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A B S T R A C T

Global surface water extent is changing due to natural processes as well as anthropogenic drivers such as re-
servoir construction and conversion of wetlands to agriculture. However, the extent and change of global inland
surface water are not well quantified. To address this, we classified land and water in all 3.4 million Landsat 5, 7,
and 8 scenes from 1999 to 2018 and performed a time-series analysis to produce maps that characterize inter-
annual and intra-annual open surface water dynamics. We also used a probability sample and reference time-
series classification of land and water for 1999–2018 to provide unbiased estimators of area of stable and dy-
namic surface water extent and to assess the accuracy of the surface water maps. From the reference sample data,
we estimate that permanent surface water covers 2.93 (standard error± 0.09) million km2, and during this time
period an estimated 138,011 (± 28,163) km2 underwent only gain of surface water, over double the estimated
53,154 (±10,883) km2 that underwent only loss of surface water. The estimated area of 950,719 (±104,034)
km2 that experienced recurring change between land and water states is far greater than the area undergoing
these unidirectional trends. From a probability sample of high resolution imagery, an estimated 10.9% (±1.9%)
of global inland surface water is within mixed pixels at Landsat resolution indicating that monitoring of surface
water changes requires improved spatial detail. We provide the first unbiased area estimators of open surface
water extent and its changes with associated uncertainties and illustrate the challenges of tracking changes in
surface water area using medium spatial and temporal resolution data.

1. Introduction

Surface water presence is highly variable, with diverse trends
around the world reflecting direct and indirect human as well as natural
drivers. Meandering natural rivers and their floodplains support high
biodiversity and provide nutrient-rich soil for agriculture, but are in-
creasingly rare (Tockner and Stanford, 2002). Extensive areas of
floodplains and natural wetlands have been engineered for food pro-
duction, for example to rice and aquaculture (Davidson, 2014; Tessler
et al., 2016; Zhao et al., 2008). Globally almost half of our river systems
are moderately to severely fragmented by dams, levees, and other
structures, affecting both ecosystems and economies (Grill et al., 2015).
Climate change and diversion of rivers for irrigated agriculture have led
to dramatic declines in the surface area of large saline lakes
(Wurtsbaugh et al., 2017). Climatic changes are also intensifying rates
of glacier melt, causing the lakes of the Tibetan plateau to expand and

river discharge patterns to shift (Chevallier et al., 2011; Lutz et al.,
2014).

Improved quantification of historical surface water trends will help
us to better understand the impacts of such changes and to protect
water resource-related ecosystem services. Historical archives of data
from earth observation satellites are the only viable means to quantify
these dynamics at a global scale and through time. Various efforts have
advanced our understanding of historical surface water trends. Pekel
et al. (2016) is the most comprehensive surface water product to date
with 30 m monthly water/non-water layers, annual maps of seasonal
and year-round water, and various multi-temporal maps initially for the
period of March 1984–October 2015. In mid-2019, Pekel et al. (2016)
released an update extending the mapped period through December
2018, which is available through the original sources. The water mask
produced by Hansen et al. (2013) represents persistent water over
2000–2012, with all pixels having water in ≥50% of all growing season
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Landsat 7 observations. Other global maps at 30-90 m (Chen et al.,
2015; Feng et al., 2016; Yamazaki et al., 2015) have been produced but
for isolated years and based on one or a few Landsat scenes per path-
row as found in the Global Land Survey collection (Gutman et al., 2008;
Tucker et al., 2004). Other products have evaluated intra-annual and
inter-annual surface water dynamics but at subnational or national
scale (Mueller et al., 2016; Tulbure et al., 2016; Zou et al., 2018).
However, the existing global maps that identify change are only based
on two time periods. Change in Pekel et al. (2016) was defined in two
different ways. In one map, change was defined as the difference in
open water occurrence percent between 1984–1999 and 2000–2018. In
the second map, change was defined as the transition between perma-
nent water, seasonal water, and land between a first year and the last
year, 2018. The first year was selected between 1984 and 2000 on a
per-pixel basis as the first year which had sufficient observations
through the year to characterize the water presence. All intervening
years were ignored for pixels in which water was identified in one or
both of the start and end years (Pekel et al., 2016). Due to the large
extent of fluctuations between water and land both seasonally and
inter-annually (Papa et al., 2010; Pekel et al., 2016; Prigent et al., 2012;
Yamazaki et al., 2015), it is necessary to evaluate the entire time-series
to accurately assess surface water dynamics.

Previous quantifications of global water area have been based on
“pixel counting” of the map (i.e., summing the area of pixels mapped as
the target class). In contrast, current good practice guidelines re-
commend estimating area based on a probability sample of reference
data (Eggleston et al., 2006; Olofsson et al., 2014; Penman et al., 2016).
Because the reference class labels determined for the sample units have
greater accuracy than the map classification, the area estimate based on
the reference class labels is less subject to bias due to class labeling
error. This greater accuracy of the reference class labels is achieved by
using higher quality source data, such as by interpreting higher re-
solution imagery, or if using the same source data, by implementing an
intensive interpretation effort to determine the reference class labels for
the relatively small number of sample units (Olofsson et al., 2014). The
variability of a sample-based area estimate is measured by the standard
error, whereas, there is no measure of uncertainty associated with area
derived from pixel counting. According to the Intergovernmental Panel
on Climate Change (IPCC) of the United Nations (Eggleston et al.,
2006), it is essential for international reporting to follow these guide-
lines in order to obtain unbiased area estimators of known uncertainty
as quantified by standard errors. Good practice methods provide defi-
nitive information on area extent and change that can inform science
applications and policy initiatives.

For this study we use 1999 as the start date because of low Landsat
coverage prior to the launch of Landsat 7 and to the Long-Term
Acquisition Plan (Arvidson et al., 2001). There are particular areas such
as the United States and Australia that have sufficient observation
density going back to 1985 to analyze the seasonal and inter-annual
dynamics of surface water, but for other areas our first observations are
not until much later, such as Siberia in 2000 and New Zealand in 1998
(Wulder et al., 2016). While early isolated observations provide valu-
able insights, the large gaps that exist in the early history of the Landsat
archive further limit its utility in the consistent assessment of surface
water dynamics prior to 1999. Problematic features include 5–8 year
gaps with no acquisition in Central Africa and parts of Asia, and 12% of
the continental area between 56°S-78°N has a median of zero acquisi-
tions per year prior to 1999. From 1999 to 2012 both Landsat 5 and 7
were collecting data with revisit rate of up to every 8 days, though in
reality this is much lower due to cloud cover and data transfer limita-
tions of the satellites. Since 2013, both Landsat 7 and 8 have been
collecting data, again with a revisit rate of up to every 8 days, though
now the satellites are effectively achieving acquisitions every 8 days
(Wulder et al., 2016).

This study advances our understanding of and capability for mon-
itoring open inland surface water. We present a new map

characterization of permanent open surface water and of various open
surface water change dynamics from 1999 to 2018 based on the entire
Landsat archive for this period, consisting of 3.4 million scenes. Using a
probability sample of reference data, we assess the accuracy of our
global surface water maps for the 1999–2018 interval as well as the
accuracy of the maps produced by Pekel et al. (2016). We also use these
reference data from the probability sample to provide unbiased esti-
mators of area of global open surface water extent and change. We
define open surface water as water on the ground surface that (1) is
visible from above and not obscured by objects on or above the water
surface, for example, forest, floating aquatic vegetation, or bridges and
that (2) covers ≥50% of a 30 m pixel.

Here we analyze a more temporally dense time series than previous
studies for both change maps and reference data, employing the full
Landsat archive in improving the characterization of the dynamics of
global open surface water extent. We employ the first probability-based
sample that targets changes in global surface water extent, providing
area estimates of dynamics derived from unbiased estimators. The re-
sults are less susceptible to the bias encountered when reporting change
from pixel counts. The associated standard errors from the reference
samples are an improvement over map product areas that lack measures
of statistical uncertainty. Our accuracy assessment is another advance,
covering the entire time-series of our map products as well as the entire
global land surface, making it spatially and temporally comprehensive.
Further, the accuracy assessment corroborates the quality of the maps
of Pekel et al. (2016) based on a more complete reference sample data
set than was used by Pekel et al. (2016) in their evaluation of their map.
Lastly, we perform a sub-pixel analysis of 30 m Landsat maps based on
5 m spatial resolution reference sample data from RapidEye imagery,
quantifying the global presence of mixed pixels containing land and
water at the Landsat observational scale.

2. Data and methods

2.1. Per scene classification

A time-series of open water presence was created through the au-
tomated implementation of per Landsat sensor ensembles of classifi-
cation trees. For each sensor, classification tree models of observation
quality and land or water state (Potapov et al., 2015) were developed in
the Global Land Analysis and Discovery (GLAD) laboratory. These
models were then implemented in Google Earth Engine (Gorelick et al.,
2017) and applied to the entire 1999–2018 Landsat 5, 7, and 8 archive,
classifying each scene into land, water, cloud, shadow, haze, and snow
and ice. In each scene we aim to map as water all pixels with ≥50%
water cover according to the definition of open surface water given
above.

Due to the diversity of reflectance patterns for open surface water
targets, hierarchical, bagged classification trees (Breiman, 1996;
Breiman et al., 1984) were used to discriminate clear observations from
those contaminated by cloud, shadow, and ice and discriminate water
from land. All images were first converted to top of atmosphere (TOA)
reflectance (Chander et al., 2009). Water is sufficiently separable from
land to employ TOA units in discrimination without conversion to
surface reflectance or application of other normalization methods
(Pekel et al., 2016; Tulbure et al., 2016; Yamazaki et al., 2015). The
classification models utilize all the Landsat bands (excluding the pan-
chromatic band), normalized difference ratios of each pair of bands,
and 3 × 3 pixel spatial averages of all bands and ratios, as well as,
utilize topographic inputs of elevation and derived slope, aspect, and
hillshade data. There are 21 normalized difference ratios for Landsat 5
and 7 and 36 for Landsat 8 due to three additional spectral bands. These
ratios include commonly applied water indices such as the Normalized
Difference Water Index (NDWI, (Green-NIR)/(Green+NIR))
(McFeeters, 1996) and the Modified Normalized Difference Water Index
(MNDWI, (Green-SWIR1)/(Green+SWIR1)) (Xu, 2006). Elevation was
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taken from Shuttle Radar Topography Mission (SRTM) (SRTM, 2017)
elevation data for areas south of 60°N, and Global Multi-resolution
Terrain Elevation Data 2010 (USGS, n.d) for areas north of 60°N.

Five sets of seven bagged classification trees were built hier-
archically for each sensor from a training set of fully classified scenes.
These scenes were individually classified through manual training and
using the same classification tree framework as the globally applied
model. The sets of classified scenes were used to train the global
models, for example 165 Landsat 5 scenes were mapped with the six
categories of water, land, cloud, shadow, and snow/ice and used in
training a global Landsat 5 water model. The global models were iter-
ated by testing images not included in the training, visually identifying
errors and adding problematic scenes to the training set and adjusting
sampling rates until results were deemed satisfactory at the global
scale. Scenes were selected from the year of launch through 2011, 2013,
and 2015 for Landsat 5, 7, and 8, respectively, and within 125°W to
162°E and 60°N to 89°S. The final number of scenes in the training set
was 165, 164, and 120 per Landsat 5, 7, and 8, respectively, and these
scenes were sampled with a rate of 0.5–1.5% depending on the class
and the set, resulting in over a billion pixels used as training for the
global models.

The first set of seven bagged classification trees separates cloud and
snow and ice from haze, land, shadow and water; the second set se-
parates water from haze, land, and shadow; the third set separates
shadow from haze and land; and the fourth set separates haze from
land; and the final set separates cloud from snow and ice. Thus, clear
water observations are identified after the first two sets and clear land
observations after four sets. The set of seven trees per sensor that dis-
criminated water from clear land, shadow, and haze relied strongly on
the normalized difference ratio of the near infrared and green bands
(NDWI), accounting for 89%, 85%, and 81% of deviance decrease for
the Landsat 5, 7 and 8 models respectively. For this set of trees separ-
ating water, all of the 3 × 3 pixel spatial average metrics accounted for
4.9%, 6.7%, and 7.9% of the total deviance decrease, but for the first set
of trees identifying cloud, snow, and ice the 3 × 3 metrics contributed
86.5%, 82.9%, and 74.4%, which is likely due to the diffuse nature of
clouds. However, all of the Landsat bands and ratios and the topo-
graphic inputs contributed to discriminating water, land, and bad data.
The models are thus complex, with 50–1000 nodes per tree. However,
overfitting is avoided by using a large training sample and aggregating
each set of trees by selecting the median output probability. This en-
ables the identification of open surface water across many different
states, from sediment-laden to clear to eutrophic and from shallow to
deep; water with the surface obscured from above by vegetation or
other obstructions such as bridges is excluded.

These models were then applied to all 3.4 million scenes, totaling
2.4 petabytes of data with the computing power of Google Earth
Engine. In order to composite the results into global maps all classified
data were resampled from the source UTM zone to a geographic pro-
jection (Lat/Long) with a spatial resolution of 0.00025°, equivalent to
28 m at the equator.

2.2. Time series analysis

2.2.1. Creation of annual percent water time-series
The land and water observations of a given pixel were summed per

month and aggregated into water presence frequency at various time-
scales, measured by the percent of clear observations flagged as water
(water / (water + land)), hereafter referred to as water percent. To
create a more representative and stable measure of water percent, the
individual observations were filtered and weighted, a practice also
implemented by Pekel et al. (2016). First, clear observations (water +
land) over the full study period were examined and if< 12.5% of ob-
servations were in an opposite state of water or land (not covered with
clouds, shadows, haze, snow or ice), and the total number of these
observations was ≤3, they were removed as outliers. This was done

because cloud shadow over dense tree cover or other dark surfaces can
erroneously be flagged as water, and image artifacts or undetected haze
over water can sometimes be erroneously flagged as land. However the
probability of these errors repeatedly happening over the same pixel is
low, and we found that these thresholds removed considerable noise
while not erasing real change.

We created a seasonally-normalized annual water percent to account
for intra-annual variation in clear observation frequency (e.g. fewer ob-
servations in the far north in winter due to low sun elevations or in tropical
monsoon environments due to high cloud cover). The water and land ob-
servations were summed per meteorological seasons (December–February,
March–May, June–August, September–November) of each year, and used
to calculate the percent of water observations out of all clear observations
per season. Months with<5 observations over the 20 years were excluded
to remove a potentially irregular impact on the annual time-series due to
different portions of the year being observed. The average of the four
seasons with data was used to calculate percent of water per year. Given
that the start day of hydrological years varies around the world, we se-
lected a start day that corresponded with the meteorological seasons and
that mostly closely aligned with a traditional calendar year. A year was
thus defined as December 1 of the previous year through November 30 of
the given year (e.g. 2003 was defined as December 2002–November 2003).
Seasonal weighting was done to account for varying number of clear ob-
servations during different seasons of the year due to seasonal prevalence
of weather events which often both obscure the surface and cause more
surface water, seasonal snow cover, and varying acquisition rates related to
sun angle for regions at high latitudes.

2.2.2. Dynamic type classification
An inter-annual water dynamics model was developed to char-

acterize and visualize the changes occurring over the study period
(Fig. 1). To reduce short-term annual anomalies and inter-annual cloud-
free observation variability, the annual open water percent time-series
was smoothed using a 3-year mean moving window. Next, the range
and mean of the annual percent water time-series data were calculated
per pixel. The range is representative of the difference between the
maximum rate and the minimum rate of open water presence. Pixels
with a range ≤33% and a mean ≤10% or ≥90% were labeled per-
manent land and water, respectively, providing a stable target with low
sensitivity to possible omission or commission effects due to image
artifacts or atmospheric conditions. Short-duration, anomalous flood
events are ignored in this definition of permanent land. Change pixels
were identified as pixels with a range ≥50%, and all other pixels la-
beled as stable seasonal, characterized by water presence having little
or no inter-annual variation and consistent intra-annual variation.
Further characterization was applied to pixels labeled as change to
identify typologies defined by an analysis of all local maxima and
minima in the time-series. These local extrema were used to segment
the 20-year time-series; segments with an amplitude< 30% of the
overall time-series amplitude were removed. Remaining dominant
change segments were used to characterize the following main change
types: gain, loss, dry period (water-land-water), wet period (land-water-
land), and high frequency (3 or more) land-water transitions. All of
these change types were mapped and validated along with the stable
seasonal, permanent land, and permanent water classes. If a pixel
had< 10 years with observations or< 15 total observations and did
not meet the criteria for permanent water or land, it was marked as
sparse-data.

2.2.3. Dynamic class mapping
To visualize all of the classes in a continuum we reduced the time-

series to three time-sequential values of water percent mapped in an R-
G-B color space (Fig. 2). Specifically, the aforementioned classification
rules were refined to characterize the timing of monotonic changes and
the intensity of all change types. For pixels with monotonic loss or gain
of water, the red band value was taken from the maximum or minimum
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water percent, respectively, at the beginning of the period. The blue
band value was taken from the minimum or maximum water percent,
respectively, at the end of the period. The green band value was the
mean of the entire period, which enabled a graphical representation of
whether the change was comparatively early or late in the study period.
For pixels with two changes, there was either a change from water to
land to water (a dry period), or a change from land to water to land (a
wet period). For pixels with a dry period, there was a local maximum,
followed by the minimum, and then by a local maximum which were

assigned time-sequentially to the R-G-B space. The minimum was as-
signed to the green band and the two maxima were assigned to the red
and blue bands with the lesser maximum averaged with the beginning
or end value of the time-series depending on whether it was before or
after the minimum. For example, a pond that had year-round water that
dried up for a few years and then filled up but only for half the year
would be represented in R-G-B space by its initial maximum value of
100% (r), its minimum value of 0% (g), and its final seasonal value of
50% (b). Likewise, for pixels with a wet period, there was a local

Fig. 1. Workflow of time-series analysis starting with the monthly water and land counts and resulting in dynamic class labels.

Fig. 2. Examples of classes of the water dynamics map. Each example has the annual water percent time-series and resulting R-G-B reduction for a given pixel. For the
stable seasonal and high frequency examples, the 20-year monthly mean water percent is also shown. (A) Dry period: Chicamba Real Dam, Mozambique. (B) Gain:
Bakun Dam, Malaysia. (C) Stable seasonal: Meghna River floodplain, Bangladesh. (D) Loss: Razazza Lake, Iraq. (E) Wet period: Lake Gregory, Australia. (F) High
frequency: Ob River floodplain, Russia. (Please see web version of this article for color figures.)
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minimum then the maximum and then a local minimum which were
assigned time-sequentially to the R-G-B space. The maximum was as-
signed to the green band and the two minima were assigned to the red
and blue bands with the greater minimum averaged with the beginning
or end value of the time-series depending on whether it was before or
after the maximum. For pixels with more than two changes, it was not
possible to maintain the structure of the trend in an R-G-B reduction
and the mean of the entire period was taken for all three points to show
the average annual percent of time for which water was present. These
R-G-B reduction heuristics were also applied to the stable seasonal class
to show the continuum of changes with intensity< 50%, resulting in
pixels with color saturation<50%.

2.3. Area estimation and accuracy assessment

Two complementary reference datasets were collected: one for ac-
curacy assessment of the water and land classification within a single
month and one for accuracy assessment of the classification of surface
water dynamics and area estimation of categories of change. The first
reference dataset was created at 5 m resolution from RapidEye imagery
and was used to assess the accuracy of the base monthly surface water
maps in discriminating land and water and to examine spatial hetero-
geneity of surface water within the Landsat pixels (Section 2.3.1). The
5 m resolution sample data were not used to evaluate change accuracy
or to estimate area. To evaluate inter-annual dynamics, we performed a
separate analysis. The only source of reference data available at 30 m
resolution or finer with global-scale observations since 1999 is the
Landsat archive. Consequently, we were constrained to use Landsat to
produce area estimates of surface water extent and change for the
1999–2018 monitoring period and to quantify map accuracy (Section
2.3.2). An overview of the work flow can be seen in Figure 3.

2.3.1. Single-date RapidEye (5 m) sample
To quantify accuracy for mapping water at a given instance at a

subpixel scale, we used a stratified sample of 5 m resolution reference
imagery from RapidEye. This sample was used to estimate accuracy of
water and land classifications only at the individual month time scale
and was not suitable for evaluating change. To create strata, we divided
the global land surface into 20x20km blocks and calculated the percent
water cover in each block based on the water mask created by Hansen
et al. (2013) that they termed “datamask” within their global forest
change product (Fig. 4). This mask represents all pixels with water
detection percent ≥50% for all clear growing-season observations of
2000–2012 from Landsat 7. Blocks that had no water pixels, no pixels
with> 0% tree cover, and all pixels with ≥95% bare ground were
defined as desert blocks and excluded from the sampling frame (gray
areas, Fig. 4). Blocks that were entirely water in all the observations,
found exclusively in very large lakes and seas, were also excluded. The
remaining 307,195 eligible blocks were divided into four near equal
size strata corresponding to block water cover of 0%, 0–0.08%,
0.08%–2%, and>2% (Fig. 2).

Thirty-five blocks were randomly selected per stratum, and a 5 m
multispectral image was obtained from RapidEye for each block. Since
we mapped each RapidEye image individually, no radiometric correc-
tion was necessary, other than to manually remove cloud or other ar-
tifacts from the image. However, RapidEye images were mis-registered
by up to 40 m when using reported ephemeris data. To overcome this
issue, we implemented a post-processing step of shifting the RapidEye
classifications to the x-y offset that yielded the greatest water overlap
with the water mask of Hansen et al. (2013).

All sample RapidEye images were from 2010 to 2013 growing
seasons based on availability, and each sample image was compared
against the monthly percent water layer from this current study cor-
responding to the month in which the image was taken. This time range
allowed for data from Landsat 5, 7, and 8 to all be represented. The
RapidEye single date images and monthly aggregate map products were

not coincident given the varying acquisition rates of Landsat and
RapidEye data. However, the majority of surface water is stable at
monthly time scales and, in general, any non-matching data will lower
the accuracy estimates rather than inflate them. Some blocks for which
the RapidEye data could not be obtained or that had over 25% cloud
cover were replaced by selecting the next eligible block from a ran-
domly ordered list of sample blocks up to 15 blocks. Some blocks did
not have any Landsat data from the corresponding month and were
excluded. The final sample sizes were 28, 33, 29, and 26 for the very
low, low, medium, and high water cover strata, respectively, due to
missing data.

Each RapidEye image was individually trained and classified
through an iterative process of delineating water and land training
polygons and then running an image-specific set of seven bagged
classification trees to classify the entire sample block. The classification
trees were built on the five spectral bands in RapidEye imagery and
clouds and shadows were manually masked. For many blocks, we it-
erated and added training polygons numerous times to obtain high
quality maps at 5 m. These maps are suitable as reference data as the
higher spatial resolution enables a more discrete mapping of surface
water that is readily identifiable through a supervised mapping ap-
proach (Olofsson et al., 2014). The result is an independent and better
characterization of water extent for the respective date than the cor-
responding Landsat map made using a global algorithm.

The resulting 5 m discrete map of water, land, and no data was the
reference set compared against the Landsat monthly percent water
layers to obtain user's (corresponding to commission) and producer's
(corresponding to omission) accuracies at 5 m and 30 m resolutions. For
this analysis, the Landsat monthly percent water was thresholded so
that all pixels above 50% were labeled as water and all pixels below
50% were labeled as land, as the dominant state of land or water was
more likely to match the surface conditions of when the RapidEye scene
was imaged. Pixels with equal land and water observations were ex-
cluded to prevent introducing a bias, since there is no dominant state.

To estimate user's accuracy of the monthly mapped water class we
used a ratio estimator (Stehman, 2013):
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where H is the number of strata, Yh is the total area of intersection
between the Landsat monthly map of water and the reference classifi-
cation from all sampled blocks of stratum h with the area from block i
denoted yi, Xh is the total area of mapped water within the Landsat map
from all sampled blocks of stratum h with the area from block i denoted
xi, and R is the estimator for user's accuracy. For producer's accuracy
we used the same formula keeping the same definition for Yh and yi but
now defining Xh to be the total area classified as water in the reference
data from all sampled blocks of stratum h and xi the area of this region
in block i. The estimated variance of the ratio estimator is:
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where syh2 and sxh2 are the sample variances of y and x in stratum h,
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h is the sample covariance be-
tween x and y in stratum h, nh is the sample size in stratum h, Nh is the
total number of blocks in stratum h, and = =X N xh

H
h h1 . The discrete

5 m reference layers were also upscaled to continuous 30 m maps of
water with each 30 m pixel representing the percent of 5 m pixels
within it that were labeled water. These new maps were also thre-
sholded at 50% to create the 30 m resolution, binary classified (land
and water) reference set and we applied the ratio estimator to obtain
user's and producer's accuracies of the monthly Landsat maps at 30 m.

To assess the spatial heterogeneity of surface water, we used the
continuous 30 m reference data compute the percent of pixels, ex-
cluding pure land pixels, that were mixed, defined as having both water
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Fig. 3. Overview of workflow with the maps created in this study in green boxes and output area estimates and accuracies in yellow boxes. All maps and reference
data are available at: www.glad.umd.edu/dataset/global-surface-water-dynamics. (Please see web version of this article for color figures.)
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and land pixels at 5 m. To explore the impact of these mixed pixels on
the accuracy results as well as to determine the relationship between
errors and the proximity to a land-water boundary, we calculated the
distance to the nearest land-water boundary delineated in the 5 m
RapidEye classification (Fig. 5). Distances were calculated in meters for
every 5 m pixel within each sample block with each 5 m water pixel
assigned the distance to the closest land pixel and each 5 m land pixel
assigned the distance to the closest water pixel. The distances were
binned in 5 m intervals and commission and omission rates were
computed per bin using the ratio estimator (Eq. (1)). For commission, yi

is defined as the area classified as water in the monthly map and land in
the reference data within the given distance bin and xi as the reference
land area within the distance bin from the water-land boundary. For
omission, yi is defined as the area classified as land in the monthly map
and water in the reference data within the given distance bin and xi as
the reference water area within the distance bin from the water-land
boundary. User's and producer's accuracies were also computed for the
whole region within 30 m of a land-water boundary which represents
the potential mixed pixel region at Landsat scale and for the whole
region beyond 30 m from land-water boundary which represents the

Fig. 4. Distribution of strata and sampled blocks for 5 m assessment. The thresholds of the percent of block area covered by surface water for the very low, low,
medium, and high strata are 0%, 0–0.08%, 0.08%–2%, and> 2%.

Fig. 5. Zoom within a sample block in the high water stratum. Top-left: RapidEye data (NIR-Red Edge-Red) from August 21, 2013. Top-middle: Landsat data (SWIR1-
NIR-Red) from August 15, 2013. Top-right: Landsat data (SWIR1-NIR-Red) from August 24, 2013. Bottom-left: 5 m RapidEye classification of water and land with the
distance to the closest water-land boundary, the blue gradients are classified as water and the gray gradients are classified as land. Bottom-middle: GLAD percent
water for August 2013. Bottom-right: Pekel et al. (2016) not water and water classification for August 2013. Image centered at 46.52°N, 31.84°E on the Ukrainian
coast of the Black Sea. (Please see web version of this article for color figures.)
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pure land or pure water pixel space at Landsat resolution. The spatial
heterogeneity of surface water was further explored by estimating the
percent of global inland water that is within mixed pixels at Landsat
resolution. We used the ratio estimator (Eqs. (1) and (2)) with yi re-
presenting the area of water within mixed pixels in block i and xi re-
presenting the total area of water in block i.

2.3.2. Landsat time-series sample
A probability sample-based assessment was conducted to estimate

areas and validate the inter-annual dynamics map from 1999 to 2018.
The map was clipped using the Global Administrative Areas dataset
(University of California, Berkley 2012) to exclude coastal and ocean
waters, consistent with previous studies (Feng et al., 2016; Pekel et al.,
2016). This assessment is for all areas with data within 56°S-75°N, ex-
cluding Greenland.

Twelve strata derived using the mapped classes were created from
the time-series analysis, and fifty 0.00025° pixels were randomly se-
lected per stratum, totaling 600 sampled pixels (Fig. 6). Mapped per-
manent water was separated into two strata: 1) the high confidence
permanent water stratum which included all pixels whose R-G-B
transformation resulted in each value ≥90%, and 2) the likely water
stratum which included all pixels that did not meet the criteria defining
the first stratum but that had mean annual open water present for
≥90% of the observable portion of the year and inter-annual variation
≤33%. Permanent land was separated into three strata to target pos-
sible omission errors. The land buffer stratum included all land pixels
within 1 km of any water class, the high confidence land stratum in-
cluded all remaining land pixels whose R-G-B transformation resulted
in each value ≤10%, and the likely land stratum included all land
pixels that did not meet that criteria but that had mean annual open
water present for ≤10% of the observable portion of the year and inter-
annual variation ≤33%. There was an additional sparse-data stratum
which was defined as all pixels with< 10 years of observations or< 15
total observations. The sparse-data stratum was used for area estima-
tion, but not for the accuracy assessment because it did not have a map
dynamic type label.

Stratification was essential to ensure that sufficient sample sizes
were allocated to each class given that inland surface water only covers
3–4% of the planet and of that only a small fraction belongs to each of
the dynamic classes (Pekel et al., 2016). It was also necessary to have
the strata take into account the entire time period because 40% of
surface water area was found to be dynamic. The reference data must
also cover the entire time period monitored and the only data source for
such a task is the Landsat archive. The standard for reference data is

that the reference classification must be of equal or higher quality than
the map itself. Manual interpretation of the time-series of individual
sample pixels provided this more accurate time-series characterization
relative to the output of our global-scale algorithm (Olofsson et al.,
2014). For the reference data, an observation from every month was
selected as a compromise between exhaustive interpretation of every
scene and feasibility that maintained sufficient temporal density to
capture inter-annual water dynamics.

Because the data were processed in geographic (Lat/Long) at
0.00025° resolution and not in equal area projection, pixels differ in
area depending on latitude. Pixels were sampled with inclusion prob-
abilities proportional to the area of the pixel using the following
method (Brewer and Hanif, 1982). All pixels were listed per stratum
and the cumulative sum of pixel areas was computed for all pixels
previous to and including the current pixel in the list. Fifty floating
point numbers between zero and the total stratum area were randomly
generated. For each of the randomly selected numbers, the first pixel
that had cumulative area larger than this number was selected. This
protocol results in a stratified random sample for which the inclusion
probability of a pixel in each stratum is proportional to the area of the
pixel.

For each sampled pixel, a Landsat observation was randomly se-
lected from each month for each year, resulting in up to 240 scenes
being visually interpreted for each pixel. If for a given scene the sam-
pled pixel was flagged as cloud, a new scene would be randomly se-
lected from the same month if available, otherwise the original scene
would be retained for interpretation. For each sampled pixel, a html
page was built with thumbnails of all selected Landsat scenes (Fig. 7).
For each thumbnail, the pixel was labeled as land, water, or bad data
through visual interpretation of the Landsat data and auxiliary high-
resolution data from Google Earth was used to provide additional
context. Since the data are resampled to 0.00025° via the nearest
neighbor method, each 0.00025° pixel retains the spectral reflectance
data of the nearest 30x30m pixel in the original Landsat data, which is
in Universal Transverse Mercator (UTM) projection, and the footprint of
the UTM pixel was utilized when considering the high-resolution data
from Google Earth.

These land and water labels in the reference data were used to
evaluate the inter-annual water dynamics map. A total of 87,926 scenes
(600 sampled pixels × 12 months × 20 years minus months with no
available scenes) were visually interpreted as land, water, or bad data,
and out of these, 57,230 observations were labeled as land or water
both through visual interpretation and via the map classification trees.
While this is a large number of scenes, it was manageable because only

Fig. 6. Distribution of sampled pixels of the Landsat time series.

A.H. Pickens, et al. Remote Sensing of Environment 243 (2020) 111792

8



the 600 sample pixels needed to be interpreted, many of which were
stable through time. The individual visual interpretations were ag-
gregated to form an annual time series by calculating the percent of
clear reference observations that were water per year and smoothed
with a 3-year mean moving window as was done with the algorithm-
generated time-series. This reference time-series was input to the water
dynamics model (Section 2.2) to generate class labels for each sampled
pixel.

These class labels of the reference data were used to estimate area of
the water dynamic classes and aggregations of the classes. Additionally,
the area that is inundated each year for> 25, 50, 75, and 90 and equal

to 100% of the time was calculated from the annual percent values of
each sampled pixel. Using this same stratified sample, we estimate
user's and producer's accuracies for the trend classes. Details of area and
accuracy estimation calculations can be found in Appendix A.

2.3.3. Comparison with Pekel et al. (2016) dataset
The most comprehensive previous global surface water dataset is

that of Pekel et al. (2016) with monthly water/not water maps from
1984 to 2018 with considerable data gaps pre-1999. They evaluate
their product using a sample-based assessment that only quantifies
water/not water state. The area estimates of change they provide are

Fig. 7. Example sampled pixel from the wet period stratum, centered at 16.189375°N, 77.659375°E within the fluctuating footprint of Rayalumpad Reservoir in
Telangana, India. The reservoir was constructed in 2009, first flooded the sampled pixel in 2013 and remained flooded through 2015, and then seasonally inundated
the sampled pixel 2016–2018. The pixel is outlined in red in each of the Landsat thumbnails (SWIR1-NIR-red) and in the images from Google Earth, with an
additional yellow outline for the source UTM pixel footprint. The graphs at the top are time series of the spectral reflectance of the pixel to aid interpretation (Green
reflectance in light green, red reflectance in red, NIR in black, SWIR1 in dark green, SWIR2 in purple, and NDWI in blue). Each Landsat scene could be individually
marked as land, water, or bad data or a month, year, or the whole collection could be labeled as one of these classes. The full reference html page includes all months
and years 1999–2018 and can be viewed here: https://glad.geog.umd.edu/timeSeriesReference/pagesUTM/sample419.html. (Please see web version of this article
for color figures.)
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not produced using a probability-based sample of reference data but
instead change is quantified from pixel counts, which ignores the biases
inherent in the map products. Moreover, the multi-temporal maps made
by Pekel et al. (2016) that identify change are principally bi-temporal,
consisting of the change in percent of an epoch with open water present
between two epochs, and a time-1 time-2 transition map. The transition
map of Pekel et al. (2016) is derived from the first year with sufficient
surface observations in the Landsat Thematic Mapper time-series,
starting in 1984 through 2000, and a last year of 2018, for the map
update released this year. The transition map represents the classes in a
transition matrix generated from the annual labels of permanent, sea-
sonal, and land in the first and last year, an approach that ignores all
intervening years except for pixels where the first and last year both
have land labels. Permanent water on an annual time-scale is defined as
all months with data flagged as water, and seasonal water is defined as
having at least one month flagged as water and at least one month
flagged as land. In the case of land labels for both the first and last year,
the annual time-series is checked whether or not there was ever labeled
water between the start and end years. If there is such ephemeral water,
it is determined whether permanent or seasonal water states were ob-
served more frequently and the pixel is labeled ephemeral permanent or
ephemeral seasonal according to a majority rule. If either the first or
last year are water, the class label is assigned only using bi-temporal
first and last year labels.

Pekel et al. (2016) performed an extensive validation on their
water/not water classification, but did not include the entirety of the
map in the sampling frame. Importantly, their omission sampling frame
for south of 60°N was only within the SRTM Water Bodies Dataset
(SWBD) and for north of 60°N within the water class of Feng et al.
(2016) and did not validate change. In SWBD, all water bodies with a
width smaller than 183 m are removed, and thus the omission accuracy
only applies to bodies of water having width larger than 183 m that are
within the SWBD, a data set derived from a period of 10 days in Feb-
ruary 2000. Finally, they did not use the reference data to report map-
based area summations or to estimate uncertainty bounds of reported
areas. In this study, we extended the results of the Pekel et al. (2016)
study by producing maps that report various change classes based on all
the years of the study period, conducting an accuracy assessment that
represented the entire map, and reporting sample-based estimates of
area of change accompanied by standard errors to quantify uncertainty
of these estimates.

We evaluated Pekel et al.'s (2016) global water dataset in three
different ways. (1) To evaluate the monthly water product of Pekel
et al. (2016), we calculated accuracies for the monthly water/non-
water labels of Pekel et al. (2016) using the same single-date 5 m re-
ference data set described in Section 2.3.1 and performed the same
steps of accuracy analysis as we did for our monthly product, which
allows for accuracy estimates that apply to the whole map. Pekel et al.'s
(2016) monthly data are labeled as water, land, or no observation and
thus no threshold was needed for the single-date validation. (2) In order
to compare the sensitivity of our monthly water layers with those of
Pekel et al. (2016) to detect and correctly identify change, we applied
the same water dynamics model we developed in this study (Section
2.2) to the monthly water history of Pekel et al. (2016). This task was
performed using the same rules applied in the creation of our change
categories with the input monthly water history being from Pekel et al.
(2016) instead of GLAD and with their water labels converted to 100%
and not-water labels to 0% on a per month basis. This enabled us to
create an annual time-series from monthly data in an identical manner
for Pekel et al. (2016), GLAD, and the reference data set. Water dy-
namics were therefore modeled consistently across all three data sets.
Accuracies for Pekel et al. (2016) and GLAD were subsequently assessed
using the same method. (3) To evaluate the transition map of Pekel
et al. (2016), we compared their transition labels against the water
dynamics class of the reference data. Since the readily available tran-
sition map of Pekel et al. (2016) is from the first representative year to

2018 rather than 1999–2018, we computed a 1999–2018 transition
map from their yearly water history according to the rules outlined in
their published study. A one-to-one correspondence does not exist be-
tween the transition map labels and the class definitions developed in
this study. In this case, we did not compute accuracies, but instead we
have provided the confusion matrix. In this way, we are able to quan-
titatively compare the Pekel et al. (2016) bi-temporal water dynamics
to a reference data set that is stratified on change and that more
completely characterizes surface water dynamics.

3. Results

3.1. Maps

Monthly, seasonal, and annual water percent layers were created
and maps of inter-annual dynamics for 1999–2018 were created for the
entire year as well as for each set of three consecutive months. Natural
dynamics such as the meandering of the rivers in the Ganges-
Brahmaputra basin (Coleman, 1969) are observed as well as direct
human change such as the expansion of rice cultivation and aquaculture
(Davidson, 2014; Tessler et al., 2016; Zhao et al., 2008) (Fig. 8). Large
areas of water gain include the lakes of the Tibetan Plateau (Zhang
et al., 2014), the prairie potholes of the USA and Canada (Zou et al.,
2018), and the creation of reservoirs, particularly in Southeast Asia
(Zarfl et al., 2015). Many of the large saline lakes of the world have all
substantially diminished in area since 1999 (Wurtsbaugh et al., 2017).
Much of the area with multiple transitions between open water and
land occur within wetlands and floodplains. In addition to visualizing
inter-annual dynamics, mean water percent was also calculated per
month for the period of 1999–2018, enabling analysis of seasonal water
presence (Fig. 9). Consistent annual seasonal open water can be seen in
many of the floodplains around the world, for example, the Barotse
floodplain in Zambia (Cai et al., 2017). Direct human seasonal dy-
namics such as single and double cropping of rice paddies can also be
distinguished through the annual or biannual open water flooding re-
gime. While much of the measured seasonal and inter-annual fluctua-
tion is due to true variation in surface water presence, some of this
fluctuation in open water presence, particularly in wetlands, is due to
variation in vegetation levels that obscure the water surface. All layers
are available for visualization or download at www.glad.umd.edu/
dataset/global-surface-water-dynamics.

We evaluated the effects of the filtering and smoothing of the time-
series on the output inter-annual surface water dynamics maps. The
filtering of anomalous water detections caused 0.17% of the final area
mapped as land to be classified as land rather than a dynamic class and
the filtering of anomalous land detections caused 0.29% of final area
mapped as permanent water to be classified as permanent water rather
than a dynamic class. We evaluated the impact of using 30% as the
magnitude threshold defining a transition and found that if instead the
threshold was set at 10, 20, 40, or 50% that 0.16–0.33% of the entire
continental area changes class or, equivalently, 5.1–8.7% of the area
mapped as permanent or dynamic water classes. Using the single year
annual time-series as input to the water dynamics model instead of the
3-year mean annual time-series has a much larger impact, with 1.8% of
the entire continental area changing class, or as a percent of the area
mapped as permanent or dynamic water classes 45% changes class and
increases the total area mapped as dynamic by 4.2%.

3.2. Sample-based area estimates

We estimated 2,928,992 (± 93,027) km2 of the continental area to
be permanent open water from 1999 to 2018 (Table 1). Areas that were
open water at any point during 1999–2018 totaled 4,815,478
(± 82,986) km2. There was a total of 138,011 (± 28,163) km2 that
had unidirectional gain of open surface water and 53,154 (± 10,883)
km2 that had unidirectional loss of open water, whereas, areas that
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changed between persistent water and persistent land two or more
times through the period totaled 950,719 (± 104,034) km2. The mean
annual area with open water present for ≥50% of the observable
portion of the year was 3,687,781 km2 (standard deviation over all
years of the annual area estimates = 46,440 km2).

3.3. Accuracy

3.3.1. Accuracy of monthly water and land classification
The user's and producer's accuracies (corresponding to commission

and omission rates) at 30 m resolution of the monthly mapped water
class defined by a threshold of 50% applied to the percent water are
93.7 (± 1.5)% and 96.0 (± 1.2)% respectively. The accuracies of the
monthly mapped water class of Pekel et al. (2016) are 95.2 (± 1.2)%

and 90.3 (± 2.3)% using the same reference sample data. All of the
accuracies presented in this subsection refer to these water classes for
different resolutions and regions. At 5 m resolution, the user's and
producer's accuracies in our study are 97.5 (± 0.7)% and 97.7
(± 0.7)% and Pekel et al.'s are 98.0 (± 0.5)% and 95.1 (± 1.3)%.
These numbers are heavily impacted by the region that is within 30 m
of the water body edge, both within the water body and in adjacent
land, as can be seen when the water class commission and omission
rates are plotted as a function of distance away from the land-water
boundary as delineated in the 5 m reference data (Fig. 10). At a dis-
tance> 30 m, the mapped water class of our study has a user's accuracy
of 96.9 (± 0.9)% and a producer's accuracy of 99.0 (± 0.3)%, and the
mapped water class of Pekel et al. (2016) has user's and producer's
accuracies of 99.4 (± 0.2)% and 99.5 (± 0.1)%. For the area 0-30 m

Fig. 8. 1999–2018 inter-annual water dynamics map examples for all 12 months with hues representing the type of change dynamic, saturation the intensity of the
change, and value or brightness representing the maximum percent of a year that was inundated. All examples are shown at the same scale. (a) Expansion of
aquaculture and shifting management practices on the coast of India. (b) Dramatic reduction of Lake Urmia in Iran, with slight recovery. (c) Increase of lakes across
the Tibetan Plateau. (d) Shifting open water patterns in the Pantanal in Brazil, the largest wetland in the world. (e) Meandering of the Meghna River in Bangladesh by
10 km and the growth of new islands in the Bay of Bengal. (Please see web version of this article for color figures.)
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from the closest land-water boundary, our study's user's and producer's
accuracies are 70.9 (± 1.6)% and 66.0 (± 3.7)3% and Pekel et al.'s
user's and producer's accuracies are 75.4 (± 2.0)% and 51.6 (± 3.3)%.
Thus both datasets map water with high accuracy beyond 30 m from
shore lines and river banks, but both have difficulty distinguishing land
and water when they are blurred together in mixed pixels. However,
considering only the edge and mixed pixels, our map has less bias and
correctly identifies as water 28% more of the 5x5m footprints with
water cover, and for this region within 30 m of the land-water boundary
two thirds of 5 m space is correctly assigned. These contrasting com-
mission and omission rates of the static water classification associated
with mixed pixels carry over to the following change detection accuracy
results because of the large area of mixed pixels. We found that 10.9
(± 1.9)% of global inland water is within mixed pixels at Landsat re-
solution, defined as having both land and water at 5 m resolution
within the pixel. The most common sources of commission error aside
from mixed pixels are over lava flows, urban centers with tall buildings
and shadowed streets, glaciers (particularly when mixed with debris),
and cloud shadow over dark, dense forests with persistent cloud cover
such as in Gabon.

3.3.2. Accuracy of classes of water dynamics derived from time-series
The accuracy of each class of water dynamics derived from our

dataset for 1999–2018 varied greatly by the number of changes re-
presented by each class. The same was true for the accuracies of the
classes derived from the monthly layers of the study by Pekel et al.
(2016) when the same water dynamics model developed in our study
was applied to the Pekel et al. (2016) data. The resulting map and labels

derived from the water dynamics model were not produced by Pekel
et al. (2016) but it is instructive to examine the accuracy of their pro-
duct when their data are translated through this model. Accuracies
were highest for land with the user's and producer's accuracies of our
study at 99.9 (± 0.0)% and 99.7 (± 0.1)%, followed by permanent
water with user's and producer's accuracies of 97.8 (± 1.8)% and 85.8
(± 2.4)%, both of which had similar accuracies for Pekel et al.'s (2016)
dataset. These are the largest classes, accounting for 98.6% (±0.1%)
of the global continental area.

The accuracies of each of the classes where pixels sometimes are
land and sometimes have water, hereafter referred to as ‘all dynamic
types’, are much lower and for the GLAD dataset have higher rates of
commission than omission (Table 2). For each of the dynamic types the
data from our study have lower rates of omission than the results from
using Pekel et al.'s (2016) monthly water history, and for three out of
the six dynamic types our study has lower rates of commission. How-
ever, many of the misclassifications are between the change and sea-
sonal classes themselves, rather than missing the transitory nature of
the surface water entirely, as can be seen by the accuracies when all
dynamic types are aggregated into a single class. Our study resulted in
user's and producer's accuracies for the class “all dynamic types” of
68.3(± 3.9)% and 93.4(± 0.6)%, respectively. Pekel et al. (2016)
yielded user's and producer's accuracies for “all dynamic types” of
46.1(± 19.3.)% and 60.2(± 4.9)%. However, one of the sampled
pixels in the land buffer stratum was labeled stable seasonal using the
Pekel et al. (2016) dataset, and if this one sample unit is removed from
the analysis, the user's accuracy of “all dynamic types” increases to
78.5(± 5.0)% and the producer's accuracy remains the same. Thus the

Fig. 9. 1999–2018 seasonal water examples. Both examples are shown at the same scale. Left: R-G-B of monthly mean water percent of April-June-August showing
the seasonal floodplains of the Ob River, Russia. Right: R-G-B of monthly mean water percent of June-August-October showing the various rice and aquaculture
flooding cycles in the Mekong Delta, Vietnam with the magenta areas experiencing two separate open water flooding periods and the green areas experiencing three
separate open water flooding periods. (Please see web version of this article for color figures.)

Table 1
Area estimates of trends with associated uncertainty of open water within the continental area between 75°N and 56°S as delineated by the Global Administrative
Areas dataset (University of California, Berkeley 2012) and excluding Greenland. The last four categories are aggregates of the classes above.

Area (± SE) km2 Percent of total area Percent of all water Class definition

Land 126,971,335 (± 82,868) 96.34 (± 0.06) – Mean water percent ≤10% and inter-annual variability ≤33%
Permanent water 2,928,992 (± 93,027) 2.22 (±0.07) 60.82 (± 1.93) Mean water percent ≥90% and inter-annual variability ≤33%
Stable seasonal 735,347 (±99,792) 0.57 (±0.08) 15.69 (± 2.07) Intra-annual variability with inter-annual variability < 50%
Gain 138,011 (±28,163) 0.10 (±0.02) 2.87 (±0.58) Land-dominant to water-dominant
Loss 53,154 (± 10,883) 0.04 (±0.01) 1.10 (±0.23) Water-dominant to land-dominant
Dry period 47,344 (± 8982) 0.04 (±0.01) 0.98 (±0.19) Water-dominant to land-dominant to water-dominant
Wet period 120,543 (±49,543) 0.09 (±0.04) 2.50 (±1.03) Land-dominant to water-dominant to land-dominant
High frequency 784,417 (±93,460) 0.60 (±0.07) 16.29 (± 1.94) 3+ transitions between water-dominant and land-dominant
Multiple transitions 950,719 (±104,034) 0.72 (±0.08) 19.74 (± 2.16) Dry period, wet period, and high frequency (2+ transitions)
All change types 1,141,884 (± 106,120) 0.87 (±0.08) 23.71 (± 2.20) Gain, loss, dry period, wet period, high frequency
All dynamic types 1,895,159 (± 114,006) 1.44 (±0.09) 39.36 (± 2.37) Gain, loss, dry period, wet period, high frequency, stable seasonal
All with water 4,815,478 (± 82,986) 3.65 (±0.06) 100.00 Permanent water, stable seasonal, gain, loss, dry period, wet period, high

frequency
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user's accuracy result is strongly impacted by one influential “outlier”
sample pixel. Through comparison between the producer's accuracies of
‘all dynamic types’ and of ‘all change types’, 93.4(± 2.7) % and

70.6(± 6.1)% respectively, we can see that many of the omissions of
change occur when the sample pixel is classified in the map as stable
seasonal, since that is the only additional class in ‘all dynamic types’.

Fig. 10. Error rates at 5 m resolution of the monthly Landsat water detection as a function of distance from the land-water boundary as defined in the 5 m reference
data. Top: The left half of the figure has distances extending further into land and displays commission error rates of water for both this study and Pekel et al. (2016)
and the right half has distances extending further into water bodies and displays omission error rates of water. Each vertical line represents 30 m from the land-water
boundary. The space within 30 m on either side of the land-water boundary represents the mixed pixel space at Landsat resolution. Bottom: The area within each
stratum at the given distance from the land-water boundary. The area of water that the low and the very low water strata contribute drops off very quickly due to
small water body size. There is no area at 0 m because this is the boundary line between land and water.

Table 2
The user's and producer's accuracies of the classes of water dynamics from the time-series data of this study and of Pekel et al. (2016) when the water dynamics model
is applied to each monthly water history dataset and to the reference data. The last four categories are aggregates of the classes above and a sample pixel is considered
correct for the aggregate if it is in one of the contributing classes. See Table 1 for class definitions.

GLAD accuracy Accuracy of GLAD water dynamics model applied to Pekel et al. (2016) monthly water history

User's Producer's User's Producer's

Land 99.9 (± 0.0) 99.7 (± 0.1) 99.5 (±0.1) 99.1 (± 0.8)
Permanent water 97.8 (± 1.8) 85.8 (± 2.4) 95.1 (±1.8) 89.9 (± 2.6)
Stable seasonal 44.0 (± 7.1) 73.0 (± 5.6) 17.4 (±12.1) 36.3 (± 8.3)
Gain 59.6 (± 7.2) 74.8 (± 13.9) 48.0 (±12.8) 45.4 (± 10.9)
Loss 30.0 (± 6.5) 86.2 (± 7.4) 49.8 (±19.3) 65.5 (± 11.4)
Dry period 46.0 (± 7.1) 81.1 (± 11.8) 17.7 (±8.0) 31.7 (± 9.5)
Wet period 34.0 (± 6.8) 39.8 (± 16.7) 62.5 (±15.1) 37.5 (± 17.5)
High frequency 54.3 (± 7.4) 54.9 (± 6.2) 50.4 (±9.3) 35.4 (± 7.1)
Multiple transitions 58.2 (± 5.8) 62.2 (± 6.6) 54.1 (±7.9) 40.3 (± 6.4)
All change types 60.0 (± 4.6) 70.6 (± 6.1) 62.8 (±6.9) 50.0 (± 5.8)
All dynamic types 68.3 (± 3.9) 93.4 (± 2.7) 46.1 (±19.3) 60.2 (± 4.9)
All with water 92.1 (± 1.6) 98.6 (± 0.6) 79.1 (±15.5) 85.9 (± 2.3)
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The amplitude threshold of the time-series for a pixel to be labeled as
change rather than seasonal is 50%, meaning a pixel must gain or lose
the equivalent of half a year of open water one or more times through
the 20 years of the study. Thus, in this case, the amplitude of the inter-
annual changes in the algorithm generated time-series was below the
threshold of 50% to be labeled as change and was thus labeled stable
seasonal, but in the reference data time-series was greater than the
threshold of 50% and was labeled with a change type. The distribution
of omission and commission errors can be seen in Table 3.

We also compared the reference data time-series classification to the
transition map of Pekel et al. (2016) (Table 4). The transition map
underestimates water presence, as a number of water extent and dy-
namics classes are labeled as permanent land in Pekel et al. (2016).
Specifically, 6% of the reference area of permanent water is labeled as
land, 43% of seasonal water area is labeled as land, and 41% of the area
of all the change classes is labeled as land. Change was also under-
estimated with an additional 11% of reference change area classified as
permanent water in Pekel et al.'s (2016) map. While there is not a one-
to-one correspondence between the reference class definitions and
Pekel et al.'s (2016) definitions, the nature of the change is also mis-
identified; for example, 45% of what was classified by Pekel et al.
(2016) as new permanent water from land and 52% of lost permanent
water to land actually experienced multiple transitions between land-

dominated and water-dominated states, the ‘high frequency’ reference
class. The three classes of Pekel et al. (2016) which had the majority of
the area correctly mapped within the corresponding reference classes
are land with 99%, permanent water with 93%, and ephemeral per-
manent with 100% within the corresponding reference classes. The
remaining classes of Pekel et al. (2016) have the majority of their area
in a reference class with a definition that does not overlap. In summary,
the Pekel et al. (2016) map omits considerable areas of surface water
extent and change and mischaracterizes change types.

4. Discussion

This study provides the first sample-based area estimates of global
surface water extent and change. The method employs mapped surface
water change to stratify the global land surface and uses a probability
sample of reference data to produce unbiased estimators of area of
surface water extent and change, accompanied by standard errors to
quantify the associated uncertainties of the area estimates. Good
practice methodology establishes that areas should be estimated via a
sample-based analysis rather than by merely summing the area of class
pixels in the map (Olofsson et al., 2014; Stehman, 2013). Given that
there are errors in all maps, pixel counting will generally result in an
over or under estimation of the true area with unknown magnitude. In

Table 3
Confusion matrix of GLAD water dynamics map with the reference classification. In row i and column j, the
left half of the cell represents in a gray gradient the estimated percent of pixels labeled i in the reference data
and that were mapped j in GLAD, and the right half of the cell represents in a green gradient the estimated
percent of pixels mapped j in GLAD that were labeled i in the reference data. The grays not along the center
diagonal of correct classification show the distribution of omission and the greens show the distribution of
commission. The percent estimates were derived from the estimated area of each (i,j) cell. (Please see web
version of this article for color figures.)

Table 4
Confusion matrix of Pekel et al. (2016) transition map 1999–2018 with the reference classification. In row i and column j, the left half of the cell represents in a gray
gradient the estimated percent of pixels labeled i in the reference data and that were mapped j by Pekel et al. (2016), and the right half of the cell represents in an
orange gradient the estimated percent of pixels mapped j by Pekel et al. (2016) that were labeled i in the reference data. The percent estimates were derived from the
estimated area of each (i,j) cell. (Please see web version of this article for color figures.)
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contrast, a probability sample-based analysis allows for estimation of
area bounded by quantified uncertainties that can be appropriately
used in science and policy applications (Eggleston et al., 2006; Olofsson
et al., 2013; Penman et al., 2016).

Two separate sample-based accuracy assessments were conducted to
better evaluate both the spatial and temporal dimensions of the surface
water maps and to estimate area of surface water extent and change.
The sample assessment of monthly water detection was conducted
using reference data derived from 5 m RapidEye imagery. This assess-
ment provides accuracy results for the base monthly layers, describes
spatial distribution of error as a function of proximity to water-land
transitions, and offers insights into the limitations of using Landsat
resolution (30 m) data for mapping surface water. The time-series
sample provides class accuracies of the inter-annual dynamics map, but
more importantly, area estimators of surface water extent and change
accompanied by standard errors to quantify uncertainty of these esti-
mates. This analysis enables proper use of the inter-annual dynamics
map as well as highlights the challenges of time-series change mapping.
These two analyses extend the validation of Pekel et al. (2016) in that
(1) accuracy estimates represent the entire map, (2) the reference
sample data explicitly evaluate change and were used to calculate un-
biased estimators of areas, and (3) standard errors were reported to
provide an assessment of uncertainty of the area estimates.

Results illustrate that while pure water pixels are usually easily
discriminated from land pixels, change between the two categories is
very difficult to characterize in mixed pixels and mixed pixels are
prevalent as 22.8% of all 30 m pixels with water present also had land
present. We found that the amount of area that has fluctuating rates of
open water presence far exceeds the area that has unidirectional trends
of gain and loss (Table 1). Of the pixels that experienced change in
surface water, 83% did not experience unidirectional change. These
results demonstrate how difficult it is to map water dynamics accu-
rately at a 30 m spatial resolution and highlights the need for time-
series of higher spatial resolution data, such as Sentinel-2 (10-20 m with
5 day revisit), or commercial data such as Planet (3 m with daily revisit)
to improve change area estimation. Radar data sources, such as Sen-
tinel-1, also offer a path forward for mapping open water, with ad-
vantages in both the spatial and temporal domains compared to
Landsat, particularly in rainy seasons and flood events due to radar's
ability to penetrate clouds. However, since the first Sentinel-2 satellite
was launched in 2015, the first of Planet in 2014, and the first of
Sentinel-1 in 2014, historical analysis before these dates will still rely
on Landsat.

It is unknown how much surface water is left undetected due to
being under forest cover or other vegetation obscuring the surface of
the water from above. As a result, it is unknown how much variation in
open water presence is due to variation in vegetation cover rather than
surface water presence. Much of the area of stable seasonal and mul-
tiple transitions is within natural wetlands. These are areas that fluc-
tuate greatly in both surface water extent as well as vegetation extent
and density as part of a natural cycle. There have been various efforts to
quantify wetland extent at regional and global extents, but as of yet,
there is no consensus on global wetland area with some estimates
double the area of others (Davidson et al., 2018), reflecting the current
lack of consistency among map products of wetland extent (Hu et al.,
2017). While coarser resolution products of global mapped surface
water inundation exist (Fluet-Chouinard et al., 2015; Papa et al., 2010),
no global inundation maps exist at medium spatial and temporal re-
solution. Medium resolution synthetic aperture radar has been used at a
regional scale to map inundation during the wet and dry seasons, in-
cluding in the forest (Hess et al., 2015).

4.1. Area comparison

Having reference data for every year enabled estimation of the
mean annual area with various frequencies of open water presence

(Fig. 11) and the standard deviation (SD) over all years of the annual
area estimates. For example, 3.13 million km2 (SD = 0.06 million km2)
has open water ≥90% of the year, 3.69 (SD = 0.04) million km2 has
open water> 50% of the year, and 4.12 (SD = 0.05) million km2 is has
open water ≥25% of the year. These estimated areas represent the
continental area within 56°S and 75°N delineated by the Global Ad-
ministrative Areas dataset (GADM) (University of California, Berkley
2012) and exclude Greenland. Existing Landsat-based published studies
fall within the range of annual areas with associated SDs for different
rates of open water presence (Chen et al., 2015; Feng et al., 2016; Pekel
et al., 2016; Yamazaki et al., 2015) (Fig. 9). All but Pekel et al. (2016)
use the Global Land Survey collection, which is comprised of single
Landsat scenes from isolated years, with some scenes selected from
surrounding years instead, rendering analysis of seasonality impossible
(Gutman et al., 2008; Tucker et al., 2004). Two other Landsat based
products map sub-categories of global open water with an estimate of
the global areas of lakes of 4.76 million km2 by Verpoorter et al. (2014)
and an estimate of the global area of rivers of 0.773 (± 0.079) million
km2 by Allen and Pavelsky (2018).

Pekel et al. (2016) report 2.78 million km2 of permanent water and
0.81 million km2 of seasonal water October 2014–October 2015, where
seasonal is defined as at least one month being labeled as land and at
least one month being labeled as water. Pekel et al. (2016) use an upper
bound of 78°N and the coast is also delineated by GADM. Pekel et al.
(2016) additionally provide two time-series aggregate areas, 4.46 mil-
lion km2 with open water at any point between 1984 and 2015 and
2.4 million km2 with permanent water from 1984 to 2015. For
1999–2018, we estimate 4.82 (± 0.08) million km2 to be one of any of
our water classes and 2.93 (± 0.09) million km2 to be permanent open
water as defined in this study (Table 1) and 2.43 (± 0.13) million km2

to be permanent open water if we apply the strictest definition of 100%
water detections. Although the studies cover two different time inter-
vals, this strictest estimate from our analysis (2.43 million km2) nearly
matches Pekel et al.'s (2016) permanent water estimate of 2.4 mil-
lion km2. Our estimate for the area in any of our water classes is
0.36 million km2 larger than Pekel et al.'s (2016) area of water at any
time, and if we broaden our definition to include water at any time, our
estimate is 9.48 (± 1.97) million km2 which is over twice as large as
Pekel et al.'s (2016) reported area for 1984–2015. This larger estimate
includes all sample units that had a mean annual open water presence
percent ≤10% and inter-annual variation ≤33% and also had at least
one of the observations labeled water in the reference data, which is
considered land in the smaller estimate. This estimate may be much
larger due to the filtering of Pekel et al. (2016), which is not re-
producibly described but is intended to remove cloud shadows, as well
as, the bias of omission found for the Pekel et al. (2016) monthly water
layers. Since our estimates are calculated only from the reference data
and the strata areas, the GLAD map bias does not contribute to the
reported difference. While not enough to account for the magnitude of
the difference, our analysis also includes three additional years beyond
the scope of Pekel et al.'s (2016) areas.

Our study reports change areas based on the entire time-series ra-
ther than bi-temporally. Our sample-based estimates for 1999–2018 are
138,011 (± 28,163) km2 of gained persistent water and 53,154
(± 10,883) km2 of lost persistent water. Much of the increase is due to
the creation of reservoirs (Zarfl et al., 2015) as well as climate impacts
such as has caused the increase of lakes in the Tibetan plateau (Zhang
et al., 2014) and in the prairie pothole region of North America (Zou
et al.,2018) and much of the decrease comes from desiccation of many
of the large saline lakes in the Middle East (Wurtsbaugh et al., 2017).

Given that the area that experienced multiple transitions between
water and land on an annual time-scale was over 400% larger than the
area with only unidirectional change (i.e. either loss or gain), it is im-
perative to look at the whole time-series to quantify trends of gain or
loss. In contrast, previous studies only reported change areas bi-tem-
porally from map pixel counts. Taking loss for example, Pekel et al.
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(2016) reported 162,000 km2 of permanent water loss, 90,000 km2 of
which changed to land and 72,000 km2 to seasonal water. These results
cannot be appropriately compared to those of our study, because of
differences in both their definition of loss and their time period. Pekel
et al. (2016) defined loss as a transition from having all months labeled
as water to having any months not labeled as water and this definition
of loss was based on comparing only the first representative year (de-
fined per pixel with a range of 1985–2000) and 2015, thereby ignoring
all intervening years. The comparison of the Pekel et al. (2016) tran-
sition labels we generated for 1999–2018 versus the reference class for
the time-series sample highlights this, showing that only 41% of the
transition label lost permanent, defined as permanent water to land, is
actually loss when the intervening years are taken into account and
52% changes back and forth between land-dominant and water-domi-
nant. The goal of the definitions of change types used in our study is to
characterize the dominant behavior of the pixel through all 20 years,
but change areas are inherently dependent on the definition and the
complexity of defining change types increases for a land cover that is as
dynamic as open surface water.

The areas reported in our study are the first to be estimated ac-
cording to good practice guidelines. The areas reported by Pekel et al.
(2016) were generated from summing the mapped area, or pixel counts.
Doing so carries the classification bias into the estimated area. The
validation performed by Pekel et al. (2016) within their study found a
bias such that the number of seasonal water detections was 21–25%
smaller than detected in their reference data set, which means there
will be considerable bias in the areas computed from pixel counts. This
bias is present even though their omission sampling frame itself omitted
many smaller water bodies. Pekel et al. (2016) had separate sampling
frames for omission and commission, and their omission sampling
frame did not include many smaller water bodies due to only sampling
within the SRTM Water Body Data (SWBD) for< 60°N. The SWBD only
represents lakes that are at least the equivalent of 20 × 6 Landsat
pixels, and only represents rivers that have a segment that is at least
that same size (SRTM Data Editing Rules, 2003). Bodies of water with
area< 0.1 km2, which is a threshold roughly equal to the minimum
size of SWBD water bodies, contribute a large fraction of total surface
area of inland waters with estimates ranging between 12% and 17% of
total inland water area (Downing et al., 2006; Verpoorter et al., 2014).

Smaller water bodies have a higher proportion of mixed pixels and are
more likely to be transient, both of which make them harder to map.
Since only pixels within the SWBD were eligible to be sampled (all other
pixels had an inclusion probability of 0), the omission error estimates
only apply to the area within that mask. The stratified random sample
of reference data that we selected from the whole map and which tar-
gets each dynamic class yields unbiased estimators of area that are
representative of the whole map, and the standard errors quantify the
uncertainty of these area estimates. These uncertainty bounds inform
the appropriate use of the estimates in further research as well as
policy.

Geolocation error is an issue that could affect the area of change,
particularly of multiple transitions. However, the impact is likely small
in the tropical and temperate zones, based on visual inspection of the
time-series probability sample and because the Landsat 8 OLI shift be-
tween images of the same path-row was reported by Storey et al. (2014)
to be less than three meters for 90% of image pairs. There can be
greater shift in regions where data are collected from path-rows in
multiple UTM zones due to nearest neighbor resampling into geo-
graphic projection, causing some output pixels to receive data from
different source pixel footprints. This issue is more prominent in the
high latitudes because of the high proportion of zone overlap. The use
of the entire Landsat archive with several steps of outlier removal mi-
tigates, but does not remove, the risk of geolocation error impacting
results.

4.2. Maps

Water is unique compared to many other land cover types because it
can be highly variable, literally ebbing and flowing over time, some-
times at regular annual rates and sometimes in long-term trends. Our
approach to analyzing the time-series was to model high-confidence
transitions for unidirectional and oscillating change dynamics.
Monthly, seasonal, and annual percent water layers were generated and
the annual time-series used for deriving change categories and to cal-
culate a three-point model of inter-annual dynamics. The resulting R-G-
B inter-annual dynamics map enables the viewing of mapped changes
and their intensity (Fig. 6). This map extends beyond the results of
previous studies in that it characterizes eight different stable and

Fig. 11. Global area estimates from this study and other previously published studies based on Landsat data. Each estimate from this study is the area with open
water for the given percent of the year, and the gray area bounding it corresponds to the standard error of the estimate. Confidence intervals were not provided for
the other studies.
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dynamic classes in a continuum and from all years rather than just bi-
temporally based on only the start and end dates. Given that the area
that experienced multiple transitions between persistent water and
persistent land was over four times larger than the area with monotonic
gain or loss, taking all years into account when mapping changes is
critical for derivative studies that will use the water dynamic maps and/
or area estimates. The R-G-B inter-annual dynamics map, the map of
stable and dynamic classes, and the monthly and annual water percent
maps are available for visualization and download at www.glad.umd.
edu/dataset/global-surface-water-dynamics.

The validation employing 5 m RapidEye data shows that the clas-
sification algorithm performed well in discriminating pure land from
pure water pixels. Example error sources included ice cover, lava, dark
vegetation cover, high turbidity or very shallow water, issues of timing,
and, more frequently, the combination of shadow or haze with one of
these covers, as well as, mixed pixels. To investigate the impact of
mixed pixels, we assessed accuracy as a function of distance from the
class transition. We found that water> 30 m from the edge of the water
body (i.e. the width of a Landsat pixel) had very high accuracy in both
the maps produced in our study and in the study by Pekel et al. (2016).
However, we must be concerned about the classification accuracy of
mixed pixels given that 10.9 (± 1.9)% of inland water area is within
mixed pixels. In this study, we achieved user's and producer's accuracies
of the water class in the mixed pixel region of 0-30 m from the water-
land boundary of 70.9 (± 1.6)% and 66.0 (± 3.7)3% for the single
month layers at a scale of 5 m. While theoretically a 30 m map could
have 100% accuracy at 30 m, it could never have 100% accuracy at
5 m. Thus, though mixed pixels have much lower accuracies, we cor-
rectly map two thirds of the 5 m space within 30 m of the land-water
boundary. Furthermore, in our study we correctly identified 28% more
of the 5x5m footprints with water cover compared to the only previous
dense surface water record at 30 m (Pekel et al., 2016). This increased
accuracy translates to better quantification and monitoring of small
water bodies. The higher classification error rate of mixed pixels ex-
tends to the inter-annual dynamics map and users should be aware that
while core change pixels should be viewed with high confidence, edge
and isolated pixels are more likely to be mapped inaccurately. Ad-
ditionally, the dynamic classes have much lower accuracies than the
permanent land and water classes.

5. Conclusion

This study presents the first set of area estimates for global open
surface water extent and change that follow good practice guidance for
area reporting (Eggleston et al., 2006; Olofsson et al., 2014; Penman
et al., 2016; Stehman, 2013) as well as that use all Landsat imagery for
the entire monitoring period to classify seven different temporal dy-
namics. We establish the necessity to evaluate time-series data through
the entire period given that the area that transitioned multiple times
between land and water inter-annually was four times larger than the
area of unidirectional loss or gain. The maps produced in this study

provide detailed visualizations of inter-annual surface water dynamics
using the entire Landsat archive 1999–2018 that enable assessment of
changes through the past 20 years. This analysis could be extended back
to 1984 for regions that were regularly imaged from 1984 to 1998 such
as the United States and Australia. Map accuracy is high for permanent
land, permanent water, and water change as a single theme, with
considerably lower accuracies for individual water dynamics. Given
that 10.9 (± 1.9)% of global water is mixed with land at a 30 m re-
solution and that many change dynamics occur within mixed pixels,
there is a clear need for improving spatial detail in tracking surface
water changes. Fortunately, newer high spatial resolution data from the
Sentinel-1 and Sentinel-2 series of satellites offer a ready input for ad-
vancing open surface water monitoring. Planet data, while likely not a
feasible alternative for global mapping due to its high cost, may be used
as reference data in assessing map accuracies and providing area esti-
mates for various dynamics. In addition to higher spatial resolution,
incorporating Sentinel-1 and Sentinel-2 together with Landsat will
provide higher temporal resolution, enabling better characterization of
ephemeral surface water. The presented Landsat-based method will
continue to be updated, with the current map products available
through 2019, and is available for visualization and download at www.
glad.umd.edu/dataset/global-surface-water-dynamics.
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Appendix A

A.1. Area estimation of water dynamics classes

Area was estimated for each of the eight classes of water dynamics as well as for aggregations of these classes with these reference data. For a
given class, the global area W of that class is estimated by:

=
=

W W
h

H

h
1 (3)

where H is the number of strata. The estimated area of the class within stratum h is =W A ph h h where Ah is the area of stratum h and ph is the sample
proportion of pixels of that class within stratum h. The stratum area Ah is calculated by summing the areas of all pixels within the stratum. The
estimated variance of a stratum-specific area estimate is:
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=V W s n( ) /h h u h,
2 (4)

where nh is the number of sampled pixels in stratum h, sh, u2 is the sample variance for the nh values of u, where u= Ah if the sample pixel is of the
class being estimated and u= 0 if the sample pixel is not of that class. The standard error for the global estimated area is the square root of the sum
of the variances over all strata:

=
=
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h

H

h
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For area estimates of aggregations of classes, the aggregation was defined as a new class and the above calculations were performed for each.
Additionally, the area that is inundated each year for> 25, 50, 75, and 90 and equal to 100% of the time was calculated from the annual percent
values of each sampled pixel.

A.2. Accuracy estimation of water dynamics classes

Using the stratified sample of Landsat time-series data, we estimate user's and producer's accuracies for the trend classes. Each pixel within the
global continental area had a non-zero inclusion probability, so the accuracy estimates are representative of the entire map. To estimate the
accuracies for a given class c, one can estimate with Eq. (3) the four areas of intersection of map class c and non-c and reference class c and non-c
within an error matrix and calculate the derived accuracies. Standard error estimates require the per pixel inclusion probabilities and pairwise
inclusion probabilities, designated by πu and πuv where u and v denote pixels. The pairwise inclusion probability is the probability that pixels u and v
will both be included in the sample. The estimated variance for an estimated ratio (either user's or producer's accuracy) is:
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where the double summation is over all possible pairs of sample pixels, and where the estimated ratio is =R Y
Z
and =Y s

yu u and =Z s
zu

u
(Särndal et al., 1992). The inclusion probability for a pixel u in stratum h is πu = nhau/Ah where au is the area of pixel u, nh is the sample size from
stratum h, and Ah is the total area of all pixels in stratum h. The pairwise inclusion probability between two sample pixels u and v depends on whether
the two pixels are from the same stratum. If from different strata, the pairwise inclusion probability is simply the product of the inclusion prob-
abilities, πuv = πuπv, which means = =( ) ( )1 1 0u v

uv
u v
u v

in Eq. (5). If the two pixels are from the same stratum,
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where =K n/U u h
2

h
and Uh denotes all pixels in stratum h, including those outside the sample (Hartley and Rao, 1962). Lastly, if u and v are the

same pixel, πuu= πu. For both accuracy estimates, Y is the estimated total area correctly mapped as class c and yu= area of pixel u if pixel u is both
mapped as class c and has reference class c, otherwise, yu= 0. For user's accuracy, Z is the estimated area mapped as class c and zu= area of pixel u
if pixel u is mapped as class c, otherwise zu= 0. For producer's accuracy, Z is the estimated area of reference class c and zu= area of pixel u if pixel u
has reference class c, otherwise zu = 0. For each estimated accuracy R , =SE R V R( ) ( ) .
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