and polygons
are special cases of fixed-area plot sampling units.

Instantiation with the SIAM™ pre-classification maps auto-
matically generated from the WV-2 and QB-2 test images: In
the case of Q-SIAM™ maps generated from the WV-2 and
QB-2 test images described in Section IV, areal sampling units,
either pixels or polygons, are selected class specific, refer to
Table IX.

4) Selection of the Probability Sampling Strategy: SIRS,
STRS (equivalent to running an SIRS of nh elements from
the Nh elements in stratum h), systematic sampling (with a
random start and sampling interval K, with K an integer), and
cluster sampling are all probability sampling designs consid-
ered as reference standards because they guarantee that (refer to
Section V): 1) each element u in the population U to be sampled
has a positive inclusion probability, πu > 0, ∀u ∈ U , 2) the
probability of an element u ∈ U being included in an arbitrary
sample set SS of the population U , with SS ⊆ U ⊆ S ≡
GEOROI, where the sample space S ≡ GEOROI, is known,
e.g., see equations. (11) and (12), and 3) inclusion probabilities
associated with non-sampled units need only be knowable [60].
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About STRS, it may be important to recall that geospatial
(e.g., categorical) strata must be available before (prior to)
the geospatial statistical sampling takes place, i.e., STRS is
possible if and only if prior geospatial knowledge in the form
of strata is available before the statistical sampling occurs.

Instantiation with the SIAM™ pre-classification maps auto-
matically generated from the WV-2 and QB-2 test images: In
our experiments, neither a complete-coverage reference map
nor reference class-specific strata are available. For example, in
Table IX the reference class LB features a spatial type equal to
polygon, but no LB class-specific (stratum-specific) reference
map is available, i.e., there is no prior knowledge of where
polygons identifying units of reference class LB are located
across the VHR image to be sampled for accuracy assessment
of the thematic map generated from that VHR image (refer to
Section VI-A).

Thus, no standard STRS is possible since no categorical
stratum is available a priori. As a consequence, to implement
an area frame according to Section VI-B2, an original non-
standard class-specific SIRS strategy is applied as described
in the caption of Fig. 12. For example, in Fig. 12, where a
sample polygon selection for the reference class LB (refer to
Table IX) is implemented by using a set of random spatial
locations, “hits” on an image-object which is a member of the
reference class LB require manual delineation of the target
object-specific shape and size with a polygon, illustrated with
a red boundary, to be drawn by an expert photointerpreter. In
practice, since no 1-D list of reference image-objects (poly-
gons) belonging to the reference class LB is available, a human
photointerpreter is required to select a finite set of reference
class-specific image-objects as those “hit” by a (theoretically
infinite) set of spatial random locations until the required car-
dinality of the reference sample set, e.g., estimated via (22), is
accomplished.

To deal with the unequal inclusion probability of reference
polygons in compliance with the Horvitz–Thompson theorem
(see Section V), let us consider the probability sampling strat-
egy described above. Unfortunately, it differs from standard
probability sampling designs, such as SIRS and STRS, for
which the required inclusion probabilities πu, ∀u ∈ U ⊆ S, are
readily calculated, e.g., see (11) and (12). In addition, it deals
with a multi-class classification problem where class-specific
strata across a target 2-D GEOROI (image) are not known,
therefore the inclusion probability derived from (10), πu = 1−
[p(s_plygn �= u)]SSSh = 1− [(Ah − au)/Ah]

SSSh proposed
in Section V, where SSSh is the sample set size for stra-
tum h, au is the area of the 2-D object u belonging to
the population (stratum) Uh to be sampled and Ah is the
area of stratum Uh, cannot be applied because parameter Ah

is unknown.
To recapitulate, a novel inclusion probability of reference

polygons in compliance with the Horvitz–Thompson theorem
(see Section V) must be introduced in the probability sampling
strategy adopted in this work. As an adaptation of (10) proposed
in Section V, for each sample polygon s_plygn belonging to
the sample space, i.e., splygn ∈ S ≡ GEOROI, coincident with
a target class-specific image-object uc ∈ Uc ⊆ S ≡ GEOROI
with c ∈ {1, RC}, where the class-specific cardinality of the

finite sample set SSc for class c, |SSc| = SSSc is defined ac-
cording to (22), the original inclusion probability πu,c adopted
in this work is proposed as follows:

πu,c=
areau,c

SSSc∑
n=1

arean,c

∈(0, 1], areau,c≥1 (in pixel units),

where
SSSc∑
n=1

πn,c = 1. (23)

C. Response Phase Protocol

According to the introduction to Section VI, the response
phase consists of an evaluation protocol and a labeling protocol.

• The evaluation protocol specifies how the reference in-
formation will be collected and integrated from different
sources of reference (“true”) classification.

• The labeling protocol includes rules for assigning one or
more (e.g., a primary and a secondary) reference classifi-
cations to each sampling unit.

1) Evaluation Protocol: The evaluation protocol specifies
how the reference information will be collected and integrated
from different sources of reference (“true”) classification such
as, say, photointerpretation of high-quality RS imagery (e.g.,
VHR imagery), field campaigns, or a combination of these
information sources. In practice, the evaluation protocol starts
from choosing the size and shape of the spatial support region
(domain of activation) where the reference sample classifica-
tion evaluation will occur based on evidences collected from
a selected set of reference information sources such as VHR
imagery, field campaigns, or both. In particular:

• if the sampling unit is a dimensionless point (geo-atom
[25]), the evaluation need not be limited only to what the
evaluator observes at that point location.

• If the sampling unit is an areal sampling unit, namely,
pixel, polygon, or blocks of pixels [123], a spatial support
region defined for an areal sampling unit may or may not
be the areal unit itself. For example, a 30 m pixel may be
assigned with a support region of 1 ha. The spatial support
of a polygon sampling unit will usually just be the polygon
itself [55].

Instantiation with the SIAM™ pre-classification maps au-
tomatically generated from the WV-2 and QB-2 test images:
In these experiments, where the sole reference information
source available for sampling is the same VHR image adopted
as input by Q-SIAM™ to make up the thematic maps to be
evaluated (refer to Section III), seven mutually exclusive and
totally exhaustive reference classes, together with their spatial
units, are identified in the test VHR image set, see Table IX.
The spatial support of a polygon sampling unit is considered
the polygon itself plus its spatial context, say, a square block of
pixels 10 times the size of the sampled object (e.g., in a VHR
image the identification of a polygon as an instance of LC class
“buildings” may be reinforced if in its surrounding there is a
road linked with that image-object). The spatial support of a
pixel sampling unit is considered a 20 × 20 block of pixels
(e.g., equal to 40 × 40 m in a WV-2 image) centered on the
sampled pixel.
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2) Labeling Protocol: It consists of rules for assigning one
or more reference class indexes to each sampling unit based
on the information obtained from the evaluation protocol. It
may provide: 1) crisp labeling, where more cover types can be
selected if it is not possible or desirable to label the sampling
unit as a single thematic class, or 2) fuzzy labeling, where a
class membership is provided for every class in the reference
taxonomy.

Instantiation with the SIAM™ pre-classification maps au-
tomatically generated from the WV-2 and QB-2 test images:
In these experiments, where the sole reference information
source available for sampling is the same VHR image adopted
as input by Q-SIAM™ to make up the thematic maps to be
evaluated, a crisp labeling strategy is adopted by an expert
photointerpreter (cognitive agent), whose (inherently equivo-
cal) mapping means are required to be independent of the
RS-IUS that generates the maps to be evaluated, refer to
Section VI-A.

D. Analysis and Estimation Protocol

To cope with the well-known non-injectivity of any QI, no
hypothetical universal QI exists [5]–[17]. Hence, the estimation
and analysis protocol for a statistically rigorous quality assess-
ment of a thematic map in comparison with reference geospatial
sampling units must rely on a selected set of mutually uncorre-
lated QIs provided with uncertainty in measurement in compli-
ance with the QA4EO guidelines [3] (refer to Section III).

The level of detail provided by spaceborne/airborne VHR
images allows observation as discernible image features
(image-contours or, vice versa, image-objects) of ground level
(3-D) objects (e.g., cars) traditionally invisible in coarser reso-
lution spaceborne images, whose typical areal spatial type is
pixel rather than polygon. The ill-fated dichotomy of pixels
versus image-objects (polygons) remains on open issue to cope
with in the development of operational RS-IUSs [5]–[17],
[39], [40], [77], [79], [99], [131] (refer to Section II-F).
The same dichotomy between pixels and image-objects affects
the accuracy assessment of thematic maps generated from
spaceborne/airborne VHR images. Traditional thematic maps
made up from low- and medium-resolution RS images require
a pixel-based assessment of the map’s thematic and spatial
accuracies [52]. In addition to a pixel-based thematic accuracy
assessment, categorical maps generated from VHR imagery
require a spatial (geometric) accuracy assessment of the map
polygons, which accounts for the spatial distribution of the-
matic errors [52], [53], [56] (refer to Section III). To summa-
rize, unlike a traditional thematic accuracy assessment, which is
pixel-based, spatial accuracy assessment, mandatory for maps
generated from VHR images, is 2-D object based. In particular,
the goal of a spatial accuracy assessment of a thematic map is
to investigate: 1) the precision of a reference object’s boundary
delineation through scale and 2) the appropriateness of a refer-
ence object’s area and shape through scale [79].

Hence, two sets of symbolic pixel-based TQIs and sub-
symbolic polygon-based SQIs are proposed hereafter, starting
from existing literature and in compliance with the QA4EO
guidelines (refer to Section III).

1) Thematic Accuracy Assessment: In line with recommen-
dations found in a relevant portion of the existing literature,
where the use of popular pixel-based TQIs, such as the kappa
coefficient, is strongly discouraged [49], [127]–[129], pixel-
based TQIs selected in this paper are the traditional OA prob-
ability (pOA), user’s accuracy (pusr) and producer’s accuracy
(pprdcr). These measures directly illustrate the probability of
encountering a correct or incorrect labeled pixel, i.e., they allow
comparisons between digital maps consisting of map units u ∈
U as pixels [49], irrespective of the spatial type of sample units
s ∈ S as either polygon (s_plygn) or pixel (s_pxl), where the
sample space S ≡ GEOROI ⊇ U (refer to Section V).

In the specific case of a (square) CMTRX of size C × C,
where C is the total number of LC classes, the test and reference
semantic vocabularies coincide, columns usually represent the
reference classification while rows indicate the test map to be
evaluated [49]–[51], then the pOA index, defined as the sum
of the main diagonal elements (correctly classified pixels), is
computed as:

pOA =

C∑
c=1

pc,c. (24)

However, presenting the sole pOA is not enough, because
different thematic maps may feature the same non-injective
pOA index value (refer to Section III). Every error is an omis-
sion from the correct category and a commission to a wrong
category [51]. Producer’s and user’s accuracies are ways of
representing individual category accuracies instead of just the
overall classification accuracy. User’s accuracy pusr,c repre-
sents the conditional probability that an area classified as c,
c = 1, . . . , C, by the test map is also classified as class c by the
reference sample. Thus, user’s accuracy pusr,c, c = 1, . . . , C, is
related to the inverse of the commission error (false positive).
In the specialized case of a (square) CMTRX, user’s accuracy
is computed as follows [49], [51]

pusr,c =
pc,c

C∑
i=1

pc,i

=
pc,c
pc,+

(25)

where pc,+ is the row total (row marginal). Similarly, pro-
ducer’s accuracy pprdcr,c represents the conditional probability
that an area classified as c by the reference sample is also
classified as class c by the test map. Thus, producer’s accuracy
pprdcr,c, c = 1, . . . , C, is related to the inverse of the omission
error (false negative). It is computed as:

pprdcr,c =
pc,c

C∑
i=1

pi,c

=
pc,c
p+,c

(26)

where p+,c is the column total (column marginal).
In the more general case of a (square or non-square)

OAMTRX ⊃ CMTRX [67], it is necessary to adjust the nu-
merators of (24)–(26), originally formulated to suit (square)
CMTRX instances where one-to-one associations between
the test and reference semantic vocabularies hold, to fit
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many-to-many relations, which are typical of OAMTRX in-
stances, whose special cases are relations many-to-one, one-
to-many, and one-to-one, e.g., refer to the “correct” entries in
Table X.

Instantiation with the SIAM™ pre-classification maps
automatically generated from the WV-2 and QB-2 test images:
Equations (24)–(26) are implemented to deal with the “correct”
entries identified, in accordance with Section VI-A, in the
nine OAMTRX instances estimated from the three-granule
Q-SIAM™ maps (see Table V) generated from the three VHR
test images (refer to Table VI). For the sake of simplicity,
the nine estimated OAMTRX instances are not shown in this
presentation, but they can be accessed through anonymous
ftp [148].

Hence, nine instantiations of the TQI (24)–(26) are com-
puted, where the cardinality of the test semantic vocabulary,
TC, is equal to 52/28/12 for the Q-SIAM™ maps at fine,
intermediate and coarse semantic granularity, respectively (see
Table V), while the cardinality of the reference semantic vo-
cabulary, RC, is equal to 7 (refer to Table IX). Collected TQI
values are shown in Table XII(a)–(c) for each of the three
VHR test images. At first glance, Table XII(a)–(c) show that
the estimated overall, user’s and producer’s accuracies tend
to far exceed the target mapping accuracy values specified in
Section VI-B1. For example, OA pOA is greater than or very
close to 99% for the three VHR test images across the three
semantic granularities.

When confidence intervals are taken into account, the overall
accuracies pOA ± δ reported in Table XII are found to overlap
significantly across sensors, acquisition dates, and semantic
granularity, although the WV-2 T1 classification maps at the
three levels of semantic granularity show the best (by a statisti-
cally irrelevant tiny bit) OA pOA among the three test images.
These best cases are consistently associated with the same input
image, which may be considered as an additional evidence of
the consistency of the Q-SIAM™ maps generated at various
semantic granularities from the same VHR image.

With rare exceptions which are examined later in this section,
user’s accuracy estimates, pusr,c, c = 1, . . ., TC = 52/28/12,
surpass the target 70% specified in Section VI-B1 and, in most
cases, they exceed 95%, while producer’s accuracy estimates,
pprdcr,c, c = 1, . . ., RC = 7, are equal or above their minimum
at 94.49%, and greater than 98% in all but two cases.

In terms of user’s accuracy, an exception showing low accu-
racy (high commission error) is spectral category SHV_WEDR
(“shadow vegetation or weak dark rangeland”) in the WV-2 T2
image-derived maps at fine and intermediate semantic granu-
larities, see Tables XII(a) and (c), where this spectral category
features a high degree of commission with asphalt surfaces.
This effect is likely the result of undesired saturation introduced
through the relative calibration procedure in the WV-2 T2
image (refer to Section IV). In the QB-2 image, the spectral
categories ASHRBR_VLNIR (“average shrub rangeland with
very low NIR”) and SBBVF (“strong barren land or built-
up with very flat spectral response”) also display low users’s
accuracy (high commission error) in the fine granularity clas-
sification. These errors stem from the presence of thin clouds,
which are absent from the two WV-2 image acquisitions.

In the QB-2 image, both user’s and producer’s accuracy
show a slight decline in some classes in comparison with the
pair of WV-2 data-derived maps, which is due to presence
of thin clouds causing mixed pixel effects. When moving
from fine granularity to the intermediate semantic granularity
level, misclassification stemming from clouds and mixed pixels
becomes less apparent, e.g., producer’s accuracy (inversely
related to omission errors) for the reference class “Shadow
or Cloud Shadow or Cloud” (ShC, see Table IX) remains
approximately the same while user’s accuracies (inversely re-
lated to commission errors) increase, from minimum values
of 48.02 ± 3.39% (ASHRBR_VLNIR) and 72.04 ± 3.78%
(SBBVF) in Table XII(a), to minimum values of 90.57 ± 0.30%
(SADBBVF, “strong or average or dark barren land or built-
up with very flat spectral response”) and 94.26 ± 9.24% (SHB,
“shadow area with barren land”) in Table XII(b).

To properly interpret the “high” TQI values reported in
Tables XII(a)–(c), it is of fundamental importance to consider
that these TQIs are derived from an OAMTRX instance, like
that shown in Table X, where many-to-many relations be-
tween two different test and reference semantic vocabularies
are considered as “correct” (refer to Section VI-A). These
“correct” many-to-many relations account for a “semantic de-
gree of match” between the two test and reference semantic
vocabularies (semantic horizons) estimated as CVPSI ∈ [0, 1],
see (16)–(18), or, vice versa, (1− CVPSI) ∈ [0, 1], which is
the semantic distance between the two legends proportional
to the additional (classification) work required to fill up the
semantic gap from the test to the reference semantic vocabulary.
This means that, in these experiments, TQIs are expected to
be somehow “high” due to the semantic vagueness inherent
with the harmonization of two different test and reference
semantic vocabularies (refer to Section VI-A). For example, the
SIAM™ spectral categories have a semantic meaning superior
to zero, but equal or below that of reference LC classes, refer to
Section II-G. Since their semantic content is “vague” (equiva-
lent to a high level of abstraction or low level of specialization),
the SIAM™ spectral categories are capable of generalization
at the cost of specialization. In practice, TQI values reported in
Tables XII(a)–(c) show that, since spectral categories are broad
concepts, they are almost never wrong. Experimental evidences
supporting this conceptual reasoning are found in Tables XII
where, for each of the three test images, the Q-SIAM™ map
generated at coarse semantic granularity features: 1) the highest
(by a statistically irrelevant tiny amount) OA across different
granularities and 2) the highest (1− CVPSI) value of the
semantic gap from the test to the reference taxonomy. This
means that, in the proposed experiments, a coarser semantic
granularity of the Q-SIAM™ map achieves a (slightly) higher
thematic accuracy at the expense of semantic specialization
(information utility, informative content).

In addition, to interpret correctly the TQI values shown in
Tables XII(a)–(c), it is important to recall here that SIAM™
is an automatic deductive (prior knowledge-based) decision-
tree classifier (expert system, refer to Section II-B) requiring
no training phase before running the mapping stage (refer
to Section II-G). In other words, collected TQIs reported in
Tables XII(a)–(c) cannot be positively biased by any high
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TABLE XII
(a) OVERALL, USER’S, AND PRODUCER’S ACCURACY FOR THE SIAM™ FINE SEMANTIC GRANULARITY CLASSIFICATION OF TEST DATA SETS

REPRESENTED IN PERCENTAGES. SYMBOL ∗—DENOTES ABSENCE OF TARGET POPULATION OR SMALL TARGET POPULATION (PRESENCE

IN IMAGE < 0.5%). SYMBOL ∧—ERROR LIKELY DUE TO EFFECTS OF RELATIVE CALIBRATION PROCEDURE OR SENSOR SATURATION
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TABLE XII
(Continued.) (b) OVERALL, USER’S, AND PRODUCER’S ACCURACY FOR THE SIAM™ INTERMEDIATE SEMANTIC GRANULARITY

CLASSIFICATION OF TEST DATA SETS REPRESENTED IN PERCENTAGES. SYMBOL ∧—ERROR LIKELY DUE TO

EFFECTS OF RELATIVE CALIBRATION PROCEDURE OR SENSOR SATURATION

correlation value existing between a possible training data
set and the test data set selected in these experiments, be-
cause SIAM™ employs no training data set at all (refer to
Section II-G). This thematic map accuracy assessment scenario
is totally different from that typically faced by RS scientists
and practitioners involved with the quality assessment of the-
matic maps generated from RS imagery by traditional inductive
supervised data learning classifiers (statistical classifiers, refer
to Section II-B), e.g., artificial neural networks, radial basis
functions, support vector machines, non-parametric nearest-
neighbor classifiers, parametric maximum likelihood classi-
fiers, etc. [32]–[34]. In these cases, a test data set is a subset
of the reference supervised (labeled) data independent of the
training data set, but belonging to the same probability distribu-
tion. If an inductive data learning classifier performs well with

the training data set, then it is good in learning how to guess
labels of the training samples. For example, if no incorrect
prediction of labels is made during training, then this supervised
data learning classifier is termed consistent classifier [132],
[133]. If the supervised data learning classifier performs with
the training data much better than with the test data, then it lacks
generalization capability. If the training and test data sets are
the same set, it is obvious that the performance of the inductive
classifier in the testing phase would be as high as in the training
phase, but the classifier “true” generalization capability would
remain unknown. Unfortunately, accuracy estimates of classi-
fication maps generated by inductive data learning classifiers
proposed to the RS community are: 1) rarely provided with a
degree of uncertainty in measurement (as a negative example
not to be imitated, see [134]), which violates well-known laws
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TABLE XII
(Continued.) (c) OVERALL, USER’S, AND PRODUCER’S ACCURACY FOR THE SIAM™ COARSE SEMANTIC GRANULARITY

CLASSIFICATION OF TEST DATA SETS REPRESENTED IN PERCENTAGES. SYMBOL ∧—ERROR LIKELY DUE TO

EFFECTS OF RELATIVE CALIBRATION PROCEDURE OR SENSOR SATURATION

of sample statistics [50], [51], together with common sense
envisaged by the QA4EO guidelines [3], 2) extracted from one
or two RS images at most where both training and test data sets
are identified, which is equivalent to a toy problem unable to
stress the algorithm’s robustness to changes in the input data set,
and 3) rarely provided with any proof of the required indepen-
dence between the training and testing data sets. To avoid these
experimental drawbacks, this paper investigates the thematic
accuracy of the deductive Q-SIAM™ preliminary classification
maps automatically generated from VHR images by means
of: 1) a set of mutually uncorrelated TQIs provided with an
error tolerance in compliance with the QA4EO guidelines and
2) three VHR test images acquired by two different sensors
where no training of the Q-SIAM™ classifier ever occurs,
therefore statistical independence between the training and test-
ing data sets is guaranteed (because no training data set exists).

To recapitulate, the TQI values reported in Tables XII(a)–(c)
score “high”: 1) without any bias due to a possible correlation
between training and testing data sets because, SIAM™, which
is physical model based (prior knowledge based), employs no
training data at all, 2) in compliance with theoretical expec-
tations about the accuracy of a thematic map in relation to
its degree of semantic specialization (or, vice versa, general-
ization), 3) in agreement with the quantitative CVPSI values

estimated, in compliance with the QA4EO guidelines, as a
source of numerical evidence independent of TQIs, and 4) in
line with the high-value OQIs (refer to Section II-D) claimed
for SIAM™ by the existing literature [5]–[17].

A final experimental remark regards the applicability
of an automatic real-time SIAM™-based bi-temporal post-
classification change detection approach to VHR imagery, see
Section IV-C. The OA of a bi-temporal post-classification
change/no-change detection map is upper bounded by (8),
which makes a thematic map pair difference recommended if
and only if the two categorical maps employed as input are very
accurate. Given the two overall accuracies collected from the
test WV-2 T1 and T2 image pair at fine semantic granularity,
(8) is instantiated as follows:

Accuracy of the automatic real-time SIAMTM-
based bi-temporal post-
classification change/no-
change detection map

<= (Accuracy of the map at time T1
× Accuracy of the map at time T2)

= (99.57%± 0.24%)× (99.45%± 0.24%)
= [99.33%, 99.81%]× [99.20%, 99.68%]
= [98.53%, 99.49%].



BARALDI et al.: CLASSIFICATION MAPS FROM SPACEBORNE/AIRBORNE IMAGES 749

This makes the near real-time post-classification change
detection based on SIAM™ maps theoretically feasible.

Unfortunately, no quantitative assessment of the change/
no-change maps shown in Fig. 11(a) and (b) is carried out in
this experimental work, due to the absence of any ground-truth
information collected from a reference data source one step
closer to the ground than the VHR images used to make up
the change maps (refer to Section III).

2) Spatial Accuracy Assessment: Accuracy assessment of
thematic maps generated from VHR imagery requires, in ad-
dition to the estimation of pixel-based TQIs, the estimation of
polygon-specific SQIs (refer to Section III). In other words, SQI
assessment must be driven by sampling units whose spatial type
is polygon (refer to Section VI-D1).

In general, a data set of reference image-objects can em-
ploy polygons as sampling units according to the following
criteria [60]:

• Reference image-objects have well-defined geometric
properties (e.g., buildings typically feature high rectangu-
larity), thus they can be modeled as polygons fitting their
shape.

• Reference image-objects can be delineated with a reason-
able level of effort.

• The probability that a reference image-object is selected is
known (see Section V). The area of each polygon varies
on a per-object basis; therefore, the use of polygons as
reference samples merits special consideration [123]. Vari-
ability in object area influences the probability of selecting
a given object with respect to other objects of the same
reference class. To compensate for these varying inclusion
probabilities, it is necessary to adjust the inclusion proba-
bility for each object by an inverse area function, see (23)
in Section VI-B4 [60].

• Inclusion probabilities for non-sampled reference image-
objects are knowable (see Section V).

For example, Table IX lists the reference LC classes whose
sampling units are polygons according to the aforementioned
criteria. Per-class SQIs collected over class-specific reference
objects, say, reference objects belonging to either class DB,
LB or TCrwn (refer to Table IX), must be computed as a
weighted sum, where each reference object-specific weight is
provided by (23).

In this paper, SQIs adopted for the spatial quality assessment
of sub-symbolic (non-semantic) segmentation maps univocally
generated from (symbolic) classification maps (refer to footnote
1 and also refer to Sections II-G and III) are adapted from the
existing literature, e.g., refer to [54], [101], [102]. The proposed
set of SQIs consists of:

• an oversegmentation QI (OSQI), where OSQI values
belong to range [0, 1],

• an undersegmentation QI (USQI), where USQI values
belong to range [0, 1], and

• a pair of fuzzy edge overlap QIs (FEOQIs), where
FEOQI values belong to range [0, 1].

For each reference class c = 1, . . . , RC (see Table IX),
reference object-specific spatial accuracy values OSQIi,c,
USQIi,c, and FEOQIi,c are measures of the relationship

between the i-th reference image-object (polygon) belonging
to class c, identified as ROi,c, and its corresponding mapped
image-object, also called test image-object, identified as TOi,c.
For a given reference object, ROi,c, the single 2-D object in the
test map to be selected for comparison purposes, TOi,c, is the
one providing the most pixels in common with the reference
object ROi,c[54]. Therefore

TOi,c = Arg
∀TOj∈TO

max |ROi,c ∩ TOj |, c = 1, . . . , RC. (27)

The reference object-specific value OSQIi,c quantifies the
area of overlap of the object pair, (ROi,c, TOi,c), with respect
to the reference object ROi,c, where expressions (ROi,c ∩
TOi,c) ⊆ ROi,c and (|ROi,c ∩ TOi,c|/|ROi,c|) ≤ 1 hold and
where operator | · | computes a set’s cardinality, thus:

OSQIi,c(ROi,c, TOi,c) =
|ROi,c ∩ TOi,c|

|ROi,c|
∈ [0, 1],

c = 1, . . . , RC. (28)

The OSQIi,c(ROi,c, TOi,c) scalar value in range [0, 1] must
be maximized (up to 1) (in [54], a dual entity of (28), namely,
an oversegmentation error estimate, must be minimized to 0).

Similarly, the reference object-specific value USQIi,c quan-
tifies the area of overlap of the object pair, (ROi,c, TOi,c),
with respect to the test object TOi,c, where expressions
(ROi,c ∩ TOi,c) ⊆ TOi,c and (|ROi,c ∩ TOi,c|/|TOi,c|) ≤ 1
hold, thus:

USQIi,c(ROi,c, TOi,c) =
|ROi,c ∩ TOi,c|

|TOi,c|
∈ [0, 1],

c = 1, . . . , RC. (29)

The USQIi,c(ROi,c, TOi,c) scalar value in range [0, 1] must
be maximized (up to 1) (in [54], a a dual entity of (29), namely,
an undersegmentation error estimate, must be minimized to 0).

The FEOQI-Reference (FEOQI-R) index measures the pre-
cision of the reference object edges recognized in the test map
with respect to the total number of edge pixels in the reference
object. Its dual SQI, called FEOQI-Test (FEOQI-T) index,
measures the precision of the reference object edges recognized
in the test map with respect to the total number of edge pixels
in the test object. To compensate for mixed pixel effects due
to the interaction between surface phenomena and the spatial
resolution of the imaging sensor, together with human errors
in identifying image-objects and localizing their boundaries, a
tolerance in the recognition of the image borders is introduced
as an appropriate buffer zone distance, d. In practice, parameter
d is the width of the extracted border line of both the test and
the reference object. FEOQI-R has the appealing quality of
assessing the overlapping area between the mapped object and
the reference object with regard to the reference object while
remaining somewhat robust to the adjacency (neighboring) is-
sues which deeply affect the USQI and OSQI index estimations
(see below in this section). Unfortunately, unlike FEOQI-R,
FEOQI-T is affected by the same adjacency issues affecting
the USQI and OSQI indexes. Let e(·) denote the operator that
extracts the set of edge pixels from a generic reference region
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Fig. 13. Illustration of SQIs. Reference object, ROi, shown in red, and mapped (test) object, TOi, shown in black. (a) Low OSQIi(ROi, TOi) example.
(b) Low USQIi(ROi, TOi) example. (c) Example where 1 ≥ FEOQI −Ri,c(ROi,c, TOi,c) > FEOQI − Ti,c(ROi,c, TOi,c) ≥ 0.

ROi and test region TOi. Thus [54]:

FEOQI −Ri,c(ROi,c, TOi,c) =
|e(ROi,c) ∩ e(TOi,c)|

|e(ROi,c)|

∈ [0, 1], c = 1, . . . , RC. (30)

The FEOQI −Ri,c(ROi,c, TOi,c) scalar value in range [0,
1] must be maximized (up to 1) (in [54], a dual entity of (30),
namely, an edge location error, must be minimized to 0)

FEOQI − Ti,c(ROi,c, TOi,c) =
|e(ROi,c) ∩ e(TOi,c)|

|e(TOi,c)|
∈ [0, 1], c = 1, . . . , RC. (31)

The FEOQI −Ri,c(ROi,c, TOi,c) scalar value in range [0,
1] must be maximized (up to 1). It is noteworthy that no
parameter equivalent to FEOQI − Ti,c is proposed in [54].

Examples of image-objects involved with the computation of
SQIs via (28)–(31) are shown in Fig. 13.

To conclude, it is important to stress that, whereas pixel-
based TQIs estimated in this work are based on a realistic
many-to-many association model between the test and reference
semantic vocabularies in accordance with the hypothesis of
dealing with the second type of maps comparison described in
Section VI-A, polygon-specific SQIs are estimated according to
(27) up to (31), where a one-to-one association model between
one reference and one mapped polygon holds, see (27). This
latter constraint is unable to capture any possible “correct”
association of one polygon belonging to a specific reference
class with one or more polygons belonging to a set of “correct”
test classes. This means that, based on theoretical considera-
tions exclusively, in the second type of inter-map comparisons
described in Section VI-A, where many-to-many semantic rela-
tions must be considered “correct,” SQIs computed according
to (27)–(31) are expected to be negatively biased (i.e., underes-
timated), whereas the same SQI formulas have no bias when
applied to the first type of inter-map comparisons described
in Section VI-A. For example, if one reference LC class is
associated with several test categories, like in Table X, then
the estimated TQI values of this reference class are expected
to be “higher” (due to their inherent semantic vagueness, refer
to Section VI-D1) than its SQIs, computed through (27)–(31),
which are negatively biased due to the assumption, adopted by

(27), that the “correct” relation between a reference object and a
mapped object belonging to the test map domain is one-to-one.

Instantiation with the SIAM™ pre-classification maps au-
tomatically generated from the WV-2 and QB-2 test images:
Multi-scale image segmentation maps can be automatically
generated in near real-time from the SIAM™ preliminary
classification maps featuring multiple semantic granularities
(see Table V) by means of a traditional well-posed two-pass
connected-component image labeling algorithm [20] (refer to
footnote 1 in Section I). This is an improvement over tra-
ditional multi-scale image segmentation algorithms, like that
proposed by Baatz et al. [38] and implemented at the first
stage of two-stage non-iterative GEOBIA systems and three-
stage iterative GEOOIA systems, like the popular Definiens
Developer commercial software product [89], [90] (refer to
Section II-F). First, SIAM™ delivers as output in near real-
time semantic (symbolic) multi-scale object-based parent–child
relations whereas traditional multi-scale image segmentation
algorithms generate as output sub-symbolic (non-semantic)
multi-scale image-objects exclusively. Thus, the symbolic in-
formation conveyed by the former is potentially richer than
the sub-symbolic information provided by the latter (refer to
Section II-A). Second, whereas SIAM™ is automatic, requiring
no user-defined parameter to run (refer to Section II-G), the lat-
ter require free parameters to be user-defined based on heuris-
tics. For example, the iterative multi-scale image segmentation
algorithm proposed by Baatz et al. [38], [89], [90] employs
at least three (actually more, e.g., see [117]) parameters to
be user-defined based on empirical criteria, namely, a scale
parameter < 0 (such that increasing scale parameter values will
result in the detection of a smaller number of larger image-
objects; in practice, this so-called spatial scale parameter is an
upper bound on the spectral variance of image-objects, whose
physical meaning and unit of measure have nothing to do with
a spatial scale), shape versus color weight ∈ [0, 1] and shape
compactness versus shape smoothness ∈ [0, 1] [38], [142].

To summarize, the capability of SIAM™ to automatically
generate as output in near real-time multi-scale image seg-
mentation maps in parallel with multi-granularity preliminary
classification maps makes SIAM™ a viable alternative to
traditional semi-automatic, multi-scale, sub-symbolic image
segmentation algorithms implemented at the first stage of state-
of-the-art GEOBIA/ GEOOIA systems [38], [89]–[92], [131],
[142], refer to Section II-F.
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The spatial quality assessment of the Q-SIAM™ maps,
generated from the WV-2 and QB-2 test images described
in Section IV, is instantiated according to the following
constraints.

(a) A reference class-specific sample unit, sc ∈ Sc ⊆ S ≡
GEOROI is a sample polygon (s_plygn) for class c =
DB,LB, TCrwn, see Table IX, selected according to
the non-standard class-specific SIRS strategy shown in
Fig. 12 (refer to Section VI-B4).

(b) A class-specific sample set size SSSc is estimated
as SSSc = (22) (refer to Section VI-B1), where
samples are s_plygns si,c, i = 1, . . . , SSSc, c =
DB,LB, TCrwn, see Table IX.

(c) The four reference polygon-specific SQIs defined by
(27)–(31), must be computed for each of the three ref-
erence classes whose sampling unit type is polygon,
namely, classes c = DB,LB, TCrwn, see Table IX,
and for each class-specific s_plygn with index i =
1, . . . , SSSc; in other words, class- and polygon-specific
quality index values OSQIi,c, USQIi,c, FEOQI −
Ri,c and FEOQI − Ti,c must be computed with c =
DB,LB, TCrwn, and i = 1, . . . , SSSc, according to
(27)–(31).

(d) The target population U consists of pixels u ∈ U ≡ S ≡
GEOROI, where GEOROI comprises the whole test map
made up from a VHR image.

(e) To account for the unequal inclusion probability of
s_plygns in compliance with the Horvitz–Thompson the-
orem, such that (13) tends to coincide with (15), i.e.,
(13)→(15) holds (see Section V), then for each pixel
u ∈ U such that u ∩ si,c �= 0, c ∈ {DB,LB, TCrwn},
i ∈ {1, SSSc}, the u’s target population pixel-specific
inclusion probability πu,i,c must be πu,i,c = (23) so that
the u’s pixel-specific weight wu,i,c becomes wu,i,c =
(14) = 1/(23), i.e., all pixels belonging to the same
s_plygn share the same inclusion probability which is
polygon-specific according to (23).

The aforementioned constraints (a) to (e) mean that the
four reference class-specific image-wide pixel-based SQIs,
namely, OSQIc, USQIc, FEOQI −Rc, and FEOQI − Tc,
c = DB,LB, TCrwn (see Table IX), must be estimated
as the weighted sum of the class- and polygon-specific
index values OSQIi,c = (28), USQIi,c = (29), FEOQI −
Ri,c = (30), and FEOQI − Ti,c = (31), i = 1, . . ., SSSc =
(22), c = DB,LB, TCrwn, computed across pixels belonging
to the class-specific s_plygns ROi,c, i = 1, . . . , SSSc, c =
DB,LB, TCrwn, where the pixel-specific weight is computed
as the inverse of (23) (refer to Section VI-B1) in compli-
ance with the Horvitz–Thompson theorem, see (14) (refer to
Section V). For example

Pixel-based OSQIc ∈ [0, 1], c=DB,LB, TCrwn

=
1(

SSSc∑
j=1

wj,c ·areaj,c

) ·
SSSc∑
i=1

wi,c ·areai,c

·Polygon-specific OSQIi,c(ROi,c, TOi,c),
c=DB,LB, TCrwn,

=
1(

SSSc∑
j=1

1
πj,c

·areaj,c

) SSSc∑
i=1

1

πi,c
·areai,c·

OSQIi,c(ROi,c, TOi,c), c=DB,LB, TCrwn,

=
1(

SSSc∑
h=1

areah,c

)
·
(

SSSc∑
j=1

1
areaj,c

·areaj,c

)

×
SSSc∑
i=1

(
SSSc∑
h=1

areah,c

)
areai,c

·areai,cOSQIi,c(ROi,c, TOi,c),

c=DB,LB, TCrwn,

=
1

SSSc

SSSc∑
i=1

OSQIi,c(ROi,c, TOi,c),

c = DB,LB, TCrwn (32)

where

Polygon-specific OSQIi,c(ROi,c, TOi,c)
=(28)∈ [0, 1], ∀i∈{1, SSSc}, and pixel-based OSQIi,c
∈ [0, 1], c=DB,LB, TCrwn.

Equation (32) shows that, when the pixel-specific weight is
computed according to (23), then a class-specific image-wide
pixel-based SQIc, c = 1, . . . , RC, is equivalent to the mean of
the SQIs computed per reference and mapped 2-D object pair,
SQIi,c(ROi,c, TOi,c), i = 1, . . . , SSSc, c = 1, . . . , RC.

To better understand the degree of novelty of the proposed
protocol for SQI estimation in thematic maps generated from
VHR images, let us compare it with the so-called protocol for
accuracy assessment in classification of VHR images proposed
in [54]. Irrespective of the fact that SQIs proposed in (27)–(31)
are strictly related to a selection of the geometric error indices
proposed in [54], no comparison between results collected by
these two protocols is possible due to their methodological and
implementation differences. These differences are summarized
below.

• Whereas the present work employs (23) to compensate
for unequal probability sampling, no Horvitz–Thompson
theorem is accounted for in [54].

• The protocol proposed in [54] is applied to LC maps
generated by supervised data learning classifiers where
the reference and test semantic taxonomies are the same
(with a cardinality equal to eight). Hence, the protocol for
map assessment proposed in [54] refers to the first type
of inter-map comparisons described in Section VI-A. The
protocol proposed in the present work is more general
than that discussed in [54] because the former applies to
test and reference spectral vocabularies which may or may
not coincide, i.e., it refers to the second type of map pair
comparisons described in Section VI-A.

• SQIs computed according to (27)–(31) may be biased
due to undesired eight-adjacency neighboring effects.
For example, Fig. 14 shows a reference image-object
belonging to class LB (see Table IX) affected by an
undersegmentation error because its mapped object (test
object) spans the entire image as an undesired effect
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Fig. 14. Reference image-object identification in a SIAM™ coarse granularity map. Top Left. Bare Soil (BS) image-object identified by an expert
photointerpreter. Top Right. Reference polygon perimeter overlaid on a SIAM™ coarse map classification. Bottom. Eight-connectivity adjacency (green circles,
bottom left) resulting in a single segment (in red, bottom right), spanning the entire image. As a consequence, SQIs of the depicted reference object are: low
USQI , high OSQI (close to 1), high FEOQI −R, and low FEOQI − T values.

of an eight-adjacency neighborhood. In practice, due to
this undesired eight-adjacency neighborhood effect, over-
segmentation quality, see (28), is overestimated while
undersegmentation quality, see (29), and edge position
quality, see (30) and (31), are underestimated. The same
considerations should hold for the protocol proposed in
[54], whose SQIs are highly correlated with those adopted
in this work. However, in [54], the aforementioned spatial
error overestimation was not observed. This is due to the
fact that, in [54], a toy problem, consisting of a small-
size segmentation test map and a small-cardinality refer-
ence object set (comprising 11 samples) was considered
for validation. On the contrary, the present work adopts
for protocol validation hundreds of reference samples to
be mapped onto real-world segmentation maps generated
from test thematic maps of full-size VHR images.

• In [54], the spatial resolution of the test image is 0.7 m,
while in the present work the spatial resolution of the test
images ranges from the 2.0 m resolution of the WV-2
sensor to the 2.4 m of QB-2 imagery. This implies that
the VHR image data set employed in this work is more
susceptible to undersegmentation errors when an eight-
adjacency neighborhood model is adopted.

To recapitulate, based on both theoretical speculations and
practical considerations (see Fig. 14), the proposed protocol

applied to the assessment of the Q-SIAM™ maps generated
from the WV-2 and QB-2 test images described in Section IV is
expected to deliver SQIs which, in general, are lower than TQIs
due to a summation of two effects.

(a) An inadequacy of (27) to cope with a test and a refer-
ence semantic vocabulary when they do not coincide.
This causes all SQIs computed via (27)–(31) to be
underestimated.

(b) An undesired eight-adjacency neighborhood
phenomenon (see Fig. 14) which causes: 1) the
oversegmentation quality index, see (28), to be
overestimated, and 2) the undersegmentation quality
index, see (29), together with the edge position quality
indexes, see (30) and (31), to be underestimated.

Table XIII shows the SQIs collected for the Q-SIAM™
classification maps generated in Section IV. In line with the
aforementioned theoretical and practical considerations, SQIs
reported in Table XIII are generally lower than TQIs shown in
Tables XII(a)–(c). In greater detail, Table XIII reveals that the
reference class LB outperforms the DB and TCrwn classes
(refer to Table V) in all test images and at all granularities.
Furthermore, the LB data sets provide the most consistent
results, with each SQI varying by less than one percent across
semantic granularities in each test image. DB areas are highly
susceptible to undersegmentation errors, particularly at coarse
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TABLE XIII
SQIS FOR FINE, INTERMEDIATE, AND COARSE Q-SIAM™ CLASSIFICATION MAPS OF THE THREE VHR TEST IMAGES, IN PERCENT VALUES.

SYMBOL ∗—BUFFER ZONE DISTANCE PARAMETER, d, IS SET TO 2 PIXELS IN THE FEOQI CALCULATIONS, REFER TO (30) AND (31)

semantic granularities, while TCrwn is most susceptible to
oversegmentation and edge errors. Table XIII also shows that
OSQI and FEOQI −R index values decrease with seman-
tic granularity while USQI , FEOQI − T , and average SQI
increase with the Q-SIAM™ semantic granularity. Overseg-
mentation and edge errors with respect to the reference objects
occur as a result of multiple pixel classifications occurring
within the same reference object, see Fig. 15. For example, an
object receiving direct sunlight on one side and no sunlight on
the other may be assigned with two different spectral category
indices although they occur in the same reference thematic
object. This issue is less apparent in the coarser levels of granu-
larity because semantic aggregation of mapped classes provides
a level of robustness to minor semantic discrepancies (e.g.,
[SVVH2NIR_LSC (“Strong Vegetation with Very High 2 Near-
Infrared Leaf Spectral Category”), SVVH1NIR_LSC, SVVH-
NIR_LSC] ⊆ [SV_SC (“Strong Vegetation (Parent) Spectral
Category”)] ⊆ [VGT (“Vegetation Super Spectral Category”)]
for 52, 28, and 12 semantic granularities, respectively).

Undersegmentation error is often a result of eight-
connectivity neighboring effects, causing pixels connected by
one corner to be assigned to the same segment. This error
is most common in the reference class DB for the coarse
granularity maps, where multiple spatially disjoined reference

objects may belong to the same segment, see Fig. 14. As an
example, USQI and FEOQI −R index values for the Q-
SIAM™ coarse semantic granularity map generated for the
WV-2 T2 image are very low. This is due to the eight-
connectivity adjacency property described above, resulting in
220 of 253 reference objects being assigned to the same target
object (segment 1). This phenomenon holds true for the other
test images as well, though it is particularly noticeable in the
WV-2 T2 image due to the increased presence of bare soil
during the dry season.

The spatial accuracy of the reference class TCrwn for the
coarse and intermediate maps changes significantly with the
phenological season. SQI values of the reference class TCrwn
increase greatly for the WV-2 T2 image due to greater spectral
difference between foreground (tree crown) and background
(bare soil) during the dry season than exists between the fore-
ground (tree crown) and background (grass) in the green season
depicted in the test image WV-2 T1.

To be further investigated in future works, a possible im-
provement to the proposed protocol for estimation of SQIs,
which are biased due to the summation of the two aforemen-
tioned effects, may come with a change in the mapped object
selection criterion, see (27), required to be capable of modeling
many-to-many associations between reference and test classes.
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Fig. 15. Reference image-object overlapped with a SIAM™ fine granularity map. Left. Light Built-up (LB) image-object identified by an expert photoint-
erpreter, same as object in Fig. 14. Middle. Reference object overlaid on a SIAM™ fine map classification. Right. Presence of multiple semi-concept labels
(numerical identifiers) within the reference object contour results in multiple segments within the object. Note: all labels are in fact plausible spectral descriptions
for the reference object. As a consequence, SQIs of the depicted reference object are: high USQI , low OSQI , low FEOQI −R, and low FEOQI − T .

VII. QUALITY INDICATORS OF OPERATIVENESS

OF SIAM™ IN THE CONDUCTED EXPERIMENTS

In compliance with the QA4EO guidelines [3], to be consid-
ered operational (good-to-go, ready-to-go, turnkey) [26], [135],
a satellite-based measurement system must score high in every
QI of a set of community-agreed OQIs, such as those listed in
Section II-D [5]–[17], [136]. Based on experimental results pre-
sented in Section VI, OQIs listed in Section II-D can be instan-
tiated for the (Q-)SIAM™ preliminary classifier as follows.

(a) Degree of automation. SIAM™ is fully automated, i.e.,
it requires neither user-defined parameters nor reference
samples to run. Thus, its ease of use cannot be surpassed.

(b) Effectiveness: classification map accuracy provided with
an error tolerance. About the (Q-)SIAM™ TQIs and
SQIs provided with a degree of uncertainty in measure-
ment, refer to Section VI in addition to the existing liter-
ature [5]–[17]. These TQIs and SQIs must be considered
in combination with CVPSI values. The latter provide
a measure of the degree of semantic information con-
veyed by the SIAM™ preliminary classification maps,
independent of TQIs and SQIs.

(c) Efficiency: computation time and memory occupation.
For example, to map the test images shown in Section IV
when running on a Dell laptop featuring an Intel i7 M620
@ 2.67 GHz processor with 8 GB of RAM and a 64-bit
Windows 7 operating system, the SIAM™ implementa-
tion in the C programming language performs as follows.

• Memory occupation. In these experiments, the
SIAM™ dynamic memory size parameter was set
equal to 800 MB of RAM.

• Computation time.
• Q-SIAM™, four-band WV-2 image(s), see

Section IV, approximately 5000 × 4000 pixels in
size. SIAM™ required less than 2 min to generate
its complete set of per-image output products
including three preliminary classification maps
at three levels (fine, intermediate and coarse) of
semantic granularity, see Table V.

• Q-SIAM™, four-band QB-2 image, see Section IV,
approximately 6400 × 6400 pixels in size. SIAM™
required approximately 2 min to generate its com-
plete set of output products including three prelim-

inary classification maps at fine, intermediate, and
coarse semantic granularity, see Table V.

• L-SIAM™, seven-band Landsat-7 ETM+ image(s),
see Section IV, 7000 × 8000 pixels in size. SIAM™
required less than 3 min to generate its complete set
of per-image output products including three pre-
liminary classification maps at fine, intermediate,
and coarse semantic granularity, see Table V.

The parallel implementation of SIAM™ reduces com-
putation time by 15% to 40%, depending on the image
size, in a laptop computer with a Windows operat-
ing system [16], [17]. An original well-posed two-pass
connected-component image labeling algorithm, whose
computation time is approximately the same of SIAM™
and increases with the image size, automatically gen-
erates multi-scale image segmentation maps from the
SIAM™ preliminary classification maps at multiple se-
mantic granularities. Since the time interval between
two consecutive spaceborne image acquisitions is not
less than approximately 15 min (for the geostationary
Meteosat Second Generation satellite), then the avail-
able sequential implementation of SIAM™, including
its multi-scale image segmentation sub-system, can be
considered near real-time.

(d) Robustness to changes in the input data set acquired
across time, space, and sensors. In combination with
existing literature [5]–[17], TQIs and SQIs collected in
Section VI from three VHR test images acquired by
two different sensors in two different phenological sea-
sons confirm that SIAM™ appears eligible for use with
RS imagery acquired by any existing MS spaceborne/
airborne mission provided with radiometric calibration
metadata files.

(e) Robustness to changes in input parameters, if any.
SIAM™ requires no user-defined parameter, thus its
robustness to changes in input parameters cannot be
surpassed.

(f) Maintainability/scalability/re-usability to keep up with
changes in users’ needs and sensor properties. The well-
known scalability of SIAM™ to deal with RS imagery
acquired by all existing MS spaceborne missions (see
Table V) has been confirmed in this experimental work,
see Section IV.
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Fig. 16. Preliminary classification map, depicted in pseudo colors, generated by L-SIAM™ from a Landsat-7 ETM+ image of the Venice lagoon, Italy,
radiometrically calibrated into TOARF values, spatial resolution: 30 m. The L-SIAM™ map is transformed into the kml data format and loaded as a thematic
layer in a commercial 3-D earth viewer (e.g., Google Earth).

(g) Timeliness, defined as the time span between data acqui-
sition and product delivery to the end user. It increases
monotonically with manpower, e.g., the manpower
required to collect site-specific training samples. Email
communications between the first author of this work
and DigitalGlobe prove that the following list of ac-
tivities was performed within one and a half day from
the WV-2 data acquisition (while the first two authors
were facing other obligations too): WV-2 image calibra-
tion, mosaicking, layered stacking and Q-SIAM™ map-
ping, Landsat image selection, radiometric calibration
and L-SIAM™ mapping, WV-2 image re-calibration and
Q-SIAM™ re-mapping, QB-2 image calibration and
Q-SIAM™ mapping, and, finally, Q-SIAM™-based bi-
temporal change detection, refer to Figs. 4(a)–11(b).

(h) Economy (costs, monotonically increasing with man-
power and computer power). For example, inductive
supervised data learning systems (e.g., nearest-neighbor
classifiers, support vector machines, etc. [32]–[34]) in-
crease costs by requiring the collection of reference
(training and testing) samples from ground survey, ex-
isting maps, ancillary information, etc. Since it is prior
knowledge based, i.e., it is a deductive inference system
non-adaptive to input data rather than an inductive sys-
tem capable of learning from data (refer to Section II-B),
SIAM™ requires no reference data sample to run. It
also requires no human assistance to define system-
free parameters based on heuristics, like its alternative
statistical approaches (see Table I). Thus, the SIAM™
cost in manpower is equal to zero (refer to this section
above). Its costs in terms of computer power are almost
negligible (refer to this section above).

VIII. NEW INTER-DISCPLINARY RESEARCH

AND MARKET OPPORTUNITIES

Based on the exiting literature in combination with experi-
mental evidence collected in this work, the operational, auto-
matic, near real-time, multi-sensor, multi-resolution SIAM™
appears eligible for opening up new inter-disciplinary research
and market opportunities, such as those listed below, in com-
pliance with the visionary goal of the GEOSS initiative and the
QA4EO guidelines [3] (refer to Section I).

1) Improve the OQIs of existing commercial RS-IUS soft-
ware products such as those listed in Table I, includ-
ing state-of-the-art two-stage non-iterative GEOBIA and
three-stage iterative GEOOIA commercial software prod-
ucts (refer to Section II-F). For example, SIAM™ would
be eligible for use as pre-attentive vision first stage in
operational multi-sensor, multi-resolution, MS RS-IUSs
provided with a feedback mechanism to enhance the
RS image pre-processing phase (e.g., through stratified
TOC [10]), refer to the existing literature [5]–[17], to the
ATCOR-2/3/4 data workflow [83]–[86] shown in Fig. 1
and to Section II-G.

2) Automatic transformation of sub-symbolic, raster EO
data into symbolic, vector, geospatial information made
available in a GIS-ready format. In other words, SIAM™
provides seamless integration of RS imagery with GI-
Science [25], [141] (geomatics engineering [69]), refer to
Section II-F.

3) Integration of Internet-based satellite mapping-on-demand
with web-based GIS and virtual earth geo-browsers such
as the hugely popular Google Earth, NASA’s World
Wind, and Microsoft Virtual Earth, see Fig. 16.
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4) Development of semantic querying systems of large-scale
multi-source RS image databases where SIAM™ can be
exploited as an automatic source of reference classifica-
tion maps. This would represent a dramatic improvement
over non-semantic query modes currently available in
image database retrieval systems based on text-driven
query strategies and query by either an image, object or
multi-object example.

5) Development of so-called fourth generation FIEOSs
([137]) where SIAM™ can be mounted on board. The
same consideration holds for ground receiving stations
which could be provided with an operational automatic
“intelligent” data processing feedback system.

6) Dissemination of advanced EO expertise, science, and
technology in developing countries and emerging coun-
tries. Automatic EO image understanding technologies
are “democratic” in nature, i.e., eligible for use by all.
In other words, EO researchers and institutions should
perceive SIAM™ as a novel technical opportunity to
pursue ethical issues.

IX. CONCLUSION

This original work presents a novel (to the best of these
authors’ knowledge, the first) probability sampling protocol
for thematic and spatial quality assessments of thematic maps
generated from spaceborne/airborne VHR images. The pro-
posed protocol delivers as output an original set of mutually
uncorrelated TQIs and SQIs featuring:

• Statistical consistency (validity), i.e., sample estimates
are provided with the necessary probability foundation to
permit generalization from the sample data subset to the
whole target population being sampled [55], [60].

• Statistical significance, i.e., TQIs and SQIs are provided
with a degree of uncertainty in measurement in compli-
ance with the principles of statistics together with the
QA4EO international guidelines [3].

Independent of TQIs and SQIs, an original CVPSI is esti-
mated as a fuzzy degree of match between a reference and a
test semantic vocabulary, which may not coincide.

The proposed protocol is validated in the quality assessment
of preliminary classification maps automatically generated
from VHR optical images by the operational, near real-time
SIAM™ software product [5]–[17]. Provided by DigitalGlobe
for testing purposes, the VHR image set consists of two WV-2
images of the city area of Brazilia (Brazil), acquired in the wet
(T1) and dry (T2) seasons of year 2010, and one QB-2 image
of Brazilia, acquired at time T1 + 45 days.

Although underestimated in RS common practice, radiomet-
ric calibration data pre-processing is considered: 1) critical to
RS data QA and, therefore, data usability, in compliance with
the QA4EO guidelines [3], and 2) a necessary, although not
sufficient, condition to automate a satellite-based information
processing system, like SIAM™ [7]. In this paper, the three
VHR test images are radiometrically calibrated into TOARF
values. In addition, to reduce the inherent data spread due to
varying acquisition conditions (e.g., sensor viewing position,
Sun position, atmospheric conditions, etc.) over the same sur-

face type, the two “slave,” off-nadir, 2-m resolution WV-2
images in TOARF values are radiometrically registered to a
pair of “master,” nadir-view, 30-m resolution Landsat-7 ETM+
images radiometrically calibrated into TOARF values.

The main experimental conclusion of this work is that the
proposed protocol is tested successfully in the accuracy vali-
dation of the Q-SIAM™ multi-granularity maps automatically
generated from multi-sensor multi-temporal VHR images. In
these experiments, collected TQIs and SQIs are statistically
valid, statistically significant, and consistent across different
thematic maps; they comply with theoretical considerations and
agree with visual (qualitative) evidence, collected CVPSI val-
ues and (quantitative) QIs of operativeness (OQIs) claimed for
SIAM™ by the existing literature [5]–[17]. Estimated SQIs are
found to be biased due to a summation of effects. First, an eight-
adjacency neighborhood phenomenon causes oversegmentation
quality, see (28), to be overestimated while undersegmentation
quality, see (29), and edge position quality, see (30) and (31),
are underestimated. Second, an inadequacy to cope with a test
and a reference semantic vocabulary when they do not coincide
causes all aforementioned SQIs to be underestimated.

As a subsidiary conclusion, the statistically consistent and
statistically significant accuracy validation of the Q-SIAM™
maps accomplished in this work, together with OQIs claimed
for SIAM™ by existing literature [5]–[17], makes the oper-
ational (fast, accurate, automatic, robust, scalable) SIAM™
preliminary classification software product eligible for opening
up new inter-disciplinary research and market opportunities in
accordance with the visionary goal of the GEOSS initiative and
the QA4EO guidelines [3].

APPENDIX

The probability p(T ) of selecting a target element T out of
N units, where N is the population size, in a sequence of n
independent yes/no experiments, each of which yields success
with probability p(1/N), is equal to 1 minus the probability of
selecting all the remaining non-target (NT ) elements, p(NT ),
across the n independent yes/no experiments, i.e.,

p(T ) = 1− p(NT ) (33)

where

p(NT ) = p(NT1, . . . , NTn) =
∏
i

p(NTi) = (N − 1)n/Nn.

(34)

Thus

p(T ) = 1− (N − 1)n/Nn (35)

such that p(T ) → 1 if n → ∞, i.e., the inclusion probability of
the target element T tends to 1 as the number of experiments
goes to infinity.

According to the binomial expansion:

(a− b)n =
n∑

k=0

n!

(n− k)!k!
an−kbk(−1)k. (36)
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Thus, if a = N = size of the population to be sampled,
b = 1 = number of target elements in the population to be
sampled, n = number of experiments where one single sample
is selected, then the inclusion probability of that target element
in n experiments is:

p(T ) = 1− (N − 1)n

Nn
=

Nn − (N − 1)n

Nn

=

Nn −
n∑

k=0

n!
(n−k)!k!N

n−k(−1)k

Nn

=
Nn −Nn + nNn−1 − n(n−1)

2! Nn−2 − . . .− (−1)n

Nn

(37)

hence, if the population size N → ∞, then (37) becomes

p(T ) =
nNn−1 − n(n−1)

2! Nn−2 + . . .+ (−1)n

Nn

≈ nNn−1

Nn
=

n

N
.

Thus, (11) is proved.
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