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Transitioning from MODIS to VIIRS: an analysis of
inter-consistency of NDVI data sets for agricultural
monitoring

Sergii Skakun a,b, Christopher O. Justicea, Eric Vermoteb and Jean-Claude Rogera,b

aDepartment of Geographical Sciences, University of Maryland, College Park, MD, USA; bTerrestrial
Information Systems Laboratory, NASA Goddard Space Flight Center Code 619, Greenbelt, MD, USA

ABSTRACT

The Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard
the Suomi National Polar-orbiting Partnership (S-NPP) satellite
was launched in 2011, in part to provide continuity with the
Moderate Resolution Imaging Spectroradiometer (MODIS)
instrument aboard National Aeronautics and Space
Administration’s (NASA) Terra and Aqua remote-sensing satel-
lites. The VIIRS will eventually replace Aqua MODIS for both
land science and applications and add to the coarse-resolution,
long-term data record. It is, therefore, important to provide the
user community with an assessment of the consistency of
equivalent products from the two sensors. For this study, we
do this in the context of example agricultural monitoring
applications. Surface reflectance that is routinely delivered
within the M{O,Y}D09 and VNP09 series of products provides
critical input for generating downstream products. Given the
range of applications utilizing the normalized difference vege-
tation index (NDVI) generated from the M{O,Y}D09 and VNP09
products and the inherent differences between MODIS and
VIIRS sensors in calibration, spatial sampling, and spectral
bands, the main objective of this study is to quantify uncer-
tainties associated with transitioning from using MODIS to
VIIRS-based NDVIs. In particular, we compare NDVIs derived
from two sets of Level 3 MYD09 and VNP09 products with
various spatial-temporal characteristics, namely 8-day compo-
sites at 500 m spatial resolution and daily climate modelling
grid images at 0.05° spatial resolution. Spectral adjustment of
VIIRS I1 (red) and I2 (near infra-red – NIR) bands to match
MODIS/Aqua b1 (red) and b2 (NIR) bands is performed to
remove a bias between MODIS and VIIRS-based red, NIR, and
NDVI estimates. Overall, red reflectance, NIR reflectance, and
NDVI uncertainties were 0.014, 0.029, and 0.056, respectively,
for the 500 m product and 0.013, 0.016, and 0.032 for the 0.05°
product. The study shows that MODIS and VIIRS NDVI data can
be used interchangeably for applications with an uncertainty
of less than 0.02–0.05, depending on the scale of spatial
aggregation, which is typically the uncertainty of the indivi-
dual data sets.
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1. Introduction

The Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Terra and

Aqua remote-sensing satellites has been successfully imaging the Earth’s surface since

2000 and 2002, respectively. With spatial resolutions of 250 m, 500 m, and 1 km and 36

spectral bands, MODIS provides temporal composites and daily images with near real-

time access to data (Davies et al. 2015) that are critical to many applications. The

portfolio of the MODIS-based land products has been expanding and improving through

5 Collections, to include surface reflectance (SR), vegetation indices (VIs), biophysical

parameters (leaf area index and fraction of absorbed photosynthetically active radiation),

net and gross primary productivity, bidirectional reflectance distribution function (BRDF),

albedo, temperature, and land cover.

SR that is delivered within the M{O,Y}D09 series of products (Vermote and

Kotchenova 2008) provides a critical input for generating such downstream products

and needs to be of the highest possible quality, so that minimal uncertainties propagate

in the dependent/downstream products. An important downstream product is the

normalized difference vegetation index (NDVI). NDVI has been one of the most impor-

tant and widely applicable VIs dating back to the Advanced Very High Resolution

Radiometer (AVHRR) instruments aboard National Oceanic and Atmospheric

Administration (NOAA) satellites (Justice et al. 1985) and is used in various agricultural

applications including crop yield prediction (Becker-Reshef et al. 2010a; Franch et al.

2015; Franch et al. 2017; Johnson 2016; Kogan et al. 2013; Meroni et al. 2016), crop

mapping (Chang et al. 2007; Pittman et al. 2010; Skakun et al. 2017; Xiao et al. 2005),

crop calendar and phenology analysis (Sakamoto et al. 2010; Whitcraft, Becker-Reshef,

and Justice 2015), and drought monitoring and crop state assessment (AghaKouchak

et al. 2015; Gu et al. 2007; Karl et al. 2012). More importantly, VIs derived from MODIS SR

products have been integrated into operational agricultural monitoring systems at

global, national, and regional scales (Becker-Reshef et al. 2010b). With the MODIS

Terra sensor already experiencing degradation (Wang et al. 2012), it is important to

establish continuity observations for these applications.

The Visible/Infrared Imager/Radiometer Suite (VIIRS) aboard the Suomi National Polar-

orbiting Partnership (S-NPP) satellite was launched in 2011 and was planned to provide

continuity with MODIS (Justice et al. 2013). The VIIRS images the Earth’s surface in 22

spectral bands at 375 m (I bands) and 750 m (M bands) spatial resolution. A series of

VIIRS-based SR products VNP09, analogous to the M{O,Y}D09 suite, is routinely gener-

ated (Vermote, Justice, and Csiszar 2014) using the same approach for atmospheric

correction as for MODIS (Vermote and Kotchenova 2008; Vermote, Saleous, and Justice

2002). VIIRS will eventually replace Aqua MODIS for both land science and applications

and add to the coarse-resolution, long-term data record. It is therefore important to

provide the user community with an assessment of the consistency of equivalent

products from the two sensors. For this study, we do this in the context of example

agricultural monitoring applications. Previous studies have provided some insight into

continuity and inter-comparison issues between MODIS and VIIRS using simulated data

(Fan and Liu 2016; Kim et al. 2010; Van Leeuwen et al. 2006; Miura, Turner, and Huete

2013), top-of-atmosphere NDVI and top-of-canopy enhanced vegetation index (EVI) (Fan

and Liu 2017; Obata et al. 2016; Vargas et al. 2013), and AERONET-based validation
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(Shabanov et al. 2015). Given the range of applications utilizing NDVI generated from M

{O,Y}D09 and VNP09 products and the inherent differences between MODIS and VIIRS

instruments in terms of calibration, spatial sampling, and spectral bands, the main

objective of this study is to quantify uncertainties related to transitioning from MODIS

to VIIRS-based NDVIs. In particular, we compare NDVI derived from two sets of Level-3

SR products (MYD09 and VNP09) with different spatial–temporal characteristics. For this

study, we selected: (i) 8-day composited products at 500 m spatial resolution, as

composited data are commonly used in agricultural applications to minimize the impact

of cloud cover, and (ii) daily climate modelling grid (CMG) images at 0.05° spatial

resolution, as increasingly, daily data are being used to avoid losing high-temporal

frequency good observations eliminated by temporal compositing (Franch et al. 2017).

The comparison is performed particularly for the MYD09 products, with similar afternoon

overpass times from the Aqua and S-NPP satellites (i.e. 13:30 local time).

2. SR products M{O,Y}D09 and VNP09

The M{O,Y}D09 (Vermote, Roger, and Ray 2015) and VNP09 (Roger et al. 2016) products

suites provide an estimate of the surface spectral reflectance for the corresponding

MODIS and VIIRS spectral bands, as would have been measured at ground level if there

were no atmospheric scattering or absorption. The same atmospheric correction algo-

rithm, which uses the Second Simulation of a Satellite Signal in the Solar Spectrum,

Vector (6SV) radiative transfer code, and internal algorithm for aerosol retrieval, is

applied to both MODIS and VIIRS (Vermote, Justice, and Csiszar 2014; Vermote and

Kotchenova 2008). Corrections are made for the effects of molecular gases, including

ozone and water vapour, and for the effects of atmospheric aerosols.

M{O,Y}D09 is a seven-band product computed from the MODIS Level-1B bands 1–7.

VNP09 is a 12-band product computed from the Land SIPS V1 Level-1B bands I1–I3, M1–

M5, M7, M8, M10, and M11. Both M{O,Y}D09 and VNP09 include daily Level-2G (L2G)

data that have been mapped to the sinusoidal grid and Level 3 (L3) data that have been

spatially and/or temporally aggregated. Tables 1 and 2 provide details on Level-2G and

Level-3 products from the M{O,Y}D09 and VNP09 series.

For the temporal compositing process, each pixel containing the single best possible

L2G observation during an 8-day period (hereafter referred as ‘best pixel’) is selected on

the basis of high observation coverage, low sensor angle, the absence of clouds or cloud

Table 1. The M{O,Y}D09 Collection 6 Product Suite (Vermote, Roger, and Ray 2015).

Product name
(Terra/Aqua) Product description

MOD09GQ/MYD09GQ Surface Reflectance (SR) Daily L2G Global 250 m
(bands 1, 2)

MOD09GA/MYD09GA SR Daily L2G Global 500 m and 1 km
(bands 1–7)

MOD09Q1/MYD09Q1 SR 8-Day L3 Global 250 m
(bands 1, 2)

MOD09A1/MYD09A1 SR 8-Day L3 Global 500 m
(bands 1–7)

MOD09CMG/MYD09CMG SR Daily L3 Global 0.05°CMG
(bands 1–7)
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shadow, and aerosol loading. For spatial aggregation to the CMG grid, an area-weighted

average of the best quality observations from the L2G product is used. The CMG product

also provides the number of 250 m (for bands 1–2) and 500 m (for bands 3–7) best

quality pixels which were used for averaging at 0.05° spatial resolution.

3. Methodology

NDVI products from MODIS and VIIRS at different spatial and temporal resolution were

compared in this study. In particular, the comparison was performed on a per-pixel basis

for MYD09 and VNP09 products at 500 m and 0.05° (CMG) resolution, respectively. No

aggregation (within a window) was performed for either resolution as the goal was to

compare products at their ‘native’ resolutions. Bands b1 (red) and b2 (near infra-red

(NIR)) from MODIS and I1 (red) and I2 (NIR) from VIIRS were used to calculate the NDVI

using a standard formula (Tucker 1979): (NDVI) = (ρNIR-ρred)/(ρNIR+ρred), where ρNIR and

ρred are SR values in the NIR and red spectral bands, respectively. The VIIRS I1 and I2

bands were used instead of M5 and M7 bands for the CMG product because the spectral

response functions from the I bands are more similar to those from MODIS, especially in

the red (Figure 1).

The 500 m 8-day composite product comparison was performed for four tiles of the

MODIS sinusoidal grid (h10v04, h10v05, h11v04, and h11v05), covering the Midwest

United States (Corn Belt, Figure 2), which is a major agricultural production region in the

United States.

Although MODIS/Aqua and VIIRS sensors image the Earth’s surface at approxi-

mately the same time of day, the day of the year (DOY) within an 8-day period, for

which the ‘best pixel’ value is selected for MYD09A1and VNP09A1 products, might be

different. Therefore, only the same DOY observations were used for comparison. In

addition, only close to nadir observations from both sensors, that is, with view zenith

angle (VZA) less than 7.5°, were considered to reduce the effects of spatial resolution

and BRDF.

A comparison of CMG products, namely MYD09CMG and VNP09CMG, was performed

globally for land pixels. Daily MODIS and VIIRS CMG products exhibit different viewing

geometries, and therefore BRDF correction is necessary to normalize the SR values. For

this, we applied the VJB algorithm (Vermote, Justice, and Bréon 2009) for both MODIS/

Table 2. The VNP09 Collection 1 Product Suite (Roger et al. 2016).

Product name Product description

VNP09GHKI SR Daily L2G Global 500 m
(bands I1–I3)

VNP09GIKI SR Daily L2G Global 1 km
(bands M1–M5, M7, M8, M10, M11)

VNP09GA SR Daily L2G Global 500 m and 1 km
(bands I1–I3 (500m), M1–M5, M7, M8, M10, M11 (1 km))

VNP09A1 SR 8-Day L3 Global 500 m
(bands I1–I3)

VNP09H1 SR 8-Day L3 Global 1 km
(bands M1–M5, M7, M8, M10, M11)

VNP09CMG SR Daily L3 Global 0.05°CMG
(bands I1–I3, M1–M5, M7, M8, M10, M11)
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Aqua and VIIRS. The SR values in red and NIR bands from MODIS and VIIRS were

normalized to the (45°, 0°) solar and viewing angles:

ρN 45; 0; 0ð Þ ¼ ρ θs; θv;φð Þ 1þ VF1 45; 0; 0ð Þ þ RF2 45; 0; 0ð Þ
1þ VF1 θs; θv;φð Þ þ RF2 θs; θv;φð Þ ; (1)

where θs is the solar zenith angle; θv is the sensor VZA; φ is the relative azimuth angle; F1
is the volume scatte ring kernel, based on the Rossthick function, but corrected for the

Hot-Spot process; F2 is the geometric kernel, based on the Li-sparse reciprocal function;

Figure 1. Relative spectral response functions for MODIS/Aqua and VIIRS sensors in the red and NIR
spectral domain. The functions for MODIS and VIIRS were derived from https://mcst.gsfc.nasa.gov/
calibration/parameters and https://ncc.nesdis.noaa.gov/VIIRS/VIIRSSpectralResponseFunctions.php,
respectively.

Figure 2. Illustration of four MODIS tiles over the United States (in MODIS sinusoidal projection)
used for comparison of 500 m 8-day composite products from MODIS (MYD09A1) and VIIRS
(VNP09A1) sensors. Shown in green also is a distribution of croplands derived from the USDA’s
Cropland Data Layer (CDL) for 2016 (Johnson and Mueller 2010) and averaged to CMG (0.05°) scale.
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V and R are free parameters that are estimated for each pixel at CMG resolution using

the BRDF inversion technique. We refer the reader to Vermote, Justice, and Bréon (2009)

for details of the VJB algorithm implementation.

Since MODIS and VIIRS spectral response functions in red and NIR bands exhibit

differences (Figure 1), corresponding spectral adjustments should be performed to

reduce differences in red, NIR, and NDVI estimates derived from MODIS and VIIRS

sensors. In this study, SR values from VIIRS were adjusted to those of MODIS/Aqua. For

this, corresponding relationships between red and NIR bands from MODIS and VIIRS

were developed using the following equations:

ρMred ¼ aredρ
V
red þ bredρ

V
NIR; (2)

ρMNIR ¼ aNIRρ
V
red þ bNIRρ

V
NIR; (3)

where ρMred, ρ
M
NIR, ρ

V
red, ρ

V
NIR are SR values in red and NIR for MODIS (superscript M) and

VIIRS (superscript V), and ared, bred, aNIR, bNIR are conversion coefficients estimated from

data using the ordinary least squares (OLS) regression. Note that these relationships are

without the constant term to ensure that ‘black’ surfaces have the same reflectance

values for both sensors. It is also expected that both the sums of coefficients, namely

ared þ bred and aNIR þ bNIR, will be close to 1 to ensure continuity of reflectance values for

‘bright’ surfaces such as clouds. Spectral adjustment for red and NIR bands for the

MYD09A1/VNP09A1 (500 m) and MYD09CMG/VNP09CMG (0.05°) products using

Equations (2) and (3) was performed on a yearly basis and for the entire period of

2012–2016 to analyse the ‘temporal stability’ of the conversion coefficients.

The NDVI anomaly is an indicator often used to analyse how the current vegetation

condition relates to that of the previous years (AghaKouchak et al. 2015; Becker-Reshef

et al. 2010b; Gu et al. 2007; Karl et al. 2012; Meroni et al. 2016). Here, we calculate a

multi-year median of NDVI for each pixel from MODIS/Aqua, combined MODIS/Aqua,

and adjusted VIIRS at CMG resolution. More specifically, for MODIS/Aqua data sets only,

a median NDVI is calculated for 2002–2012. For a combination of MODIS and VIIRS NDVI

data, a median NDVI is calculated for a set of NDVI values concatenated from MODIS/

Aqua (2002–2011) and adjusted VIIRS (2012–2016). Therefore, we compare two cases:

when VIIRS adjusted data, starting from 2012, are used to update the median NDVI

values from MODIS/Aqua and when only MODIS/Aqua is used to calculate the median

NDVI (2002–2016):

yMmedian ¼ median yMt jt ¼ 2002::2016
� �� �

; (4)

yMV
median ¼ median yMt jt ¼ 2002::2011

� �

; yVt jt ¼ 2012::2016
� �� �

; (5)

where t is the time, expressed here in years, yMt and yVt are MYD09CMG- and VNP09CMG-

derived NDVI values for MODIS/Aqua and VIIRS (adjusted with Equations (2) and (3)),

respectively.

To quantify the differences and uncertainties between MYD09 and VNP09 products

and NDVI-derived estimates, a standard accuracy, precision, and uncertainty (APU)

analysis is performed (after Vermote and Kotchenova 2008) with the following set of

metrics:
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● accuracy (A) that shows the average bias between estimates:;

A ¼ 1

N

X

N

i¼1

yVi � yMi
� �

(6)

● precision (P) that shows the repeatability of the estimates

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N� 1

X

N

i¼1

yVi � yMi � A
� �2

v

u

u

t (7)

● uncertainty (U) that is the root mean square error (RMSE)

U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i¼1

yVi � yMi
� �2

v

u

u

t (8)

where yVi and yMi are VIIRS and MODIS derived values (SR or NDVI), respectively, and N is

the number of values to be compared.

4. Results

4.1. Comparison of MYD09A1- and VNP09A1-derived NDVI at 500 m resolution

Figure 3 shows the difference between the DOY selected within the 8-day period for

MYD09A1 and VNP09A1 products for all land pixels (excluding water pixels) in tiles

Figure 3. Distribution of DOY difference for MYD09A1 and VNP09A1 8-day composite products at
500 m spatial resolution. All land pixels from MODIS tiles h10v04, h10v05, h11v04, and h11v05 for
2012–2016 were used to build the chart.
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h10v04, h10v05, h11v04, and h11v05 for 2012–2016. The same DOY is selected in 35.4%

of cases; in 55.6% of cases, the DOY difference is 1 day or less; and in 31% of cases, the

DOY difference is 3–7 days. Therefore, when utilizing these products jointly, one has to

take into account differences in SR values or derived VIs caused by the DOY selected and

possible surface changes within the compositing period.

The distribution of MODIS/Aqua VZAs in MYD09A1 and difference between VZAs for

MYD09A1 and VNP09A1 products for the four tiles in United States and the 2012–2016

period are shown in Figures 4 and 5, respectively. For MODIS/Aqua VZAs distribution in

20.5% of cases, the VZA is 0–7.5°; in 35% of cases, VZA is more than 30° which translates

to the effective along-scan spatial resolution of more than 850 m (Figure 4). In 29% and

82% of cases, the difference between MODIS/Aqua and VIIRS VZAs within the 8-day

composites is within −7.5° to 7.5° and −30° to 30°, respectively; in 18%, the absolute

difference is more than 30°.

The results of the ‘temporal’ stability of conversion coefficients are presented in

Table 3.

In general, there is a temporal ‘stability’ for coefficients ared and bNIR as the coefficient

of variation (CV) is around 1% which is consistent with the calibration performance

(Vermote, Justice, and Csiszar 2014). Coefficients bred and aNIR provide a maximum 2%

and 6% contribution to the SR values for red and NIR bands. Less stability is observed for

these coefficients, bred and aNIR, with CV of 6.8% and 44.3%, respectively. It should be

noted that larger deviations are observed for the initial years of VIIRS operation, namely

2012 and 2013, while relatively better stability is observed for 2014–2016.

The derived coefficients for 2012–2016 (Table 3) were used to adjust red and NIR

reflectance values from VIIRS to match those from MODIS and compute the NDVI.

Figure 4. Distribution of VZA values for ‘best pixels’ selected within the 8-day period for the
MYD09A1 products. All land pixels from MODIS tiles h10v04, h10v05, h11v04, and h11v05 for
2012–2016 were used to build the chart. Also shown are the effective MODIS along-scan and
along-track pixel sizes for the nominal 500 m resolution depending on VZAs (Campagnolo and
Montano 2014).

978 S. SKAKUN ET AL.

D
ow

nl
oa

de
d 

by
 [

Se
rg

ii 
Sk

ak
un

] 
at

 1
3:

40
 2

7 
O

ct
ob

er
 2

01
7 



Comparisons of the VIIRS- and MODIS/Aqua-derived NDVI values with and without

spectral adjustment are shown in Figures 6 and 7, respectively.

Spectral adjustment removed the bias between MODIS/Aqua- and VIIRS-derived red,

NIR, and NDVI values (Figures 6 and 7). Overall red reflectance, NIR reflectance, and NDVI

uncertainties were 0.014, 0.029, and 0.056, respectively, when considering the same day

of observation pixels (Figure 6). These uncertainties increased to 0.018, 0.034, and 0.064

(a 14% increase), respectively, when the absolute difference between DOY for ‘best

pixels’ from MOD09A1 and VNP09A1 products was 3–7 days, while VZAs for both

sensors were less than 7.5° (Figure 8).

Uncertainties can be further reduced when NDVI values at 500 m resolution are

spatially aggregated. For example, within the agriculture application domain, NDVI is

usually averaged over administrative regions to correlate with crop yield values (Becker-

Reshef et al. 2010a; Franch et al. 2015; Franch et al. 2017; Johnson 2016; Kogan et al.

2013). Figure 9 shows an example of such aggregation: NDVI values derived from

MOD09A1 and VNP09A1 products were averaged for Harper County in Kansas (United

Table 3. Estimated conversion coefficients for spectral adjustment of red and NIR spectral bands
from VNP09A1 to MYD09A1. Only pixels with the same DOY and close to nadir observations
(VZA<7.5°) for MYD09A1 and VNP09A1 were considered.

Period ared bred aNIR bNIR

2012 0.9788 0.0174 0.0834 0.9394
2013 0.9704 0.0185 0.0778 0.9417
2014 0.9628 0.0204 0.0357 0.9622
2015 0.9691 0.0196 0.0378 0.9622
2016 0.9562 0.0176 0.0369 0.9533
Mean ± standard deviation
(coefficient of variation, %)

0.9674 ± 0.0085
(0.9%)

0.0187 ± 0.0013
(6.8%)

0.0543 ± 0.0241
(44.3%)

0.9518 ± 0.0109
(1.1%)

2012–2016 0.9687 0.0184 0.0544 0.9518

Figure 5. Distribution of the difference between VZA values for MYD09A1 and VNP09A1 8-day
composite products at 500 m spatial resolution. All land pixels from MODIS tiles h10v04, h10v05,
h11v04, and h11v05 for 2012–2016 were used to build the chart.
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States) for 500 m pixels with a winter wheat proportion larger than 50%. Winter wheat

proportions were derived from USDA CDL maps for 2012–2016 (Johnson and Mueller

2010). The spatial aggregation decreased uncertainties to 0.021 (2.67 times), compared

Figure 6. A scatterplot of red, NIR, and NDVI values derived from VNP09A1 (after spectral adjust-
ment) and MYD09A1 at 500 m resolution (a), (c), (e). Corresponding APU analysis (b), (d), (f). Land
pixels from MODIS tiles h10v04, h10v05, h11v04, and h11v05 for 2012–2016 and having the same
DOY for MODIS and VIIRS and close to nadir observations (VZAs<7.5°) were considered. The light
blue bars on (b), (d), (f) show the number of points used in each bin of surface reflectance (SR) or
NDVI values from MODIS/Aqua (used as a reference). The APU values (Equations (6)–(8)) were
computed for points in each bin and being shown in red (accuracy), green (precision), and blue
(uncertainty). The pink represents the specified uncertainty based on theoretical error budget of the
Collection 5 MODIS (Vermote and Kotchenova 2008):

ffiffiffi

2
p

0:005þ 0:05ρð Þ for spectral bands and
ffiffiffi

2
p

0:02þ 0:02VIð Þ for NDVI. The
ffiffiffi

2
p

term is used since we are focusing on inter-consistency of
datasets and not validation.
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to a per-pixel (at 500 m) derived uncertainty of 0.056. Spectral adjustment reduced the

bias (accuracy) from 0.017 to −0.003.

4.2. Comparison of MYD09CMG- and VNP09CMG-derived NDVI at 0.05°

resolution

Table 4 shows the derived coefficients from Equations (2) and (3) of the regressions to

adjust VIIRS red (I1) and NIR (I2) SR values to MODIS using yearly data and the entire

2012–2016 period. Compared to the 500 m products (MYD09A1 and VNP09A1), better

temporal ‘stability’ is observed at the CMG resolution.

Figure 7. The same as Figure 6 but without spectral adjustment.
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The conversion coefficients from Table 4 derived for 2012–2016 were used to adjust the

VIIRS I1 (red) and I2 (NIR) bands and to compute NDVI. Figure 10 shows comparison of daily

NDVI values at 0.05° resolution for all land pixels for 2012–2016 (almost 2 × 109 CMG pixels).

The spectral adjustment removed the bias between MODIS/Aqua- and VIIRS-derived

NDVI, and the resulting uncertainty for NDVI was 0.032, 1.75 times smaller than for the

500 m products. Uncertainties for red and NIR spectral bands were 0.013 and 0.016,

respectively. CMG-based data were spatially aggregated over Harper County to provide a

daily NDVI time series for winter wheat (Figure 11). We selected the top 5% purest winter

wheat pixels at the CMG resolution to calculate NDVI, as was done for the generalized

empirical winter wheat yield forecasting model presented by Becker-Reshef et al. (2010a).

Figure 8. The same as Figure 6 but the absolute difference between DOY for MYD09A1 and
VNP09A1 is 3–7 days.
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When aggregated for Harper County, both the 500 m and CMG products yielded

similar uncertainties of 0.022, when comparing MODIS/Aqua- and VIIRS-derived NDVI

values (Figures 9 and 11); however, the CMG-derived NDVI time series is much denser

thanks to daily observations.

Figure 9. A time series of NDVI values derived from MYD09A1 and VNP09A1 8-day products at
500 m resolution for Harper County, one of the largest wheat-producing counties in Kansas. SR
values in red and NIR bands, that were used to compute NDVI from VIIRS, were spectrally adjusted to
match the MODIS/Aqua ones (using Equations (2) and (3) and derived coefficients from Table 3).
Shown also are final winter wheat yields derived from USDA National Agricultural Statistics Service
(NASS) statistics (a). The difference between aggregated NDVI values from MYD09A1 and VNP09A1
with and without spectral adjustment of the VIIRS bands (b).

Table 4. Estimated coefficients for spectral adjustment of red and NIR spectral bands from
MYD09CMG and VNP09CMG.

Period ared bred aNIR bNIR

2012 0.9805 0.0187 0.0011 0.9720
2013 0.9812 0.0190 0.0008 0.9733
2014 0.9799 0.0189 0.0011 0.9724
2015 0.9809 0.0184 0.0010 0.9730
2016 0.9842 0.0143 0.0010 0.9730
Mean ± standard deviation
(coefficient of variation, %)

0.9813 ± 0.0017
(0.2%)

0.0178 ± 0.0020
(11.2%)

0.0010 ± 0.0001
(10.8%)

0.9727 ± 0.0005
(0.1%)

2012–2016 0.9814 0.0178 0.0020 0.9717
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4.3. Comparison of MYD09CMG- and VNP09CMG-derived NDVI anomalies at

0.05° resolution

Figure 12 shows a comparison of long-term median NDVI values calculated for MODIS/

Aqua only (Equation (4)) and a combination of MODIS/Aqua and adjusted VIIRS

(Equation (5)) for 2002–2016. As a result of the VIIRS adjustment, the bias is close to

zero (−0.003), and the corresponding NDVI uncertainty is 0.03. Comparison of NDVI

Figure 10. A scatterplot of red, NIR, and NDVI values derived from VNP09CMG (after spectral adjustment)
andMYD09CMG at 0.05° resolution (a), (c), (e). Corresponding APU analysis (b), (d), (f). The light blue bars on
(b), (d), (f) show the number of points used in each bin of SR or NDVI values from MODIS (used as a
reference). The APU values (Equations (6)–(8)) were computed for points in each bin and being shown in red
(accuracy), green (precision), and blue (uncertainty). The pink represents the specified uncertainty based on
theoretical error budget of the Collection 5 MODIS NDVI (Vermote and Kotchenova 2008).
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Figure 11. A time series of NDVI values derived from BRDF-corrected MYD09CMG and VNP09CMG
daily products at 0.05° resolution for Harper County. SR values in red (I1) and NIR (I2) bands that
were used to compute NDVI from VIIRS were spectrally adjusted to match the MODIS/Aqua ones.
Shown also are final winter wheat yields derived from USDA NASS statistics (a). A difference between
aggregated NDVI values from MYD09CMG and VNP09CMG with and without spectral adjustment for
VIIRS bands (b).

Figure 12. Comparison of median NDVI values at CMG resolution derived from MODIS/Aqua
(Equation (4)) and a combination of MODIS/Aqua and adjusted VIIRS (Equation (5)) for 2002–2016
at a daily timestamp. A combined (MODIS/Aqua and VIIRS) median NDVI versus MODIS/Aqua-derived
median NDVI is shown in (a); APU analysis (b).
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anomalies derived from BRDF-corrected MOD09CMG and VNP09CMG products is shown

in Figure 13. The resulting uncertainty was found to be 0.033 at global scale.

An example of NDVI values and medians for Iowa (United States) is shown in Figure 14,

and the geographic distribution of NDVI anomalies from MODIS/Aqua and VIIRS for the

same region is shown in Figure 15. Figure 15 shows good spatial consistency and similar

spatial patterns for NDVI anomalies computed from MODIS/Aqua and VIIRS sensors.

5. Discussion

NDVI is a widely used remote-sensing-derived product which is used in several agricul-

tural monitoring applications. Having high-quality long-term NDVI data records is extre-

mely important for studying spatiotemporal changes in the Earth’s surface dynamics.

This requires integration of data records from multiple sensors, including MODIS and

Figure 13. Comparison of NDVI anomalies for 2016 at CMG resolution at daily timestamp. Anomalies
were derived by subtracting daily NDVI values for 2016 from median values calculated for
2002–2015. Combined (MODIS/Aqua and VIIRS) NDVI anomalies versus MODIS/Aqua-derived NDVI
anomalies are shown in (a); APU analysis (b).

Figure 14. Corn growth dynamics derived from MODIS/Aqua and VIIRS in 2012 in Iowa (United
States) compared to the median NDVI values for 2002–2016 derived from MODIS/Aqua. Due to a
drought, corn growth started to decrease significantly from June which resulted in a 25% yield
reduction according to USDA NASS.
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VIIRS. VIIRS provides continuity to MODIS, and therefore it is important to enable a

proper transition between products from these sensors, so the VIIRS-based products can

be ingested into existing MODIS-based applications, and the corresponding uncertain-

ties are quantified and known. This study focused on comparing NDVI derived from the

MYD09A1/VNP09A1 and MYD09CMG/VNP09CMG SR products that provide a trade-off in

terms of spatial (500 m vs 0.05°) and temporal resolution (8-day vs daily). In particular,

MYD09A1 and VNP09A1 provide data at 500 m resolution at the expense of temporal

resolution (8-day). Although, through the compositing process, only high-quality pixels

are selected, there are several differences between MODIS/Aqua- and VIIRS-based pro-

ducts that influence the inter-consistency of the data sets. First and foremost, differences

in spectral response functions in red and NIR bands of MODIS and VIIRS sensors

(Figure 1) introduce a bias in SR values and NDVI estimations that can be removed

through spectral adjustments. We also found that only in 35.4% of cases the DOY of the

‘best pixel’ within the 8-day period is the same for MYD09A1 and VNP09A1 products.

Uncertainties of MYD09A1- and VNP09A1-derived NDVI values can be increased more

than 14% when the difference between DOY increases to 7 days. Differences were also

observed in VZAs for ‘best pixels’ in these products. The off-nadir VZA values introduce

two major issues: a reduced effective spatial resolution of MODIS with the increase of

VZA (Figure 4) (as a result of the aggregation, this is not the case for VIIRS (Campagnolo

et al. 2016; Pahlevan et al. 2017)) and BRDF effects for both MODIS and VIIRS. Therefore,

users are encouraged to take these into consideration when developing applications at

‘native’ 500 m resolution. Overall, the uncertainties between MYD09A1- and VNP09A1-

derived red reflectance, NIR reflectance, and NDVI estimates at 500 m resolution for the

same day and close to nadir (VZA<7.5°) observations for the United States for 2012–2016

were found to be 0.014, 0.029, and 0.056, respectively, with VIIRS to MODIS/Aqua

spectral adjustment.

A better consistency between MODIS/Aqua- and VIIRS-derived NDVIs was observed at

CMG scale at 0.05° resolution. Comparison of more than 2 × 109 global CMG pixels for

2012–2016 yielded red reflectance, NIR reflectance, and NDVI uncertainties of 0.013, 0.016,

and 0.032, respectively, after BRDF correction of MYD09CMG and VNP09CMG SR values with

the VJB approach (Vermote, Justice, and Bréon 2009) and spectral adjustment of VIIRS to

MODIS/Aqua. Corresponding conversion coefficients for adjusting BRDF-corrected VIIRS I1

Figure 15. NDVI anomalies at 0.05° spatial resolution for the state of Iowa (United States) derived
from MODIS/Aqua (a) and adjusted VIIRS (b) data on 21 August 2012. Anomalies were computed by
subtracting NDVI values from the median NDVI values for 2002–2016 derived from MODIS/Aqua.
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(red) and I2 (NIR) bands to MODIS/Aqua b1 (red) and b2 (NIR) bands were calculated and

showed good temporal stability within the 2012–2016 period. While the CMG-based

products provide a lower spatial resolution as compared to the 500 m products, they

provide daily data that might be critical to a number of applications, and, as it is shown in

this study, there is a better consistency between MODIS/Aqua and VIIRS with lower

uncertainties. Uncertainties can be further reduced to 0.022 when NDVI values extracted

from 500 m or CMG resolution products are spatially aggregated for administrative regions,

as the derived NDVI can, for example, be correlated with crop yields (Becker-Reshef et al.

2010a; Franch et al. 2015; 2017; Johnson 2016; Kogan et al. 2013).

These results have certain implications when ingesting VIIRS data into existing MODIS-

based models for agricultural monitoring, for example, crop state assessment or crop yield

modelling and forecasting. VIIRS data should be spectrally adjusted to match MODIS data,

so no bias will propagate into the final estimates. Consider a model with crop yield linearly

depending on theMODIS-based NDVI: y = α*(NDVI). Directly applying the VIIRS-based NDVIs

without spectral adjustment will result in higher crop yield estimates, since the VIIRS-based

NDVI is higher than the MODIS/Aqua-based NDVI (Figures 9 and 11). For example, a slope

between winter wheat yield (t ha−1) and MODIS-based NDVI for Harper County in Kansas

(United States) was found to be 5.34 (Becker-Reshef et al. 2010a), while the VIIRS-based

NDVIs are on average 0.018 higher than the MODIS-based NDVIs (Figure 11). Therefore, in

such a case, the VIIRS-based winter wheat yield estimates would be on average 0.1 t ha−1

higher than those from MODIS without spectral adjustment.

Even with the bias removed, differences still exist between MODIS- and VIIRS-derived

NDVIs, and quantifying inter-consistency between the sensors can be helpful in provid-

ing the final error of estimates for NDVI-based agricultural products. Consider again the

example of Kansas (United States) where the winter wheat yield model is estimated to

have an RMSE error of 0.18 t ha−1 or 7% (Becker-Reshef et al. 2010a). When applying the

VIIRS-based NDVIs to the model, due to the MODIS–VIIRS NDVI uncertainty of 0.022

(Figure 11), the error of winter wheat yield estimates will be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:182 þ 5:34� 0:022ð Þ2
q

¼ 0:22 t ha−1 or 8.5%. Therefore, inconsistencies between

VIIRS-and MODIS-based NDVIs will lead to the increase of resulting crop yield

uncertainties.

In terms of NDVI anomalies, median values are calculated from a sufficiently long data

record to identify ‘normal’ vegetation conditions, but not so long that the land use or

cropping system being observed has changed significantly. Figure 16 shows the timeline

Figure 16. Timeline of the three afternoon remote-sensing satellites: Aqua, S-NPP, and JPSS-1.
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of the three remote-sensing satellites imaging the Earth’s surface with an afternoon

overpass, which will be used to form the land long-term record: MODIS/Aqua, S-NPP,

and Joint Polar Satellite System (JPSS). It is expected that MODIS/Aqua will continue its

nominal operations until 2022 (personal communication, Robert Wolfe, NASA Goddard

Space Flight Center, June 2017), and JPSS-1 is planned to be launched at the end of

2017. At the time of writing, MODIS/Aqua has a 15-year data record which is used to

calculate the median NDVI value. At the MODIS/Aqua end of life (2022), the data record

would be 20 years, and the VIIRS/S-NPP record would be 10 years. Inter-use of data

products from these sensors is therefore likely to continue to be desirable; however, if

the NDVI data records are combined, one should do so with an awareness of NDVI

anomaly inter-consistency uncertainties of 0.033.

6. Conclusion

The main focus of this study was to quantify uncertainties between MODIS/Aqua- and

VIIRS-based NDVI calculated from the suite of MYD09 and VNP09 products that provide an

estimate of SR, which provides the basis for the NDVI. Because of differences in spectral

response functions in red and NIR bands of MODIS (b1, b2) and VIIRS (I1, I2), there is a bias

when comparing MODIS and VIIRS estimates that is removed through a spectral adjustment

procedure. Corresponding coefficients were calculated for MYD09 and VNP09 products at

500 m (for the United States) and CMG (globally) spatial resolution using observations from

2012 to 2016 that can be further used by the user community in their research activities. At

500 m spatial resolution and 8-day temporal resolution, uncertainty between NDVI derived

from MODIS/Aqua and VIIRS was 0.056 for the same day and close to nadir observations

(VZA<7.5°). For daily BRDF-corrected NDVI and NDVI anomaly values at 0.05° resolution,

uncertainty was 0.032 and 0.033, respectively. Uncertainty between MODIS/Aqua- and

VIIRS-derived NDVI can be further reduced to 0.022 when aggregating NDVI values over

administrative regions. The derived NDVI uncertainties for different MODIS/Aqua and VIIRS

products can be utilized to quantify uncertainties for high-level products. With the launch

of JPSS-1 VIIRS later this year, there will be a need for additional product inter-comparisons

similar to this study, in the context of data inter-use and land long-term data records.
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