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ABSTRACT

Along the season crop classification maps based on satellite data is a challenging task for
countries with large diversity of agricultural crops with different phenology (crop calendars).
In this paper, we investigate feasibility of delivering early and along the season crop specific
maps using available free satellite data over multiple years, including Landsat-8, Sentinel-1
and Sentinel-2. For this study, a test site in Kyiv region (Ukraine) is selected, for which we have
been collecting ground data on crop types every year since 2011. Crop type maps are
generated through a supervised classification of multi-temporal multi-source satellite data
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using previously developed artificial neural network algorithms. It is shown, how multi-year data
crop classification maps are used for crop rotation violation detection. The study shows that
in case of considerable cloud cover, synthetic aperture radar (SAR) data, for example acquired
by Sentinel-1 satellite, can be interchangeably used with optical imagery to achieve the target

85% accuracy for crop classification.

Introduction
Crop mapping with remote sensing data

Availability of reliable and accurate crop maps at regional
and national scale is a prerequisite for efficient monitor-
ing of agricultural land use. A wide range of agricultural
applications, including crop area estimation, crop yield
forecasting, crop state assessment, land use intensity rely
heavily on the use of crop maps. Information on crop
frequency derived from historical maps can be effectively
used for stratification purposes in crop area estimation
(Boryan, Yang, Di, & Hunt, 2014; Gallego et al., 2012).
Knowing geographical distribution of given crops can
help optimize available resources, when performing large
scale ground observations (Song et al, 2017). For
instance, early season crop masks are required to provide
crop yield prediction and, consequently, crop production
forecasting in the operational context which is important
for food security (Becker-Reshef, Vermote, Lindeman, &
Justice, 2010; Franch et al., 2015; Johnson, 2016; Kogan
et al,, 2013; Lopez-Lozano et al., 2015; Shao, Campbell,
Taff, & Zheng, 2015). Crop maps can be incorporated
into the drought risk assessment models to quantify and
map the risk at different scales (Skakun, Kussul,
Shelestov, & Kussul, 2016a). Availability of multi-year
crop maps can be used to estimate land use intensity,
which includes crop planting frequency and crop

rotation (Kuemmerle et al., 2013). Also, time-series of
such maps is essential for detection of crop rotation
violations, which usually lead to soil degradation and
decrease of crop production.

Earth observation (EO) remain one of the most
important data sources for developing crop maps
and crop inventories (Cohen & Goward, 2004).
This is mainly due to capabilities to timely acquire
images in different spectral bands and provide
repeatable, continuous, human independent mea-
surements for large territories. In particular, optical
instruments onboard remote-sensing satellites pro-
vide imagery in multiple spectral bands, usually in
visible, near-infrared, short wave infrared, and
thermal infrared. However, these data can be con-
taminated with cloud cover that, in many cases,
makes it very difficult to acquire imagery in an
optimal time range to discriminate crops (Pax-
Lenney & Woodcock, 1997; Prishchepov, Radeloff,
Dubinin, & Alcantara, 2012). On the other hand,
synthetic aperture radar (SAR) instruments offer
unique features to image crops due to their all-
weather capabilities and ability to capture crop
characteristics different from those derived from
optical instruments (Skakun, Kussul, Shelestov,
Lavreniuk, & Kussul, 2016b; Stefanski,
Chaskovskyy, & Waske, 2014). Thanks to this,

CONTACT Lavreniuk Mykola @ nick_93@ukr.net @ Department of Space Information Technologies and Systems, Space Research Institute NAS

Ukraine & SSA Ukraine, Glushkov Prospekt 40, Kyiv 03680, Ukraine

© 2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


http://orcid.org/0000-0002-9704-9702
http://orcid.org/0000-0003-2183-8833
http://orcid.org/0000-0001-9256-4097
http://orcid.org/0000-0002-9039-0174
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/22797254.2018.1454265&domain=pdf

628 N. KUSSUL ET AL.

SAR imagery can be captured at the best suited
dates.

To this end, several programmes exist that target
the development of crop inventories utilizing EO
data, both optical and radar. The creation of the
Cropland Data Layer (CDL) of the US Department
of Agriculture (USDA) National Agricultural
Statistics Service (NASS) is considered as one of the
most successful applications of remote sensing data
for crop mapping at national scale (Boryan, Yang,
Mueller, & Craig, 2011; Johnson & Mueller, 2010).
The CDL product provides crop maps for 47 states at
56 m spatial resolution from 2008 until 2010 and at
30 m spatial resolution after 2010. The primary
source of remote sensing images is Advanced Wide
Field Sensor (AWIiFS), Deimos-1, Landsat-5/7/8, UK
Disaster Monitoring Constellation (UK-DMC) and
Moderate Resolution Imaging Spectroradiometer
(MODIS). Supervised classification based on the clas-
sification and regression tree (CART) decision trees
(DTs) is used to classify multi-temporal images into
25 crop-specific classes with accuracies for 2009 ran-
ging from 85% to 95% for the major crops (corn,
soybeans, and winter wheat). To train the classifier
for satellite image classification, administrative data
from Farm Service Agency-Common Land Units
(FSA-CLU) are used. For crop area estimation, how-
ever, the main source of information is the June Area
Survey (JAS) in which approximately 11,000, 1 sq mi
sample segments are visited by enumerators to collect
crop type and acreage information (Boryan et al,
2014). These JAS data provide the main variable for
the regression estimator in crop area estimation. In
general, CDL is used to drive the sampling strategies
within the JAS surveys, and a key component for crop
yield modelling (Johnson & Mueller, 2010).
Agriculture and Agri-Food Canada (AAFC) provides
the Annual Crop Inventory product, which is devel-
oped using optical (Landsat-5, AWiFS, DMC) and
SAR (Radarsat-2) images. Multi-temporal satellite
images are classified using the DT (CART) approach
enabling the overall target accuracy of at least 85%.
The product is delivered at 30 m spatial resolution
(56 m in 2009-2010) (AAFC, 2013). The main source
of ground truth data for training and validation of the
product is annual crop insurance data derived from
farmers. In Europe, regional crop inventories (Taylor,
Sannier, Delince, & Gallego, 1997) utilized the USDA
approach with area frame samples as main variable
and classified satellite imagery as a co-variable.
Attempts to produce rapid estimates of inter-annual
crop area for the European Union (EU) using images
without current field data showed that the results had
depended more on the a priori belief of the analyst
than on the information provided by the images
(Gallego, 2006). Currently, the main usage of remote
sensing imagery in the EU within the Land Use and

Cover Area-Frame Statistical Survey (LUCAS) lies in
stratification, while ground surveys remain the main
source of information for land cover and crop area
estimation (Gallego & Delincé, 2010).

Objective of the study

Ukraine is one of the most developed agricultural
countries in the world. According to the U.S.
Department of Agriculture (USDA) Foreign
Agricultural Service (FAS) statistics, Ukraine was
the largest sunflower producer (11.6 MT) and expor-
ter, and the ninth largest wheat producer (22.2 MT)
in the world in 2013. Providing multi-annual crop
inventory is extremely important for managing agri-
cultural resources at regional and national scale in
Ukraine. A Joint Experiment for Crop Assessment
and Monitoring (JECAM) test site was established
in Ukraine in 2011 with the aim to develop and
validate different methodologies for monitoring agri-
cultural resources with the help of remote sensing
data (Kussul et al., 2016; Skakun et al.,, 2016b).
These include techniques for delivering in season
and end of season crop maps by classifying multi-
temporal optical and SAR satellite imagery. In this
paper, we aim at creating a crop inventory for multi-
ple seasons at regional scale in Ukraine using multi-
temporal remote sensing images to provide similar
maps available for USA and Canada. Direct applica-
tion of the US or Canada-based approaches for
Ukraine is difficult because of unavailability of data
from farmers that leads to exploiting other sampling
strategies, e.g. collecting data along the roads
(Waldner et al., 2016). The similarity lies in using
all freely available satellite imagery, both optical and
SAR, and exploiting different machine learning algo-
rithms such as random forest and neural networks
(Kussul, Lavreniuk, Skakun, & Shelestov, 2017). The
maps, both in season and end of season, are produced
utilizing all available moderate spatial resolution
satellite data, namely 30 m Landsat-8 Operational
Land Imager (OLI) (2013-2015), 10 m Sentinel-1A
C-band SAR (2015-2016), and 10 m Sentinel-2
Multi-Spectral Instrument (MSI) (2016). A machine
learning technique based on ensemble of artificial
neural networks (multi-layer perceptrons - MLPs)
(Kussul et al., 2015) is used to classify satellite images
into major crop types for 2013-2015 seasons. An
application of using these maps for crop rotation
violation detection is considered as well.

Study area and materials description
The experimental site

One administrative districts (Bilotserkivskiy) in Kyiv
region has been selected for this study (Figure 1).
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Figure 1. Study area: Bilotserkivskiy district in Kyiv region.

Kyiv region with geographic area of 28,100 km® and
almost 1.0M ha of cropland is located in the north-
central part of Ukraine. The area of Bilotserkivskiy
district is 1,276 km®> Soybeans, maize, winter wheat,
sunflower, spring wheat and spring barley are the
main crops in this region with major non-crop classes
being grassland, forest and water. Our test site is
located not far from the Dnipro river, and in general
vegetation period is September-July for winter crops,
and April-October for spring and summer crops.

Satellite data

For this study, we used 10 m SAR and optical satellite
data from the Sentinel-1A and Sentinel-2 with the
revisit time 12 and 10 days, respectively (Figure 2).
Level-1 Interferometric Wide mode Ground Range
Detected (IW-GRD) Sentinel-1A products in VV

and VH polarizations have been used. All Sentinel-
1A images were processed using the Sentinel-1
Toolbox (S1TBX) 1.0.3. Images were multi-looked
with a 2 x 2 window, and filtered using a single
product Refined Lee filter with a 3 x 3 window to
reduce speckle level (Moreira et al., 2013). SAR
images were further geometrically corrected using a
Range-Doppler terrain correction procedure with the
SRTM 3Sec Digital Elevation Model (DEM). The last
step of SAR images pre-processing involved calibra-
tion to a backscatter coefficient (Moreira et al., 2013).
In the experiment with the fusion of Sentinel-1 and
Landsat-8 data, we re-sampled SAR images to
Landsat-8 spatial resolution at 30 m. Multi-spectral
high-resolution optical observations were provided
by Sentinel-2. Level-1C top of atmosphere (TOA)
reflectance product that consists of 100 x 100 km”
tiles was used for crop mapping. We considered three

Figure 2. An example of Sentinel-2 true colour composite (08.04.2016) for Bilotserkivskiy district (a), Sentinel-1A (12.04.2016)

image (VV and VH polarizations) for Bilotserkivskiy district (b).
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Table 1. Landsat-8, Sentinel-1A and Sentinel-2 data

availability for the Bilotserkivskiy district in 2013-2016.

Year Landsat-8 Sentinel-1A Sentinel-2
2016 - 07.03, 19.03, 31.03, 12.04, 24.04, 06.05, 18.05, 30.05 08.04, 28.04
2015 24.05, 9.06, 25.06, 28.08 01.03, 13.03, 25.03, 06.04, 18.04, 30.04, 12.05, 24.05, -
05.06, 17.06, 29.06, 11.07,
23.07, 16.08, 28.08
2014 03.04, 06.06, 08.07, 10.09, 12.10, 28.10 - -
2013 16.04, 02.05, 18.05, 19.06, 05.07, 06.08 - -

visible bands (red, green, blue) and near-infrared
band which all have 10 m spatial resolution. For the
Bilotserkivskiy district in Kyiv region in 2013
Landsat-8 satellite images were pre-processed to
remove the effect of atmosphere using the
Simplified Model for Atmospheric Correction
(SMAC) (Rahman & Dedieu, 1994). Therefore, each
pixel value was converted to the surface reflectance
(SR) value; for 2014-2015 we used only top of atmo-
sphere (TOA) reflectance values (Table 1). Multi-
temporal Landsat-8 OLI 2-7 bands were recon-
structed using self-organizing maps (SOMs) to
restore missing reflectance values due to clouds and
shadows (Kussul et al., 2017), and used for classifica-
tion of satellite imagery. Landsat-8 bands 1 and 9
were not used due to the strong atmospheric influ-
ence. The panchromatic band and thermal bands
from the Thermal Infrared Sensor (TIRS) were not
utilized either.

We used SAR scenes from the 36th and 007th
relative orbit numbers, Landsat-8 images with 181/
25 path/row coordinate and Sentinel-2 data with
36TVT and 35UQR tiles (https://sentinel.esa.int/
web/sentinel/missions/sentinel-1/observation-sce
nario/acquisition-segments).

Ground reference data

Ground surveys for insitu data collection to support
crop classification using satellite imagery were con-
ducted in 2013-2016. The European Land Use and
Cover Area frame Survey (LUCAS) nomenclature
(Gallego & Delincé, 2010) was used in this study as

a basis for land cover/land use types. For
2013-2015 years, we had 13 land cover classes,
including the following crops: winter wheat, winter
rapeseed, maize, sugar beet, sunflower, soybeans,
other spring crops and other cereals (Table 2). For
2016, we had only 7 land cover classes: winter wheat,
winter rapeseed, winter barley, spring and summer
crops, forest, grassland and water (Table 3).

Methodology description

One of the main challenges in classification of multi-
temporal optical satellite imagery is the presence of
missing values caused by clouds and shadows. In pre-
vious works, we proposed an approach that combines
unsupervised and supervised neural networks for miss-
ing data restoration and supervised classification,
respectively (Kussul et al., 2015; Skakun et al., 2016b).
First, self-organizing Kohonen maps (SOMs) are
applied to restore missing pixel values in a time series
of optical satellite imagery. However, with persistent
cloud cover, especially during an early season, optical
imagery is not enough to achieve the desirable accuracy
of 85%. Therefore, SAR imagery is fused with optical
ones to improve discrimination of crops when optical
images are not available (Kussul et al., 2016; Skakun
et al, 2016b). In situ samples have been randomly
divided into two independent subsets: training set
(50% of polygons for each class) and test set (50% of
polygons for each class). Then, a supervised classifica-
tion is performed to classify multi-temporal satellite
images (Skakun, Nasuro, Lavrenyuk, & Kussul, 2007).
For this, a committee of NN, in particular multi-layer

Table 2. Number of polygons and total area of crops and land cover types collected during the ground surveys for the

Bilotserkivskiy district in 2013-2015.

2013 2014 2015

# Class Fields Area, ha Fields Area, ha Fields Area, ha
1 Artificial 6 23.0 15 53.0 0 0
2 Winter wheat 51 3960.8 125 7589.4 102 3695.9
3 Winter rapeseed 12 937.3 36 1686.6 22 715.9
4 Spring crops 9 455.9 44 1358.0 " 296.0
5 Maize 87 7253.3 76 4030.4 98 4329.1
6 Sugar beet 8 632.5 18 1624.5 8 860.7
7 Sunflower 30 2549.0 31 1338.2 53 1954.0
8 Soybeans 60 32523 108 2965.3 87 3006.9
9 Other cereals 32 1364.0 12 451.9 0 0
10 Forest 17 1014.3 35 1750.7 49 20123
11 Grassland 48 747.5 67 1528.8 64 952.3
12 Bare land 10 67.2 10 69.6 10 714
13 Water 16 448.3 31 578.9 43 10721

Total 386 22,705.3 608 25,025.3 547 18,966.6
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Table 3. Number of polygons and total area of crops and land
cover types collected during the ground surveys for the
Bilotserkivskiy district in 2016.

Bilotserkivskiy

# Class Fields Area, ha

1 Winter wheat 117 4255

2 Winter barley 6 203

3 Winter rapeseed 15 454

4 Spring and summer crops 150 5611

5 Forest 44 1100

6 Grassland 32 250

7 Water 17 109
Total 381 11,982

perceptrons (MLPs), is utilized to improve the perfor-
mance of individual classifiers (Kussul et al., 2015). The
MLP classifier has a hyperbolic tangent activation func-
tion for neurons in the hidden layer and logistic activa-
tion function in the output layer. The committee is
formed using four MLPs with different number of
hidden neurons (10, 20, 30, and 40) trained on the
same training data within 250 epochs. Outputs from
different MLPs are integrated using the technique of
average committee. Under this technique, the average
class probability over classifiers is calculated, and the
class with the highest average posterior probability for
the given input sample is selected. After obtaining a
pixel-based crop classification map, a parcel-based pro-
cedure is applied to improve the quality and accuracy of
the final map (Kussul et al., 2016). Crop type maps
generated for 2013-2015 seasons are used to generate
crop rotation violation map. By crop rotation violation,
we mean growing the same crop type on the same field
during at least 2 years in a row.

For 2016, when producing in season crop maps, we
investigated availability of optical and SAR imagery to
discriminate different crop type early in the season at
acceptable target accuracy of 85%. In other words, in a
situation of persistent cloud cover early in spring, can
optical data be substituted with SAR imagery and
whether the same level of performance can be achieved?
In 2016, the test region experienced a lot of clouds during
spring, so we considered the difference between using
optical data from Sentinel-2 and SAR data from Sentinel-
1A. Only one or two optical non-cloud images were
available from March to June; at the same time we
acquired 8 images from Sentinel-1A satellite (Table 1).
For 2016 early season classification, we had three experi-
ment designs: S1 - crop classification mapping using
Sentinel-1A data only; S2 - using Sentinel-2 images
only; and S1+S2 - crop classification mapping using
combination of Sentinel-1A and Sentinel-2 images.

Performance metrics were estimated from ground
validation datasets that were not used during classi-
fiers training. The confusion matrix used in accuracy
assessment provides information on the magnitude of
the classification errors that allows an adjustment to
be made in the area estimator (Olofsson, Foody,
Stehman, & Woodcock, 2013). User’s accuracy (UA)
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and producer’s accuracy (PA) are ways of represent-
ing individual class accuracy. User’s accuracy means
the probability that a pixel classified on the map
represents the class on the ground whereas produ-
cer’s accuracy indicates the probability of a reference
pixel being correctly classified.

Results

Table 4 shows performance metrics for classification
of satellite data for 2013-2015 seasons. We obtained
reliable results with overall accuracy 85.3%, 90.1%
and 92.4%, respectively, for 13 classes (Figure 3,
Table A1-A3). Producer’s (PA) and user’s (UA)
accuracies of winter wheat were always higher than
92%. Using only Landsat-8 optical data (2013-2014)
winter rapeseed’s PA and UA values were about 80%
and 98%, respectively. When adding Sentinel-1 SAR
data (2015), significant improvements were observed
in detecting rapeseed (PA = 100%, UA = 94.6%).
Also, fusion of SAR and optical data achieved gains
of PA +15.4% and UA + 7% for sunflower. At the
same time, addition of SAR data had no effect on
detecting maize (PA and UA were approximately
90%), sugar beet (PA and UA were approximately
100%) and water (PA and UA were approximately
100%). Accuracy of soybeans (PA - 72.4%, 98.6% and
83.7%; UA - 80.8%, 87.3% and 78.9%) and spring and
summer crops (PA - 25%, 76.4% and 66.7%; UA -
33.3%, 70.5% and 84.2%) varied widely from year to
year.

Figure 4 shows a crop rotation violation map gener-
ated from single-year crop maps for 2013-2015. Winter
wheat (with estimated total area of violations at
68,400 ha), winter rapeseed (5700 ha), sunflower
(22,200 ha) and maize (85,800 ha) were grown at the
same field at least twice during the past 3 years. It means
that for these fields crop rotation requirements were
not met.

Table 4. Comparison of producer accuracy (PA), user accu-
racy (UA) and overall accuracy (OA) for the Bilotserkivskiy
district in 2013-2014 (based on Landsat-8) and 2015 (based
on fusion Landsat-8 and Sentinel-1A).

2013 2014 2015
PA, UA, PA, UA, PA, UA
# Class % % % % % %
1 Artificial 100 100 724 283 - -
2 Winter wheat 96 9% 964 935 992 924
3 Winter rapeseed 833 100 80.5 98.1 100 946
4 Spring and summer 25 333 764 705 66.7 842
crops
5 Maize 93 889 852 942 892 934
6  Sugar beet 100 100 972 999 100 100
7 Sunflower 80 75 846 875 100 945
8 Soybeans 724 808 986 873 837 789
9  Other cereals 75 632 12 56 - -
10 Forest 875 100 986 956 99.7 99.9
11 Grassland 90.5 864 834 727 863 99
12 Bare land 80 100 100 87.2 100 959
13 Water 100 100 99.9 995 996 100
OA, % 85.6 90.1 924




632 (& N.KUSSUL ET AL.

Legend

Bl Artificial

[ Winter wheat
Il Winter rapeseed
I Spring crops
Il Maize

I Sugar beet
[ Sunflower
Soybeans
[ Other cereals
Bl Forest

I Grassland
I Bare land
Il water

[ winter wheat

Il Winter rapeseed

[ Winter barley

I Spring and summer crops
Il Forest

I Grassland

Bl Water

Figure 4. Crop rotation violation map for Bilotserkivskiy district based on crop classification maps in 2013-2015.

For 2016 early season classification, SAR data pro-
vided better results than optical due to the number of
available images during the spring, when cloud cover
was significant (Figure 5). Fusion of SAR and optical
data allowed us to improve classification accuracy by
+0.8% (Table 5). Winter rapeseed, spring and sum-
mer crops were discriminated with high accuracy
(>85%). Winter wheat had higher user and producer
accuracy. Unfortunately, reliable discrimination of
winter barley and grassland is possible only in the
end of the season.

Discussion and conclusions

This paper aimed at exploring the creation of yearly
crop maps for the same region (Ukraine) utilizing
different sets of available satellite imagery (both

optical and SAR), and at different time periods (end
of season and in season). This is the first such a study
for Ukraine for producing multi-year crop type
inventories, as previous studies focused on other
regions (AAFC, 2013; Boryan et al, 2011; Johnson
& Mueller, 2010), single year and end of season crop
type maps only (Kussul et al, 2016; Prishchepov
et al, 2012; Skakun et al, 2016b; Waldner et al,
2016). The proposed approach is very useful for
operational crop mapping, as it can be applied,
while satellite imagery being acquired and ingested
into the classifier to provide both in season and end
of season crop maps. Multi-year crop specific maps
have multiple applications. One such application is
detection of areas (fields), where crop rotation
requirements (not to plant the same crop in conse-
cutive years) were not met. Such maps are important
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Figure 5. An example of classification result for Sentinel-1A
images for Bilotserkivskiy district (a), Sentinel-2 time series for
Bilotserkivskiy district (b), and fusion Sentinel-2 and Sentinel-
1A images for Snigurivskiy district (c).

Table 5. Comparison of producer accuracy (PA), user accu-
racy (UA) and overall accuracy (OA) for the Bilotserkivskiy
district in 2016 using Sentinel-1A and Sentinel-2 images.

S1 S2 S1+S2
PA,  UA, PA,  UA,  PA  UA
Class % % % % % %
1 Winter wheat 875 93 864 925 88 938
2 Winter barley 761 639 69 61.1 799 68.1
3 Winter rapeseed 9.4 916 909 59 972 918
4 Spring and summer 968 99.7 877 982 976 99.7
crops
5 Forest 999 989 955 884 998 985
6 Grassland 615 25 843 23 668 2938
7 Water 100 8 100 100 100 83.2
OA, % 92.9 87.3 93.7

for administrative authorities and government. It
allows one to monitor compliance of crop rotation
rules, which are necessary for preservation of soil
degradation. In particular, violations of winter
wheat, winter rapeseed, sunflower and maize were
identified.

For early season classification, we provided compar-
ison of crop classification maps based on optical data
from Sentinel-2A and SAR data from Sentinel-1A
(Table A4-A6). Due to considerable cloud cover, only
two optical scenes were used for classification. While
two optical scenes provided a decent performance
achieving OA = 87.3%, the use of multi-temporal
SAR images (8 scenes) outperformed the optical ones
with OA = 92.9%. This was mainly because of larger
number of SAR observations available comparing to
the optical ones, and suggests that optical data can be
substituted by SAR data early in season to discriminate
winter crops, when cloud cover prevents getting optical
data. This observation adds on to the results from
Skakun et al. (2016b), which were mainly targeted of
using SAR to better discriminate summer crops at the
end of the agricultural season.

The derived yearly maps might find potential
usage in the national cadaster system that is being
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developed in Ukraine at national level. Everyone
could revise crop information for each parcel for
previous years and detect corresponding crop rota-
tion violations. The applications of the developed
multi-year classification maps include stratification
for ground surveys for crop area estimation and
crop rotation violation area estimation, and providing
crop-specific empirical crop yield forecasting models.
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Table A1. Confusion matrix for 2013 when classifying multi-temporal Landsat-8 images.

Kappa = 0.82 1 2 3 4 5 6 7 8 9 10 11 12 13 UA
1 184 0 0 0 3 0 0 0 0 0 0 1 0 97.9
2 0 21,453 33 51 26 0 29 1" 1728 0 2 30 0 91.8
3 0 1 3788 1 14 0 5 1 2 0 0 0 0 99.4
4 0 723 0 982 3 0 0 3 1101 0 24 0 0 34.6
5 0 0 0 177 33972 2 390 4544 34 0 M 0 0 86.8
6 0 0 0 11 222 3511 118 52 2 0 2 0 0 89.6
7 0 1 0 10 389 7 13,241 1672 91 0 92 0 0 85.4
8 0 56 0 351 2660 181 1027 14,668 29 3 52 0 0 771
9 0 74 230 828 9% 0 832 78 7677 0 24 0 0 78.0
10 0 27 0 0 78 0 36 1 6 4198 165 0 0 929
11 0 71 1 6 63 0 26 15 159 131 4089 31 0 89.0
12 0 0 0 0 0 0 0 0 0 0 4 403 0 99.0
13 0 0 0 0 0 0 49 0 0 0 0 0 2524 98.1
PA 100.0 95.7 93.5 40.6 90.5 94.9 84.1 69.7 70.9 96.9 91.0 86.7 1000 853
Table A2. Confusion matrix for 2014 when classifying multi-temporal Landsat-8 images.
Kappa = 0.88 1 2 3 4 5 6 7 8 9 10 11 12 13 UA
1 210 12 23 0 139 2 31 4 %0 68 163 0 0 283
2 10 36,984 0 518 22 0 0 42 1683 1 298 0 1 93.5
3 1 37 6608 0 0 %0 0 0 0 0 3 0 0 98.1
4 0 240 1242 3693 45 0 0 1 0 0 19 0 0 70.5
5 0 440 200 163 16,902 0 35 174 33 0 4 0 0 94.2
6 0 3 2 0 0 6831 0 0 0 0 2 0 0 99.9
7 0 0 0 0 785 10 6702 1 9 0 156 0 0 87.5
8 0 343 2 74 1279 0 84 15,448 3 0 469 0 0 87.3
9 0 49 0 388 0 0 0 0 27 0 16 0 0 56
10 3 66 0 0 19 95 0 2 95 10,752 208 0 2 95.6
11 15 195 127 0 657 1 1074 3 393 79 6762 0 0 727
12 51 0 0 0 0 0 0 0 2 0 3 383 0 87.2
13 0 0 0 0 0 0 0 0 0 9 5 0 2880 995
PA 724 96.4 80.5 76.4 85.2 97.2 84.6 98.6 1.2 98.6 83.4 100 99.9 90.1

Table A3. Confusion matrix for 2015 when classifying multi-temporal Landsat-8 + Sentinel-1 images.

Kappa = 0.91 2 3 4 5 6 7 8 10 11 12 13 UA
2 9918 1 209 3 0 0 384 0 214 0 0 92.4
3 0 2177 78 0 0 0 46 0 0 0 0 94.6
4 0 0 576 38 0 0 67 0 3 0 0 84.2
5 0 0 0 17,918 0 0 1257 0 5 0 0 93.4
6 0 0 0 0 466 0 0 0 0 0 0 100
7 0 0 0 0 0 3191 184 0 3 0 0 94.5
8 73 0 0 2128 0 0 10,018 7 470 0 1 78.9
10 0 0 0 0 0 0 0 10,759 4 0 2 99.9
1 3 0 0 4 0 0 9 29 4433 0 1 99
12 0 0 0 0 0 0 0 0 2 301 11 95.9
13 0 0 0 0 0 0 0 0 1 0 3851 100
PA 99.2 100 66.7 89.2 100 100 83.7 99.7 86.3 100 99.6 924
Table A4. Confusion matrix for 2016 when classifying multi-temporal Sentinel-1A.
Kappa = 0.88 1 2 3 4 5 6 7 UA
1 29,711 965 8 1049 0 225 0 93
2 1479 3079 4 49 0 208 0 63.9
3 171 0 1875 1 0 0 0 91.6
4 94 0 11 60,229 0 100 0 99.7
5 28 0 45 1 6943 1 0 98.9
6 2485 3 3 851 10 1115 0 25
7 4 0 0 22 0 163 86
PA 87.5 76.1 96.4 9.8 99.9 61.5 92.9
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Table A5. Confusion matrix for 2016 when classifying multi-temporal Sentinel-2A.

Kappa = 0.81 1 2 3 4 5 6 7 UA
1 124,170 3218 482 5382 372 594 0 92.5
2 4176 7296 1 289 1 172 0 61.1
3 4764 0 7099 0 2 166 0 59
4 2832 0 61 174,228 10 370 0 98.2
5 2763 3 4 334 24,204 60 0 88.4
6 4955 63 159 18,410 758 7287 0 23
7 0 0 0 0 0 0 3727 100
PA 86.4 69 90.9 87.7 95.5 84.3 100 87.3
Table A6. Confusion matrix for 2016 when classifying multi-temporal Sentinel-1A and Sentinel-2A.
Kappa = 0.89 1 2 3 4 5 6 7 UA
1 29,902 813 5 1054 0 112 0 93.8
2 1233 3234 2 62 0 221 0 68.1
3 151 0 1891 17 0 0 0 91.8
4 87 0 7 60,713 4 81 0 99.7
5 68 0 36 4 6937 0 0 98.5
6 2521 0 5 315 12 1211 0 29.8
7 10 0 0 37 0 187 1159 83.2
PA 88 79.9 97.2 97.6 99.8 66.8 100 93.7
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