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Models designed for limited dependent variables are increasingly common in political science. Researchers estimating such
models often give little attention to the coefficient estimates and instead focus on marginal effects, predicted probabilities,
predicted counts, etc. Since the models are nonlinear, the estimated effects are sensitive to how one generates the predictions.
The most common approach involves estimating the effect for the “average case.” But this approach creates a weaker
connection between the results and the larger goals of the research enterprise and is thus less preferable than the observed-
value approach. That is, rather than seeking to understand the effect for the average case, the goal is to obtain an estimate
of the average effect in the population. In addition to the theoretical argument in favor of the observed-value approach,
we illustrate via an empirical example and Monte Carlo simulations that the two approaches can produce substantively
different results.

Models for binary dependent variables are now
part of the standard toolkit for empirical
political scientists.1 Typically, in the second

semester course on quantitative methods, after learning
the shortcomings of the linear probability model, stu-
dents learn the virtues of logit and probit models. Closely
related models for dependent variables with ordered cat-
egories, multiple nominal categories, and counts follow
shortly thereafter.

Although such models are increasingly used in
practice, they are still fairly new in political science (for
a brief history of these models, see McCulloch 2000). As
recently as the mid-1970s, an article comparing ordinary
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least squares regression (OLS), probit, and discriminant
analysis by Aldrich and Cnudde (1975) described a
camp of “purists” in political science who argued that
only “less powerful techniques, such as cross-tabulation
or ordinal measures of association and correlation”
(Aldrich and Cnudde 1975, 572) were appropriate for
noninterval-level dependent variables. And it was not
long ago that King (1998), King, Tomz, and Wittenberg
(2000), and Long (1997) moved the discipline toward
the production of results that are more interesting and
intuitive than odds ratios and the coefficients themselves,
representing a giant leap forward. Around that same time,
Herron (1999) emphasized the importance of computing
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measures of uncertainty for predicted probabilities
from limited dependent variable models (aka qualitative
response or categorical), demonstrated approaches for
doing so, and recommended a better measure of fit than
the percentage of cases correctly predicted. More recently
still, Ai and Norton (2003) provided a valuable statement
on the proper way to interpret interaction effects in
limited dependent variable models (see also Berry, Esarey,
and Demeritt 2010), an issue that has caused problems
in the discipline even with OLS models (Brambor, Clark,
and Golder 2006; Kam and Franzese 2007).

Notwithstanding these and other important ad-
vances, a basic issue remains unresolved. That is, even
in the simplest limited dependent variable models with
multiple independent variables, the literature has not pro-
vided clear guidance regarding the best way to calculate
marginal effects or discrete differences, which are the nec-
essary tools for substantive interpretation. The aim of this
article is to provide such clarity by highlighting an ap-
proach that provides results that are more in line with the
goals of theoretically driven empirical research.

Background

Empirical researchers using limited dependent variable
models often give little attention to the coefficient esti-
mates, which cannot be interpreted as straightforwardly
as OLS coefficients, and instead focus on predictions
based on these coefficients. The reason is clear—the
marginal effects and predicted quantities (e.g., probabil-
ities, counts) are the keys to understanding the relation-
ships of interest in the population. For example, in a logit
or probit model, either the marginal effect of a change in
the independent variable of interest on the probability of
success or the discrete difference in the probability of suc-
cess due to a change in the independent variable of interest
is more informative. Since these models are nonlinear and
inherently interactive in all of the variables, the size of the
effect of a change in the independent variable of interest
depends on the values of the other independent variables.
As a result, the estimated effects, and thus the conclusions
one can draw regarding the substantive significance of the
variables of interest, are sensitive to which values for the
other variables are chosen. Following Achen (1982), Long
(1997), and King, Tomz, and Wittenberg (2000), we take
it as a given that understanding whether or not the rela-
tionship of interest is substantively significant, rather than
just statistically significant, is the ultimate goal, as it is a
necessary part of evaluating one’s theory. As a result, the
algorithm researchers follow to calculate predicted quan-

tities out of limited dependent variable models requires
serious attention. As students learn when introduced to
limited dependent variable models, this is not an issue
when using an OLS model without interaction terms; i.e.,
in OLS models the coefficient on the variable of interest
represents the marginal effect, which is constant across its
full range as well as that of all of the other independent
variables.

In presenting predictions for a change in an inde-
pendent variable of interest in limited dependent variable
models, there are two general approaches for dealing with
the other independent variables in the model. The first
involves creating an example case by selecting a set of
specific values for the other variables and calculating the
relevant predicted probabilities or marginal effect for that
case. With country-level data, this might be the specific
values taken on by the primary case of interest, e.g., the
United States. One might set up several example cases, but
researchers usually just use one case. Typically, the values
of each of the other independent variables are set to their
respective sample means; we will refer to this approach
as the “average case” approach. The second approach in-
volves holding each of the other independent variables at
the observed values for each case in the sample, calculat-
ing the relevant predicted probabilities or marginal effect
for each case, and then averaging over all of the cases;
we will refer to this approach as the “observed value” ap-
proach. In the language of the burgeoning literature on
causal inference (see, e.g., Ho et al. 2007 and Imai, King,
and Stuart 2008), under the usual assumptions (see, e.g.,
Morgan and Winship 2007), the observed-value approach
is used to compute the quantities of interest, such as the
average treatment effect (ATE).

Although there are prominent studies using the
observed-value approach, such as Wolfinger and Rosen-
stone’s (1980) Who Votes?, our reading of the literature led
us to suspect the average-case approach to be the domi-
nant approach in political science. A content analysis of
the American Political Science Review, American Journal
of Political Science, and Journal of Politics from 2006 sup-
ports that expectation; 68% of the articles using a limited
dependent variable employed the average-case approach,
and just 1% used the observed-value approach! Unfortu-
nately, for 15% of the relevant articles the authors did not
state clearly how they generated the reported predicted
probabilities/marginal effects. The remaining articles did
not report any results beyond the coefficients (11%) or
reported odds ratios (4%).

The prevalence of the average-case approach is per-
haps influenced by the wide availability of easy-to-use
software such as Tomz, Wittenberg, and King’s (2001)
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Clarify (see also King, Tomz, and Wittenberg 2000)2 and
Long and Freese’s (2005) SPost that set the default to the
average-case approach.3 Though these scholars made im-
portant contributions, we argue that the observed-value
approach is preferable to the more common average-case
approach on theoretical grounds. The thrust of our ar-
gument begins by noting that our theories and data col-
lection efforts are not designed around making infer-
ences about the average case. Since the research process
does not start with a special concern for the average case,
we should not conclude our empirical investigations by
discussing results just for that case. Instead, we should
conclude with results that allow us to make inferences
about the population we have theorized about and col-
lected data to represent. Moreover, as we show through
an empirical example, using one of the most prominent
dependent variables in the discipline and Monte Carlo
simulations, the effect sizes generated from the two ap-
proaches can be quite different. Additionally, our Monte
Carlo simulations demonstrate that the results from the
observed-value approach are more robust to model mis-
specification than the average-case approach. While we
view the argument as rather simple and straightforward,
textbook treatments offer little guidance, and political
scientists have gravitated to an approach that does not
fully connect the interpretation of the results back to the
ultimate goal of their research. Given the pervasiveness of
limited dependent variable models, it is essential that we
develop a set of best practices for the interpretation of the
results from these models.

This article is organized as follows. First, we provide
a brief review of the important features of limited de-
pendent variable models, using binary response models
as an illustration. Though we focus on binary response
models, the logic applies straightforwardly to models for
ordered categories, multiple nominal categories, counts,
and durations (see below). Next, we lay out our argu-
ment, focusing on connecting the results to the goals of
the empirical research endeavor. We then illustrate the
differences between the average-case and observed-value
approaches with an empirical example using data from

2In the Supporting Information (SI) Section C, we provide sample
Stata code to calculate marginal effects and discrete differences
using the observed-value approach via the simulation method.
With both the average-case and observed-value approach, one can
compute confidence intervals via the delta method, bootstrapping,
or simulation (see Herron 1999; King, Tomz, and Wittenberg 2000).

3It is important to note that the evidence does not support a claim
that computational or programming issues are the reason why
these programs and others implemented the average-case approach.
For example, Rosenstone and Wolfinger (1978) implemented the
observed-value approach with the technology that existed over
30 years ago.

the American National Election Studies (ANES). After
that we use Monte Carlo simulations to provide addi-
tional insights. Before concluding, we discuss extensions
and show how one might report the results.

Brief Review

Nonlinearity is the key attribute that makes interpretation
of limited dependent variable model results less straight-
forward than OLS estimates. A brief review of the basic
setup used for a binary dependent variable will help il-
lustrate this point and motivate our argument. We begin
with an unobserved continuous latent variable, y∗, such
that y∗ = x� + ε, where x is a matrix of independent
variables, � a column vector of coefficients, and ε the
errors.4 Although we do not observe y∗, we do observe a
realization in the form of a binary dependent variable, y,
such that y = 1 if y∗ ≥ � (where � is a threshold usually
set to 0) and y = 0 if y∗ < � . The task is to estimate the
probability of success, p, which can be written as:

p = Pr(y = 1|x) = Pr(y∗ ≥ 0|x) = Pr(x� + ε ≥ 0|x),

(1)

where Pr stands for probability, and � is set to 0. Subtract-
ing x�, we get:

p = Pr(ε ≥ −x�|x), (2)

which, provided the distribution is symmetric, can then
be expressed as:

p = 1 − F (−x�) =F (x�), (3)

where F is the cumulative distribution function (cdf) of
the errors. When dealing with binary dependent variables,
F is usually assumed to follow either the logistic or normal
distribution, both of which are S-shaped curves. For logit,
which results from the logistic distribution, equation (3)
can be written as: p = 1 − 1

1+ex� = 1
1+e−x� ; and for probit,

which results from the normal distribution, equation (3)
can be written as: p = 1 – �(−x�) = �(x�).

Although there are a variety of ways to describe the
effect of the independent variables, we focus on the cal-
culation of marginal effects and discrete differences. The
issues discussed here do not arise if one interprets the re-
sults as odds ratios. However, we find odds ratios to be less
informative because on their own they do not reveal any-
thing about the initial probability of success, a necessary
element for determining substantive significance.

4In the interest of simplicity, we subscript for each observation, i,
only when calling attention to predictions that set each value of x
to each observation’s actual value observed in the sample.
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To find the marginal effect of a continuous variable,
xk , we take the derivative of equation (3) with respect to
xk to get:

∂p

∂(xk)
= f (x�)�k, (4)

where f represents the probability density function (pdf).
This result differs in obvious ways from the more simple
result from OLS, where the effect, �k , is constant regard-
less of the values of xk or any other x. Equation (4) reveals
that in addition to the value of the coefficient on the
variable of interest (�k), the effect will depend on the dis-
tribution (F) that is chosen, the values of all of the other
coefficients (�), and the values of all of the independent
variables (x).5 In other words, due to the inherent non-
linearity, the effect is not constant—instead it depends
on where one evaluates the value of the curve and which
curve one uses. We discuss the implications of this after a
review of the discrete difference method (aka first differ-
ence method), which is the appropriate way to calculate
the effects of binary independent variables and can also
be used for continuous independent variables.

With the discrete difference method, to calculate the
effect of a change in xk for two different values of xk ,
say, from xk = d to xk = c, we can simply estimate the
probability of success when xk is at each of these values
and then compute the difference. For example, if xk is a
binary independent variable, one could set d to 0 and c to
1 (or vice versa). This can be expressed as:

Pr(y = 1|x∼k, xk = c) − Pr(y = 1|x∼k, xk = d), (5)

where x∼k represents all of the independent variables ex-
cept xk . Going back to the general expression for the prob-
ability of success, we can rewrite this in terms of where
we evaluate the cumulative distribution function:

F (x∼k, xk = c; �) − F (x∼k,xk = d; �). (6)

Again, the effect depends on the values of all of the
coefficients, the values of all of the independent variables,
and the choice of distribution. For our purposes, when
calculating the effect of xk , we are most concerned with
the consequences associated with the choice of values to
which the other independent variables should be set.

As noted above, the two general choices are to create
an example case by setting the other independent vari-
ables to some set of values (usually the means of each
independent variable are used), or to set the other in-
dependent variables to the values observed for each ob-
servation and then take the average. It is easy to see that
when f is a nonlinear function, evaluating the marginal

5For logit, equation (4) can be written as: ∂p
∂(xk )

= ex�

(1+ex�)2 �k , and

for probit: ∂p
∂(xk )

= �(x �)�k .

effects at the mean of x is not equivalent to calculating
the marginal effect for each observation, using the values
actually taken on by each observation, and then comput-
ing the average (i.e., the average marginal effect). Taking
equation (4) and applying each approach, we see that the
average-case approach (left-hand side) is not equivalent
to the observed-value approach (right-hand side):

f (x̄�)�k �= 1

n

n∑

i=1

f (xi �)�k, (7a)

where n is the sample size.
The same logic applies to the calculation of discrete

differences. Taking equation (5) and applying each ap-
proach, we again see that for nonlinear functions the
average-case approach is not equivalent to the observed-
value approach:

Pr(y = 1|x̄∼k, xk = c) − Pr(y = 1|x̄∼k, xk = d)

�= 1

n

n∑

i=1

[Pr(yi = 1|xi∼k, xik = c)

− Pr(yi = 1|xi∼k, xik = d)], (7b1)

where x̄∼k is the mean for each of the x’s that are not xk .
Alternatively, using equation (6), we can write this as:

F (x̄∼k, xk = c ; �) − F (x̄∼k, xk = d ; �)

�= 1

n

n∑

i=1

[F (xi∼k, xk = c ; �) − F (xi∼k, xk = d ; �)].

(7b2)

If the functions used in (7a) or (7b2) were strictly
concave or strictly convex, then we could simply apply
Jensen’s inequality to determine whether the effect for
the average case was larger than or smaller than the aver-
age effect calculated using the observed-value approach
(we return to this in the Discussion section). Since the
probit and logit distributions have portions that are con-
cave and portions that are convex, we use Taylor series
expansions to approximate the range over which the ef-
fect for the average case will be larger than or smaller
than the average effect calculated via the observed-value
approach. The results presented in Supporting Informa-
tion (SI) Section A suggest that over most of the range
of predicted probabilities, the effects for the average case
will be substantively larger than the average effect calcu-
lated via the observed-value approach.6 We explore the
implications of this result in subsequent sections.

6Though Greene (2003) suggested that the two approaches would
be equivalent asymptotically, he revised this position in Greene
(2008). We discuss this further in Supporting Information Section
A (see footnote 15) and provide Monte Carlo simulation results in
Section D.
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Having reviewed the basic implications of the non-
linearity in the models and shown that the average-case
and observed-value approaches are not mathematically
equivalent, we ask: at what values should the other inde-
pendent variables be set?

Argument: Back to Basics

The above question seems like it should have an easy an-
swer; however, someone looking to textbook treatments
for an answer is likely to be left confused. Although text-
books cover the fact that the effects in nonlinear models
are not constant and depend in part on the values for the
other independent variables, advice on which values to
choose is often lacking, incomplete, or inconsistent.

Hanushek and Jackson (1977) and Aldrich and
Nelson (1984) stand out as important introductions to
models for limited dependent variables in political sci-
ence, especially in light of the earlier discussion of the
“purist” camp. Both works contributed by emphasizing
the distinctions between linear and nonlinear models and
illustrating the distinctions through an empirical exam-
ple showing the predictions for a range of values that
the other independent variables might take on. Aldrich
and Nelson (1984) go on to suggest that the effects might
be summarized by picking “various interesting values”
for the other independent variables. Given how little was
known about these models at the time, by demonstrating
how one might efficiently examine the results, these early
efforts represent considerable advances. Unfortunately,
they stop short of discussing alternative approaches and
do not take up the issue of how one might determine
which values are interesting.

In his seminal work, King ([1989] 1998) also discusses
the importance of where one evaluates the curve and is
careful to argue for studying the effect of the predictions
at various combinations of the independent variables. He
then suggests: “Probably the most obvious value to use
is the most typical, the sample mean of each variable”
(King [1989] 1998, 108). But here one is left wondering
why the sample mean of each variable is the most obvious
and how probable it is that the sample mean across all of
the variables represents the most typical case. That is, al-
though the sample mean of a single variable is an obvious
representation of that variable, it is not clear that the case
created by taking the mean of each independent variable
represents a meaningful case, or a case that actually exists,
let alone the most typical case.

As is the case with King ([1989] 1998), Long (1997)
has become a vital resource for empirical political scien-
tists. While one of the virtues of Long’s text is the discus-

sion of a variety of approaches to calculating meaningful
outcomes, the text does not offer clear advice on how best
to calculate marginal effects and predicted probabilities.

In his treatment of marginal effects, for instance,
Long notes that while it is a popular approach, setting the
other independent variables to their means (the average-
case approach) is potentially problematic. The challenge
leveled against the average-case approach is an appropri-
ate one—the average case might not exist in the popula-
tion. Long mentions that the average-case and observed-
value approaches might yield different results, but he does
not take a firm view on which is best, saying only that
the observed-value approach “might be preferred” (1997,
74). Since Long’s examples rely almost exclusively on the
average-case approach and his SPost software (Long and
Freese 2005) uses the average values as the default and does
not provide estimates using the observed-value approach,
it seems reasonable to conclude that his preference is for
the average-case approach.

At the heart of the problem with textbook coverage
is that the research question and data-collection process
are not completely connected to the implications of esti-
mating a model that is inherently, fully interactive in all
of the variables. We show that the linkages between the
various stages of the research enterprise are the strongest
when researchers use the observed-value approach.

Why Use the Observed-Value Approach?

Evaluating one’s theoretical expectations regarding the ef-
fect of changes in the independent variable(s) of interest
on the dependent variable is the primary goal of observa-
tional studies.7 After defining the population of interest,
using standard probability sampling techniques, a sample
is then drawn so as to be representative of that popula-
tion. The population of interest obviously varies based
on the nature of the research question and reflecting the
theory that is specified, but it is usually defined broadly
(e.g., those eligible to vote in the United States, the set
of established democracies, citizens in European Union
nations, and so on). After estimating the statistical model,
one then seeks to make inferences from the sample to the
population of interest.

Political science theorizing has not developed, nor
has it sought to develop, theories about fine-grained cat-
egories created from whatever combination happens to
result from taking the sample mean across all of the in-
dependent variables. Rather than seeking to understand

7The logic applies straightforwardly to experimental research that
uses nonlinear models.
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the effect for the average case, the goal is to obtain an
estimate of the average effect in the population. We do
not know of any studies that begin by stating what the
average case is in their sample, explaining its wider signif-
icance, and then testing hypotheses about this case. Con-
sider a typical scenario that arises with survey data from
the United States: we are not aware of any theories that
are specifically concerned with 48-year-old white women
who are independent politically and have an income of
$40,000–$45,000. Or, in a typical scenario with aggregate
data, we are not aware of theories about countries with a
9% unemployment rate and a population of 18 million
people, 17% of whom are over the age of 65, etc. With
a population so narrowly defined, descriptive statistics
would likely suffice, thus avoiding the issue of how best to
obtain results from a limited dependent variable model.

As noted above, with OLS the effect of the indepen-
dent variable of interest is constant for all (assuming a
simple model without interaction terms), so both ap-
proaches produce identical outcomes. As a result, con-
cerns with focusing on a narrowly defined subgroup,
about which a specific theory has not been formulated,
do not arise. However, the fully interactive nature of lim-
ited dependent variables necessitates greater care when
interpreting the results. Picking a single case as the basis
against which the effects of the independent variable(s)
of interest will be examined can be problematic. That is,
in assigning specific values for just a single case, one risks
not only obtaining a case that is not in the population,
rare, illogical, or not especially interesting, but also that
the effects for this particular case are not representative
of the overall effect or the effect for other classifications
one might reasonably select. In other words, the inter-
pretation of effects for just the average case provides a
less thorough test of the theory and an inefficient use
of the data, thus potentially limiting the ability to make
inferences about the population of interest.

The observed-value approach, however, provides es-
timates that speak directly to the quantities of interest
in the population. For example, if one is interested in
the effect of electoral reform on turnout in the Ameri-
can electorate, the observed-value approach provides the
average effect in the sample that one can then infer to
the population—the American electorate. By contrast,
the average-case approach considers the effect for a sin-
gle case, e.g., 48-year-old white women with incomes of
$40,000–$45,000, etc., and thus only represents the effect
for that particular case within the larger population. Due
to the fully interactive nature of the models, where the ob-
servations are placed on the curve will determine the size
of the effect. As such, the average effect across the sample
and the effects for other categorizations of the observa-

tions could be smaller (including no effect), the same, or
larger than the effect for the average case (see SI Section
A). Thus, unless the hypothesis relates to the small subset
that makes up the average case, an investigation of just the
average case is insufficient to evaluate fully the hypothesis
of interest regarding the substantive and statistical signif-
icance of the effect. That is, the effect for the average case
might not be generalizable to the wider population, espe-
cially if the average case does not exist in the population
or is rare. Though researchers do not usually specify in
the statement of their hypothesis the threshold beyond
which an effect is substantively significant (though one
could argue we should),8 implicit in the statement of any
hypothesis is that the effect is substantively important for
the population of interest. Ultimately, the research com-
munity will evaluate the contribution of the work in large
part based on how substantively important the effects
are. Additionally, if one has taken the trouble to obtain a
representative sample of a broad and meaningful popu-
lation, describing a single case whose meaning may not
be theoretically motivated is an inefficient way to use the
data.

With large n studies, such as those based on survey
data, the point seems rather clear as any individual case
is anonymous and does not carry any special meaning.
With studies based on a legislative body, a set of countries,
and so on, the individual cases are entities in which we
might have a special interest. For example, we might want
to predict what could have influenced the probability that
Hillary Clinton (in her time as a senator) would have
supported an immigration bill, the number of environ-
mental regulations Ireland will enforce, which countries
are likely to fall into a civil war, or how historical events
might have turned out differently. Signorino and Tarar
(2006) provide a nice example of the last scenario as they
analyze how the immediate and short-term balance of
forces might have altered the 1948 Berlin Blockade and
the 1937–38 Soviet-Japanese conflict over Manchukuo.
For each of these examples, calculations focused on these
specific observations are part of the observed-value ap-
proach, as a prediction is first obtained for each observa-
tion and then the average is taken to get the average effect
across the sample. So, if one centers the interpretation
upon just a single known case, we contend there must be
theoretical justification for doing so and recommend that
authors state this clearly.

While there might be good reason to study a partic-
ular legislator, country, etc., in depth, as discussed above,
it seems unlikely that a theoretical justification exists for

8See Achen (1982, 44–51) on the importance of substantive signif-
icance, including tests of substantive significance.
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studying the average case. For example, examining the
effect of an increase in the Hispanic population on the
probability of Senator Clinton’s support for an immigra-
tion bill would be of greater theoretical interest than the
effect for the average senator, who might not exist in the
population or might never reasonably be thought to enter
the population. And even if the average senator does exist
in the population, he or she might be exceptionally rare,
unexciting, or not electable in a place that might expe-
rience the change of interest. Theoretical reasons might
exist for focusing on a single case in situations such as
this, but we think political scientists should not stop there.
Consider again the Clinton example. While there might
be reasons to focus on Senator Clinton, doing so ignores
the set of questions having to do with broader concerns
about public policy outcomes and/or the way the Senate
operates more generally. As such, any detailed investiga-
tion of a single case (or set of cases) should be accompa-
nied by the overall effect obtained via the observed-value
approach.

A concern with the average-case approach worth fur-
ther discussion involves situations in which naive use
leads to establishing rare or meaningless cases as the
baseline from which one attempts to generalize. Surpris-
ingly, nearly 20% of the articles using the average-case
approach in our content analysis admitted to setting all of
the other independent variables to their means even when
those variables included dummy variables and/or squared
terms. Naively setting all other independent variables to
their means will set dummy variables to their sample pro-
portions. However, assigning a “central value” (e.g., the
mean) to binary or bimodal variables can make “the con-
cept of a ‘central value’ . . . less meaningful” (Gelman and
Hill 2007, 467). A dummy variable for blacks (vs. other
race) might be set to 0.12, which, literally translated, sug-
gests calculating a prediction for someone who is 12%
black. While there are people who fit some descriptions
of this nature, our surveys generally do not search for
such detailed information; if they did, the type of sample
drawn and the coding of the variables would necessarily
have to change. Consider also a dummy variable indi-
cating whether one has at least a college degree or not.
Here, setting the value to the sample proportion simply
does not make sense as calculating a prediction with this
variable set to any value other than 0 or 1 does not make
sense—one either has the degree or does not. So, while
Wooldridge suggests choosing a value for dummy vari-
ables “is really based on taste” (2002, 466), we disagree.9

9Of course, the problem of odd or nonsensical cases can be resolved
by selecting the modal value for dummy variables, though the
effects for each group might differ substantially.

A similar problem might arise with more complex
specifications that include squared terms or interaction
terms. Take squared terms, for instance. In the 2004
ANES, the average of the age variable is 47, but the av-
erage of age squared is 2,528, the square root of which
is 50. So, in a model that includes age and age squared,
examining the effects for all of the independent variables
at their sample mean produces a nonsensical result, as the
average case cannot be simultaneously 47 and 50 years
old. Although greater attention to the nature of the data
provides an easy fix, our content analysis revealed that
many were not particularly attentive to this detail.

In sum, the virtue of using the observed-value ap-
proach is simple: it better serves the goal of theory-driven
empirical research—making inferences about the popula-
tion of interest from the sample. As Hanushek and Jackson
elegantly stated: “Let us reemphasize that meaningful em-
pirical work must be based upon explicit hypotheses and
statements about predicted behavior” (1977, 3). Estimates
from the observed-value approach connect directly to the
original hypotheses and more easily allow researchers to
evaluate the substantive implications of their theory.

But it is crucial to note that the observed-value ap-
proach is not foolproof. Though our focus is on setting
the variables not being manipulated, setting the values of
the variable being manipulated is at least as important.
That is, researchers still have to take care in defining their
counterfactuals so that they are realistic for the popula-
tion of interest (Gelman and Pardoe 2007; King and Zeng
2006). Commonly, researchers set the variable of inter-
est to its minimum and maximum values and compute
the difference in predicted probabilities from this change.
However, this may be problematic when there are very
few cases at the minimum and maximum values or when
such changes are not likely to actually occur at all, or
for some subgroups. For example, moving from strong
Democrat to strong Republican on party identification is
a very rare change. In circumstances like this, researchers
should examine a more modest change in the indepen-
dent variable of interest, report only the average effect us-
ing the observed-value approach for the subpopulations
for which the changes are reasonable, or as Gelman and
Pardoe (2007) offer, weight the predicted probabilities
with respect to the closeness of counterfactual scenarios
in the data. Researchers might even employ these strate-
gies in combination with one another.

An Empirical Example

We now demonstrate that the two approaches to esti-
mating predicted probabilities and marginal effects can
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produce substantively different results.10 Using the 2004
ANES, we estimate a probit model of the vote choice
between George W. Bush (coded as 1) and John Kerry
(coded as 0).11 The model includes a standard set of de-
mographic and attitudinal variables (see SI Section B for
coding and model results). After estimating the model, we
determined that the average case (setting dummy vari-
ables to their mode and rounding to the nearest whole
number for categorical variables) is a white 48-year-old
female who identifies as an independent, has an associates
degree, is politically moderate, believes economic perfor-
mance has been the same, disapproves of the Iraq war
but not strongly, and has income between $45,000 and
$50,000. There is nothing that stands out as odd about
this combination of characteristics, and we imagine such
people do exist in the population. Critically, however,
such a person does not exist in the 2004 ANES, and we
are unaware of any theories specific to this particular type
of person.

We begin with an investigation of the baseline-
predicted probability of voting for Bush calculated using
the average-case and observed-value approaches. While
the predicted probability of voting for Bush for the aver-
age case is 60%, the average probability of voting for Bush
in the sample using the observed-value approach is 51%.
Since the result from the observed-value approach can
also be thought of as an estimate of the aggregate propor-
tion of votes going to Bush, an appropriate way to evaluate
this result is to compare it to the official proportion of
the popular vote that went to Bush in the 2004 election.
The official proportion of the popular vote going to Bush
was also 51%. Thus, this simple analysis indicates that the
probability of voting for Bush for the average case does
not provide a good representation of the probability of
voting for Bush among American voters.

Next, we examine the predicted probability of voting
for Bush across the range of values taken on by the inde-
pendent variables. That is, for each independent variable,
we examine the predicted probability at each value (or
a set of values across the range of the age and income
variables) and set all of the other variables to either their
sample average/mode or observed values. For selected in-
dependent variables, Figures 1a–1d show that the proba-
bility of voting for Bush at some values of the independent
variable of interest might differ substantially depending

10We find it most productive to illustrate the differences between
the two approaches in a generic example; we leave it to others to
examine the sensitivity of the conclusions to the method used to
calculate the predictions in their respective substantive areas.

11We use the sample that was asked the traditional turnout question.
The general conclusions do not change when we use those asked
the experimental question or the pooled sample.

on which approach is chosen, with a gap sometimes in
excess of 20 percentage points (for the rest of the results,
see SI Section B Table 2). For example, someone who be-
lieves the economy is much better but otherwise has the
average values for all of the other variables has an 87%
chance of voting for Bush. By contrast, when all of the
other variables are set to their observed values, the prob-
ability of voting for Bush among those who believe the
economy is much better is 64%, 23 points lower. While
the differences are sometimes small, for the variables that
have the strongest influence on vote choice, differences of
10 percentage points or more are common.

We conclude this section by comparing the effect of
changes in the independent variables on the predicted
probability of voting for Bush generated under the two
approaches. In so doing, we use the predicted probabili-
ties displayed in Figures 1a–1d and SI Section B Table 2.
For each of the independent variables, we began by estab-
lishing the sample mean of that variable as the baseline
against which changes would be made. Next, we calcu-
lated a predicted probability for each of the other values
of that independent variable (or for age and income a
set of values) and calculated the absolute value of the
difference between those predictions and the baseline.
For example, using the average-case approach, the pre-
dicted probability of voting for Bush at the average value
of retrospective economic evaluations (“the same”), and
the average (mode for dummy variables) of all of the
other independent variables is calculated as 60%, and the
predicted probability of voting for Bush when changing
just the value of retrospective economic evaluations to
“somewhat worse” is 43%, yielding an absolute differ-
ence of 17 percentage points. We repeated this process for
the observed-value approach where the baseline was es-
tablished as the predicted probability when the value for
retrospective economic evaluations was set to “the same,”
and all other variables were set to their observed values;
the effects were then calculated by taking the absolute
difference between that prediction and the values when
retrospective economic evaluations took on each of the
other possible values, respectively.

For selected independent variables, Figures 2a–2d
show the absolute differences in the sizes of the effects
for the average-case and observed-value approaches. Each
figure has two V-shaped lines that are both set to 0 for
the baseline value. As would be expected from a close in-
spection of Figures 1a–1d, the effect for the average case
is often substantially larger than the average effect cal-
culated using the observed-value approach. For example,
while the effect of moving from “the same” to “somewhat
worse” on retrospective economic evaluations was 17 per-
centage points when using the average-case approach, the
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FIGURE 1 Predicted Probability of Voting for George W. Bush vs. John Kerry in 2004, Using the
Average-Case and Observed-Value Approaches, for Selected Variables
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c. Handling of the Iraq War

Notes: Data are from the 2004 ANES, using respondents who first answered the standard turnout question. Results are based on
estimates from the model reported in SI Section B Table 1.

average effect of this movement in retrospective economic
evaluations using the observed-value approach is just 4
percentage points, an effect four times smaller than the
effect for the average case (see Figure 2a). In other words,
in this example the effect for the average case does not
represent the average effect of the independent variables
on the vote choice of American voters.

Monte Carlo Simulations

Using Monte Carlo simulations, we demonstrate further
the basic differences between the results from the average-
case and observed-value approaches. In addition to differ-
ent effect sizes, with these data the estimated predictions

and effects are often more sensitive to model misspecifi-
cation when using the average-case approach than when
using the observed-value approach.12 The intuition here
is straightforward and derives from the important lesson
provided by King and Zeng (2006; see their Appendix B
for a proof)—the farther one moves from the support
of the data, the more sensitive to model misspecification
the results will be. By definition, with the observed-value
approach, the values of all of the other independent vari-
ables will be on the support of the data; however, the mean
of all of the other independent variables might not repre-
sent a case that is present or common in the population
or sample.

12We thank Gary King for suggesting this line of inquiry.
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FIGURE 2 Effect (Absolute Value) of a Discrete Change in the Independent Variable from Its Mean
on the Probability of Voting for George W. Bush vs. John Kerry in 2004, Using the
Average-Case and Observed-Value Approaches, for Selected Variables
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Notes: Data are from the 2004 ANES, using respondents who first answered the standard turnout question. Results are based on
estimates from the model reported in SI Section B Table 1.

The Monte Carlo simulations consisted of 1,000 trials
using 1,000 observations generated with the following
model:

y∗
i =�0 + �1x1 + �2x2 + �3x3 + εi ,

where yi = 1 if y∗
i > 0,yi = 0 if y∗

i ≤ 0, x1 was drawn
from a uniform distribution and recoded into a categor-
ical variable that takes on one of three values (1, 2, or 3)
with an equal likelihood, x2 and x3 were both drawn from
the standard normal distribution, and εi was drawn from
the standard normal distribution. We also varied the cor-
relation between x2 and x3. We set the latent variable, y∗

i ,
as y∗

i = 2 + −1x1 + 1x2 + .5x3 + εi. Based on the analysis
presented in SI Section A, we expected this setup would

show that the effects estimated using the average-case ap-
proach would be larger in absolute magnitude than the
effects estimated via the observed-value approach.13

For both the average-case and observed-value ap-
proaches, we generated the following estimates: (1) the
predicted probability of success for each value of x1 and
the effect of a one-unit increase in the value of x1; (2)
the marginal effect of x2; and (3) the marginal effect of

13We also ran the simulations with �0 set to 0.5. As expected based
on the analysis presented in SI Section A, the effects estimated using
the average-case approach were smaller in absolute magnitude than
the effects estimated via the observed-value approach. The overall
conclusions were substantively similar to those reported below. The
results are available upon request.



BEHIND THE CURVE 273

x3. For each of the values for the correlation between x2

and x3, we ran the following sets of 1,000 trials using the
identical data: (1) a “true” probit model in which y was
regressed on x1, x2, and x3; (2) a probit model omitting
x1; (3) a probit model omitting x2; and (4) a probit model
omitting x3. We also calculated the true values using both
the average-case and observed-value approaches.

We report the results in Table 1. In the first two
columns of Panel A, we report the marginal effects from
the true model for x2 and x3 using the average-case
approach (column 1) and the observed-value approach
(column 2). The remaining columns show the average
difference in the estimates of the marginal effects when
the model is misspecified by dropping one of the inde-
pendent variables. The first two columns of Panel B show
the first differences for each one-unit change in the value
of x1 for the true model across the two approaches, while
the remaining columns show the average difference in the
estimates when the model is misspecified.

The first noteworthy result is that in the true model,
as expected, the estimates from the average-case and
observed-value approach differ. More specifically, the size
of the effects estimated using the average-case approach
exceeds the size of the effects estimated via the observed-
value approach. For example, the marginal effects of x2

and x3, respectively, when calculated using the average-
case approach, are nearly twice as large as when the cal-
culations were done using the observed-value approach.
Such discrepancies could be quite problematic in a vari-
ety of situations, especially in the context of public policy
evaluation, where the costs of potential policy changes
need to be carefully weighed against the benefits. While
we maintain that adherence to the logic of the research
process is sufficient reason to favor the observed-value ap-
proach, these results provide further evidence that the two
approaches can yield different substantive understand-
ings of the magnitude of the relationships between the
independent and dependent variables.14

Turning to the issue of model dependence, the differ-
ences between the two approaches are again quite clear.
When the correlation between x2 and x3 is 0, omitting
from the probit model any one of the independent vari-
ables used in the data-generating process has virtually no
effect on the predictions and marginal effects calculated
via the observed-value approach; for example, when x1

is dropped from the model, the marginal effects of both

14At this point in the analysis, it is not the case that one approach
performed better than the other in recovering the truth; rather, it is
simply the case that there are two different sets of truths—one for
the average case and one for the average effect calculated using the
observed-value approach. That is, the simulations are consistent
with the inequalities stated in equations (7a), (7b1), and (7b2).

x2 and x3 differ from the estimates from the true model
by less than 0.002. The same is not true for the esti-
mates obtained with the average-case approach, though
the discrepancies are not always large. The story changes
somewhat when x2 and x3 are highly correlated; but the
pattern of results is not a clear function of the correlation
between x2 and x3. For example, the one time in which
the average-case approach comes closer to the truth in
the misspecified model (the marginal effect of x3 when
x2 is dropped) is when the correlation is set to 0.5. But
when the correlation is increased to 0.8, the observed-
value approach again provides an estimate closer to the
truth. Overall, the simulations are consistent with our
expectation that the estimates from the observed-value
approach tend to be more robust to model misspecifi-
cation. However, due to the number of moving parts in
nonlinear models, pinpointing all of the conditions under
which the observed-value approach will be significantly
less model dependent is difficult.

Discussion
Extensions

We focused our discussion thus far on binary response
models due to their wide use and status as a building
block for other nonlinear models. But the logic of our ar-
gument extends straightforwardly to all nonlinear mod-
els. Since S-shaped curves are common to ordered probit
and logit and multinomial logit and probit models, the
magnitude of the predicted effects for the average-case in
comparison to the observed-value approach will depend
on the same set of indicators that are relevant for logit
or probit estimation (plus the cut-points for the ordered
models). For count models (both Poisson and negative
binomial regressions), since the formula for the expected
count, ex�, is strictly convex, by Jensen’s inequality, the
average effect calculated via the observed-value approach
will always be substantively larger than the effect for the
average-case approach. Here, we would like to add a note
of caution. Although one might argue that when the re-
sults from the average-case approach are smaller they
represent conservative estimates and are thus not prob-
lematic, this is not the case. First, as we have argued, it
is best to use the average-case approach only when there
is a theoretical justification for focusing on the effect for
the average case, or some other specific case. Second, if
the results from the average-case approach fall below the
bar set for concluding there is a substantively significant
effect, scholars and/or policy makers might incorrectly
conclude that the effects are too small for further consid-
eration, possibly hindering progress in both domains.
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TABLE 1 Monte Carlo Simulation Results Examining Model Dependence Using the Average-
Case and Observed-Value Approaches for y∗ = 2 + −1x1 + 1x2 + 0.5x3 + e

Panel A: Marginal Effects of x2 and x3 for True Model and Amount of Bias Due to Model Misspecification

Correlation Effects for True Bias in Model 1: Bias in Model 2: Bias in Model 3:
x2 & x3 = 0 Model1 Excludes x1 Excludes x2 Excludes x3

Variable of Average Observed Average Observed Average Observed Average Observed
Interest Case2 Values3 Case2 Values3 Case2 Values3 Case2 Values3

x2 0.400 0.230 −0.097 0.001 – – −0.043 0.000
x3 0.201 0.115 −0.049 0.000 −0.059 0.000 – –
Correlation
x2 & x3 = .5

x2 0.400 0.213 −0.095 0.001 – – 0.059 0.054
x3 0.201 0.107 −0.049 0.000 0.102 0.107 – –
Correlation
x2 & x3 = .8

x2 0.401 0.205 −0.095 0.001 – – 0.136 0.082
x3 0.200 0.102 −0.048 0.000 0.246 0.164 – –

Panel B: Predicted Effects (First Differences) Across Values of x1 (Going from x1 = 1 to x1 = 2 and x1 = 2 to x1 = 3) for
True Model and Amount of Bias Due to Model Misspecification

Correlation Effects for True Bias in Model 2: Bias in Model 3:
x2 & x3 = 0 Model1 Excludes x2 Excludes x3

Change in Average Observed Average Observed Average Observed
Value of x1 Case2 Values3 Case2 Values3 Case2 Values3

1 to 2 −0.342 −0.248 0.081 0.000 0.027 0.000
2 to 3 −0.341 −0.247 0.081 0.000 0.027 0.000
Correlation
x2 & x3 = .5

1 to 2 −0.342 −0.227 0.066 0.000 0.021 0.000
2 to 3 −0.342 −0.227 0.066 0.000 0.021 0.000
Correlation
x2 & x3 = .8

1 to 2 −0.342 −0.217 0.037 0.000 0.011 0.000
2 to 3 −0.342 −0.217 0.037 0.000 0.011 0.000

Notes: Results for the misspecified models represent the average difference from the estimate of the truth.
1 True model includes x1, x2, and x3. The results represent the marginal effect (Panel A) or first difference (Panel B). For both approaches,
using the true coefficients (and for the average-case approach, the true mean values) produces results that are nearly identical to those
reported in the true model columns, respectively.
2 Estimates computed by setting all other independent variables to their sample means.
3 Estimates computed by setting all other independent variables to their observed values in the sample.

The logic of the observed-value approach also extends
straightforwardly to more complex models. As we hinted
at above, models with squared terms and/or interaction
terms require some care but do not pose any problems.

One can also implement this approach with designs that
first preprocess the data via a matching algorithm and
then run a nonlinear model (see, e.g., Herrnson, Hanmer,
and Niemi, forthcoming), multilevel models (see, e.g.,
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FIGURE 3 Predicted Effects (First Differences)
of Changing Retrospective Economic
Evaluations on the Probability of
Voting for George W. Bush vs. John
Kerry in 2004, Using the
Observed-Value Approach, with 95%
Confidence Intervals
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Notes: Data are from the 2004 ANES, using respondents who
first answered the standard turnout question. Results are from
statistical simulation.

Biggers 2011), models with fixed effects (see, e.g., Han-
mer 2009), and random effects panel data models (see,
e.g., Bartels et al. 2011). Our point that those using the
observed-value approach use their data more efficiently
is especially relevant with data across time.

Reporting Results

Before concluding, we return to our empirical example
to show how one might report the predicted effects from
the observed-value approach. Since our earlier goal was
to compare the two approaches, we did not report the
results as we would if our main goal was to understand
vote choice in the 2004 election. Figure 3 shows the pre-
dicted effects and the confidence intervals around the ef-
fects of changing retrospective economic evaluations on
the probability of voting for George W. Bush, using the
observed-value approach. As we did earlier, we calculated
the first differences of a movement on retrospective eco-
nomic evaluations from the “same” to each of the other
answer choices (other changes in the variable of interest
could be similarly displayed). The average effect is shown
as a dot, and the 95% confidence intervals are represented
by the lines extending from the predicted effect. We also
present the predicted probability of voting for Bush across
each of the independent variables, along with 95% con-
fidence intervals, in SI Section B Table 3 and the first

differences for selected variables, with 95% confidence
intervals, in SI Section B Table 4.

Conclusion

Political science has come a long way since the “purist”
camp suggested retreat to descriptive statistics in the face
of a limited dependent variable. A variety of models to
deal with limited dependent variables have become com-
monplace. But as King and Zeng have noted: “As recently
as a half decade ago, most quantitative political scientists
were still presenting results in tables of hard-to-decipher
coefficients from logit, probit, event count, duration, and
other analyses” (2006, 131). Yet, a lack of clarity on how
best to estimate substantively meaningful results from
these models represents a missing link in the literature.
Unfortunately, many studies present results for cases that
are of potentially limited theoretical interest, thus limiting
the existing base of knowledge and ability to generalize.

The argument and results presented here call
for a shift in the dominant practice of calculating
predicted probabilities for limited dependent variable
models. Due to both theoretical and methodological
reasons, researchers using limited dependent vari-
able models should report predicted probabilities and
marginal effects estimated via the observed-value ap-
proach. Doing so is consistent with recognizing that the
core of the scientific endeavor is to “infer beyond the
immediate data to something broader that is not di-
rectly observed” (King, Keohane, and Verba 1994, 8). The
observed-value approach does a better job associating
the theoretical framework and data-collection activities
with the properties of limited dependent variable models.
Moreover, researchers can implement the observed-value
approach straightforwardly in any statistical package (see
SI Section C for an example using Stata; code for SPSS
and R are available upon request). Thus, the shift to the
observed-value approach will serve to improve future em-
pirical research.
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